3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet

Koko: px
Aloita esitys sivulta:

Download "3. Bernoullin yhtälön käyttö. KJR-C2003 Virtausmekaniikan perusteet"

Transkriptio

1 3. Bernoullin yhtälön käyttö KJR-C2003 Virtausmekaniikan perusteet

2 Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen? Motivointi: virtausnopeuden tai paineen määrittäminen virtauksessa ja näiden välisen yhteyden ymmärtäminen ovat keskeisissä rooleissa virtaustekniikassa Young et al, kappaleet

3 Osaamistavoitteet Soveltaa Bernoullin yhtälöä yksinkertaisiin virtausongelmiin hyödyntäen tarvittaessa myös massan säilymistä Käyttää paine-, nopeus-, asema- ja nostokorkeuden käsitteitä virtausongelmien ratkaisemiseen Selittää ja käyttää staattisen, dynaamisen, pato- ja kokonaispaineen käsitteitä Käyttää hydraulisen ja energiatasoviivan käsitteitä virtausongelmien ratkaisemiseen

4 Mitä rajoitteita Bernoullin yhtälön käyttöön liittyy?

5 Mitä oletettiin johdettaessa yhtälöä? Edellisen luennon antia 0

6 Mitä oletettiin johdettaessa yhtälöä? Edellisen luennon antia ei viskoosivoimia ei mekaanista työtä

7 Mitä oletettiin johdettaessa yhtälöä? Edellisen luennon antia integrointi virtaviivaa vakio

8 Miten Bernoullin yhtälöä voidaan tulkita?

9 Miten Bernoullin yhtälöä voidaan tulkita? kokonaispaine asemakorkeus nopeuskorkeus painekorkeus

10 Miten Bernoullin yhtälöä voidaan tulkita? Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

11 Miten Bernoullin yhtälöä voidaan tulkita? energiatasoviiva hydraulinen tasoviiva + Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

12 Miten tämä tulkinta esimerkiksi näkyy?

13 Esimerkki: pystysuora putki Problem 3.80 Vesi virtaa pystysuorassa putkessa (D=0.15 m) virtaamalla 0,2 m 3 /s ja paineella 200 kpa, kun korkeus on 25 m. Määritä nopeus- ja painekorkeus korkeuksilla 20 m ja 55 m. Vastaus: 20 m: h p = 25.4 m, h v = 6.53 m 55 m: h p = m, h v = 6.53 m Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

14 Miten Bernoullia sovelletaan vapaille suihkuille?

15 Mikä on vapaa suihku? Young et al (2012), Introduction to Fluid Mechanics, 5 th edition (Courtesy of U.S. Bureau of Reclamation)

16 Miten Bernoullia sovelletaan vapaille suihkuille? Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

17 Esimerkki: vapaa suihku tankista Problem 3.26 Vesi virtaa aukosta suuren tankin pohjassa nopeudella 12 m/s. Mikä on tankissa olevan veden syvyys? Vastaus: 7,34 m Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

18 Miten Bernoullia sovelletaan rajoitetuille virtauksille?

19 Mitä tiedämme massan säilymisen perusteella rajoitetuissa tapauksissa? Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

20 Esimerkki: putken alipaine Problem 3.56 Vesi virtaa tasaisesti ilman kitkan vaikutusta putken läpi. Tiedetään, että ohutseinäinen kapenema puristuu kasaan, jos paine sen sisällä on alempi kuin -69 kpa suhteessa ilmakehän paineeseen. Määritä suurin h, jolla kapenema ei puristu kasaan. Vastaus: m Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

21 Miten nopeus voidaan määrittää paineista?

22 Miten nopeus ja paine kytkeytyvät? Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

23 Miten nopeus voidaan määrittää paineista? Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

24 Miten nopeus voidaan määrittää paineista? Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

25 Miten tilavuusvirtoja voidaan mitata paine-eroista?

26 Esimerkki: Venturi-putki Young et al (2012), Introduction to Fluid Mechanics, 5 th edition

27 Mitä opittiin?

28 Päivän anti Mitä Bernoullin yhtälö tarkoittaa ja miten sitä voidaan käyttää virtausongelmien ratkaisemiseen?

29 Seuraavaksi kerraksi Tiistain luennon aiheena: Kontrollitilavuusajattelu ja massan säilyminen, Young et al (2012): , 5.1 Miten jonkin partikkelisysteemiin liittyvän suureen säilyminen voidaan sitoa saman suureen käyttäytymiseen jossain mielivaltaisessa alueessa ja miten massan säilyminen kontrollitilavuudessa esitetään? Motivointi: usein ollaan kiinnostuneita virtauksesta jossakin valitussa alueessa eikä yksittäisten partikkelien käyttäytymisestä esimerkiksi massataseesta jossain tilavuudessa Muistakaa, että kierroksen 1 DL on tänään klo 13:00

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet 4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan

Lisätiedot

9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet

9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet 9. Kitkaton virtaus ja potentiaaliteoria KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten ja millä edellytyksillä virtausongelmaa voidaan yksinkertaistaa? Motivointi: Navier-Stokes yhtälöiden ratkaiseminen

Lisätiedot

14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet

14. Putkivirtausten ratkaiseminen. KJR-C2003 Virtausmekaniikan perusteet 14. Putkivirtausten ratkaiseminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten erilaisia putkistovirtausongelmia ratkaistaan? Motivointi: putkijärjestelmien mitoittaminen sekä painehäviöiden

Lisätiedot

12. Mallikokeet. KJR-C2003 Virtausmekaniikan perusteet

12. Mallikokeet. KJR-C2003 Virtausmekaniikan perusteet 12. Mallikokeet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten sama virtausongelma voidaan mallintaa eri asetelmalla ja miten tämä on perusteltavissa dimensioanalyysillä? Motivointi: useissa käytännön

Lisätiedot

7. Differentiaalimuotoinen jatkuvuusyhtälö. KJR-C2003 Virtausmekaniikan perusteet

7. Differentiaalimuotoinen jatkuvuusyhtälö. KJR-C2003 Virtausmekaniikan perusteet 7. Differentiaalimuotoinen jatkuvuusyhtälö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten lähestymistapaa pitää muuttaa, jos halutaan tarkastella virtausta lokaalisti globaalin tasetarkastelun

Lisätiedot

15. Rajakerros ja virtaus kappaleiden ympäri. KJR-C2003 Virtausmekaniikan perusteet

15. Rajakerros ja virtaus kappaleiden ympäri. KJR-C2003 Virtausmekaniikan perusteet 15. Rajakerros ja virtaus kappaleiden ympäri KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten virtaus käyttäytyy fluidiin upotetun kappaleen ympärillä ja erityisesti sen välittömässä läheisyydessä?

Lisätiedot

17. Pyörivät virtauskoneet. KJR-C2003 Virtausmekaniikan perusteet

17. Pyörivät virtauskoneet. KJR-C2003 Virtausmekaniikan perusteet 17. Pyörivät virtauskoneet KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mikä on pyörivä virtauskone ja miten sen toimintaa ja suorituskykyä voidaan tarkastella opitun perusteella? Motivointi: pyörivät

Lisätiedot

11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet

11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet 11. Dimensioanalyysi KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten yksittäisen virtaustapauksen tuloksia voidaan yleistää tarkastelemalla ilmiöön liittyvien suureiden yksiköitä? Motivointi: dimensioanalyysin

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 1.9.2017 klo 12:00-16:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

Hydrauliikka: kooste teoriasta ja käsitteistä

Hydrauliikka: kooste teoriasta ja käsitteistä ENY-C003 / S-05 Hydrauliikka: kooste teoriasta ja käsitteistä Sovelletussa hydrodynamiikassa eli hydrauliikassa käsitellään veden virtausta putkissa ja avouomissa sekä maaperässä. Käsitteitä Rataviiva,

Lisätiedot

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

0. Johdatus virtausmekaniikkaan ( , 1.11, 23 s.)

0. Johdatus virtausmekaniikkaan ( , 1.11, 23 s.) Kurssin keskeinen sisältö 0. Johdatus virtausmekaniikkaan (1.1-1.8, 1.11, 23 s.) Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 10 Noste Nesteeseen upotettuun kappaleeseen vaikuttaa nesteen pintaa kohti suuntautuva nettovoima, noste F B Kappaleen alapinnan kohdalla nestemolekyylien

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

0. Johdatus virtausmekaniikkaan. KJR-C2003 Virtausmekaniikan perusteet

0. Johdatus virtausmekaniikkaan. KJR-C2003 Virtausmekaniikan perusteet 0. Johdatus virtausmekaniikkaan KJR-C2003 Virtausmekaniikan perusteet Päivän anti Mitä virtaus on, miksi se on kiinnostavaa ja mitkä ovat siihen keskeisesti liittyvät käsitteet? Motivointi: Flows occur

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

Luento 16: Fluidien mekaniikka

Luento 16: Fluidien mekaniikka Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla

Lisätiedot

Chapter 1. Preliminary concepts

Chapter 1. Preliminary concepts Chapter 1 Preliminary concepts osaa kuvata Reynoldsin luvun vaikutuksia virtaukseen osaa kuvata virtauksen kannalta keskeiset aineominaisuudet ja tietää tai osaa päätellä näiden yksiköt osaa tarvittaessa

Lisätiedot

Luku 13. Kertausta Hydrostaattinen paine Noste

Luku 13. Kertausta Hydrostaattinen paine Noste Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää

Lisätiedot

Putkistovirtausmittauksia

Putkistovirtausmittauksia Tiia Monto Työ tehty: 23.11.09 tiia.monto@jyu. 04075218560 Putkistovirtausmittauksia Assistentti: Arvostellaan: Abstract Työssä tutkittiin kuristuslaippaa, venturiputkea sekä pitot-putkea putkistovirtausmittauslaitteistolla.

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi? Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.

Lisätiedot

Demo 5, maanantaina 5.10.2009 RATKAISUT

Demo 5, maanantaina 5.10.2009 RATKAISUT Demo 5, maanantaina 5.0.2009 RATKAISUT. Lääketieteellisen tiedekunnan pääsykokeissa on usein kaikenlaisia laitteita. Seuraavassa yksi hyvä kandidaatti eli Venturi-mittari, jolla voi määrittää virtauksen

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen

Lisätiedot

Harjoitus 3: Hydrauliikka + veden laatu

Harjoitus 3: Hydrauliikka + veden laatu Harjoitus 3: Hydrauliikka + veden laatu 14.10.015 Harjoitusten aikataulu Aika Paikka Teema Ke 16.9. klo 1-14 R00/R1 1) Globaalit vesikysymykset Ke 3.9 klo 1-14 R00/R1 1. harjoitus: laskutupa Ke 30.9 klo

Lisätiedot

Kon-41.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op)

Kon-41.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Kon-41.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Viikkoharjoitukset syksyllä 2015 Paikka: Maarintalo, E-sali Aika: perjantaisin klo 10:15-13:00 (14:00) Päivämäärät: Opetushenkilöstö

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).

Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p). 3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste

Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste 8 3 Paine Käsitteet: ilmanpaine, ilmakehä, lappo, kaasu, neste i Ilma on ainetta ja se vaatii oman tilavuutensa. Ilmalla on massa. Maapallon ympärillä on ilmakehä. Me asumme ilmameren pohjalla. Me olemme

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 8 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

Omavoimaiset säätimet on suunniteltu integroitaviksi suoraan lämmönsiirtimeen. Niiden avulla lämmönsiirrin säätää käyttöveden lämmitystä.

Omavoimaiset säätimet on suunniteltu integroitaviksi suoraan lämmönsiirtimeen. Niiden avulla lämmönsiirrin säätää käyttöveden lämmitystä. Tekninen esite Lämmönsiirtimen omavoimaiset säätimet (PN16) PM2+P Suhteellinen virtaussäädin, jossa sisäänrakennettu p -säädin (NS) PTC2+P Virtauksen mukaan toimiva lämpötilansäädin, jossa sisäänrakennettu

Lisätiedot

Hydrologia. Pohjaveden esiintyminen ja käyttö

Hydrologia. Pohjaveden esiintyminen ja käyttö Hydrologia Timo Huttula L8 Pohjavedet Pohjaveden esiintyminen ja käyttö Pohjavettä n. 60 % mannerten vesistä. 50% matalaa (syvyys < 800 m) ja loput yli 800 m syvyydessä Suomessa pohjavesivarat noin 50

Lisätiedot

Luento 16: Fluidien mekaniikka

Luento 16: Fluidien mekaniikka Luento 16: Fluidien mekaniikka Johdanto ja käsitteet Sovelluksia Bernoullin laki Luennon sisältö Johdanto ja käsitteet Sovelluksia Bernoullin laki Jatkuvan aineen mekaniikka Väliaine yhteisnimitys kaasuilla

Lisätiedot

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos

Transistori. Vesi sisään. Jäähdytyslevy. Vesi ulos Nesteiden lämmönjohtavuus on yleensä huomattavasti suurempi kuin kaasuilla, joten myös niiden lämmönsiirtokertoimet sekä lämmönsiirtotehokkuus ovat kaasujen vastaavia arvoja suurempia Pakotettu konvektio:

Lisätiedot

Viikon aiheena putkivirtaukset

Viikon aiheena putkivirtaukset Viikon aiheena putkivirtaukset Tänään keskitytään putkivirtausten luonteeseen ja keskeisiin käsitteisiin Seuraavalla kerralla putkivirtausongelmien ratkaisemisesta Putkivirtausten käytännön relevanssi

Lisätiedot

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

,-xrt:lrw. Losses: apr,i"rio., : (f *) + pv2 and, apr*, : Kr*, L. Power: P:LpQ. Ef :*,,r(r'r f)*, -l,in(t* f),, Ensimmäinen välikoe. pv, g.o4.

,-xrt:lrw. Losses: apr,irio., : (f *) + pv2 and, apr*, : Kr*, L. Power: P:LpQ. Ef :*,,r(r'r f)*, -l,in(t* f),, Ensimmäinen välikoe. pv, g.o4. Kul-34.3100 Introduction to Fluid Mechanics Ensimmäinen välikoe g.o4.2ot4 Muistathan, että perustelut ovat tärkeä osa laskua ja arvostelua! Properties of air density: pair : l.23kg/m3 (dynamic) viscosity:

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta MEKANIIKAN TEHTÄVIÄ Ympyröi oikea vaihtoehto. Normaali ilmanpaine on a) 1013 kpa b) 1013 mbar c) 1 Pa Kappaleen liike on tasaista, jos a) kappaleen paikka pysyy samana b) kappaleen nopeus pysyy samana

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A m i t o i t u s ta u l u k o t 04 I 2009 51028

U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A m i t o i t u s ta u l u k o t 04 I 2009 51028 U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A m i t o i t u s ta u l u k o t 04 I 2009 51028 293 Mitoitustaulukot liitteet 1.1-9 294 m i t o i t u s ta u l u k o t Liite 1.1

Lisätiedot

Järvenpään Perhelän korttelin kutsukilpailu ehdotusten vertailu

Järvenpään Perhelän korttelin kutsukilpailu ehdotusten vertailu Järvenpään Perhelän korttelin kutsukilpailu ehdotusten vertailu KERROSALAT K-ALA HUONEISTOALAT BRUTTO-A HYÖTYALA ASUNNOT LIIKETILAT YHTEENSÄ as. lkm ap lkm asunnot as aputilat YHT. liiketilat aulatilat,

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 2.3.2016 Susanna Hurme äivän aihe: Staattisesti määrätyn rakenteen tukireaktiot (Kirjan luvut 5.7 ja 6.6) Osaamistavoitteet: Ymmärtää, mitä tarkoittaa staattisesti

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

Hydrologia. Maanpinnan alaisten vesien jako

Hydrologia. Maanpinnan alaisten vesien jako Hydrologia L7 Maavedet Maanpinnan alaisten vesien jako Maavesi, vedellä kyllästymätön vyöhyke juurivesi välivyöhyke kapillaarivesi Pohjavesi, vedellä kyllästetty vyöhyke 15/01/2013 WETA150 Hydrologia T.Huttula

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 46/2017 KJR-C00 Kontinuumimekaniikan perusteet, iikko 46/07. Kuan esittämä esiskootteri etenee akioauhdilla. Veden (tihes ) sisäänotto tapahtuu pohjassa olean aakasuoran aukon kautta. Sisääntulean eden auhti on

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

33. Valimohiekkojen kuljetuslaitteet

33. Valimohiekkojen kuljetuslaitteet 33. Valimohiekkojen kuljetuslaitteet Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto 33.1 Hihnakuljettimet Hihnakuljettimet ovat yleisimpiä valimohiekkojen siirtoon käytettävissä kuljetintyypeistä.

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Uponor Push 23A Pumppu- ja sekoitusryhmä

Uponor Push 23A Pumppu- ja sekoitusryhmä L at t i a l ä m m i t y s U P O N O R P U S H 2 3 A Pumppu- ja sekoitusryhmä 04 2010 5042 Lattialämmityksen pumppu- ja sekoitusryhmä on pumppu- ja sekoitusryhmä, joka on tarkoitettu käytettäväksi Uponor-lattialämmitysjärjestelmän

Lisätiedot

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla

Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu.

(b) Määritä pumpun todellinen nostokorkeus, jos pumpun hyötysuhde on 65 %. 160 mm. 100 mm. 650 rpm. Kuva 1: Tehtävän asettelu. Tehtävä 1 Kuvan keskipakopumppu pumppaa vettä (ρ = 998 kg/m 3 ) tilavuusvirralla 180 l/s. Pumpun pesän korkeus on mm. Oletetaan, että sisäänvirtauksessa absoluuttisella nopeudella ei ole tangentiaalista

Lisätiedot

Rovaniemi T.Kilpiö, M.Talvensaari, I.Kylmänen 23.02.2009

Rovaniemi T.Kilpiö, M.Talvensaari, I.Kylmänen 23.02.2009 LAUSUNTO 1 (2) Rovaniemi T.Kilpiö, M.Talvensaari, I.Kylmänen 23.02.2009 KOLLAJAN ALLAS Lausunto hankkeen vaikutuksista jääolosuhteisiin Iijoella Haapakosken voimalaitoksen yläpuolisella ns. luonnonuomalla

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Esite. Paineen, ilmannopeuden ja ilmamäärän mittaus. Vaihdettavat moduulit. Suuri graafinen näyttö LIITÄNNÄT

Esite. Paineen, ilmannopeuden ja ilmamäärän mittaus. Vaihdettavat moduulit. Suuri graafinen näyttö LIITÄNNÄT Esite Paine / Lämpötila / Kosteus / Ilmannopeus / Ilmamäärä / Äänitaso Mikromanometri MP 210 Paineen, ilmannopeuden ja ilmamäärän mittaus Vaihdettavat moduulit E Suuri graafinen näyttö LIITÄNNÄT 2 lämpötilamittausta

Lisätiedot

Virtaus ruiskutusventtiilin reiästä

Virtaus ruiskutusventtiilin reiästä Jukka Kiijärvi Virtaus ruiskutusventtiilin reiästä Kaasu- ja polttomoottorin uudet tekniset mahdollisuudet Polttomoottori- ja turbotekniikan seminaari 2014-05-15 Otaniemi Teknillinen tiedekunta, sähkö-

Lisätiedot

Moottorisahan ketjun kytkentä

Moottorisahan ketjun kytkentä Moottorisahan ketjun kytkentä Moottorisaha kiihdytetään tyhjäkäynniltä kierrosnopeuteen 9600 r/min n. 120 krt/h. Mikä on teräketjun keskipakoiskytkimen kytkentäaika ja kuinka paljon kytkin lämpenee, kun

Lisätiedot

Facilis FCL Yksinkertaisesti nerokas

Facilis FCL Yksinkertaisesti nerokas lindab comfort Yksinkertaisesti nerokas lindab yksinkertaisesti nerokas ilmanhajotin toimitetaan esisäädettynä haluttuun ilmavirtaan halutulla paineella. iljainen toiminta laajalla painealueella mahdollistaa

Lisätiedot

RTEK-2000 Statiikan perusteet 4 op

RTEK-2000 Statiikan perusteet 4 op RTEK-2000 Statiikan perusteet 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat Osaamistavoitteet

Lisätiedot

3 Määrätty integraali

3 Määrätty integraali Määrätty integraali. a) Muodostuva alue on kolmio, jonka kanta on. Kolmion korkeus on funktion arvo kohdassa, eli f() = = 6. Lasketaan A() kolmion pintaalana. 6 A() 6 Vastaus: A() = 6 b) Muodostuva alue

Lisätiedot

VAIHTOEHTO 4, PÄÄVESIJOHTO JA PÄÄJÄTEVESIVIEMÄRI YHTEISKÄYTTÖTUNNELISSA JÄTEVESIVIEMÄRISSÄ YKSI VÄLIPUMPPAUS

VAIHTOEHTO 4, PÄÄVESIJOHTO JA PÄÄJÄTEVESIVIEMÄRI YHTEISKÄYTTÖTUNNELISSA JÄTEVESIVIEMÄRISSÄ YKSI VÄLIPUMPPAUS 1 LIITE 2 VAIHTOEHTO 4, PÄÄVESIJOHTO JA PÄÄJÄTEVESIVIEMÄRI YHTEISKÄYTTÖTUNNELISSA JÄTEVESIVIEMÄRISSÄ YKSI VÄLIPUMPPAUS Mitoitus Vaihtoehdossa on selvitetty mahdollisuutta johtaa jätevedet yhteiskäyttötunneliin

Lisätiedot

Maakauhat. Lumikauhat

Maakauhat. Lumikauhat Maakauhat Maakauha 400 400 1400 155 355B Maakauha 600 600 1700 215 455B Maakauha 850 850 1800 335 655C Maakauha 1000 1000 2100 365 655C Maakauha 1300 1300 2300 450 855C - Erilaisten maalajien kuormaukseen

Lisätiedot

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa. SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen ILMAVIRTAUKSEN ENERGIA JA TEHO Ilmavirtauksen

Lisätiedot

Aineskuljetus avouomassa

Aineskuljetus avouomassa 1 Aineskuljetus avouomassa Timo Huttula 1. Yleistä... 1 2. Virtausvastus... 2 3. Uoman eroosio ja sedimentin kuljetus... 2 3.1. Vallitsevat prosessit... 2 3.2. Hiukkasen laskeutumisnopeus... 3 3.3. Kriittinen

Lisätiedot

Uponor Push 23B-W. Lattialämmityksen pumppuryhmä

Uponor Push 23B-W. Lattialämmityksen pumppuryhmä Lattialämmityksen pumppuryhmä Lattialämmityksen pumppuryhmä on pumppuryhmä, joka on tarkoitettu käytettäväksi Uponor-lattialämmitysjärjestelmän kanssa. Pumppuryhmä säätää lattialämmityksessä kiertävän

Lisätiedot

ÖLJYNJAKELULAITTEET PAINEPISTE OY WWW.PAINEPISTE.FI

ÖLJYNJAKELULAITTEET PAINEPISTE OY WWW.PAINEPISTE.FI ÖLJYNJAKELULAITTEET PAINEPISTE OY WWW.PAINEPISTE.FI ÖLJYPUMPPU 1:1 Viton tiivisteet Painesuhde 1:1 - Virtaus 23 l/min A327 Siirtopumppu N 1 packing m 3,6 Kg 4,3 A3271 Siirtopumppu räätälöitävällä 1" imuputkella

Lisätiedot

T RC/ PC - Tekniset tiedot

T RC/ PC - Tekniset tiedot T7.185-200 RC/ PC - Tekniset tiedot TRAKTORIMALLI T7.185 T7.200 T7.185 T7.200 RC RC PCE PCE Sylinteriluku/hengitys 6 T Interc 6 T Interc 6 T Interc 6 T Interc Iskutilavuus litraa 6,728 6,728 6,728 6,728

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Alkulause 5 Sisällysluettelo 7 Kirjallisuusluettelo 12. 1 JOHDANTO 15 1.1 Kinematiikan tehtävä 15 1.2 Historiallista taustaa 17

Alkulause 5 Sisällysluettelo 7 Kirjallisuusluettelo 12. 1 JOHDANTO 15 1.1 Kinematiikan tehtävä 15 1.2 Historiallista taustaa 17 7 SISÄLLYSLUETTELO Alkulause 5 Sisällysluettelo 7 Kirjallisuusluettelo 12 KINEMATIIKKA 1 JOHDANTO 15 1.1 Kinematiikan tehtävä 15 1.2 Historiallista taustaa 17 2 PARTIKKELIN KINEMATIIKKA 19 2.1 Suoraviivainen

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Laskuharjoitus 1 Ratkaisut

Laskuharjoitus 1 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia. Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen

Lisätiedot

Kanavasäleikkö. Mitat. Tuotekuvaus. Hoito Säleikkö irrotetaan kanavaan pääsyä varten. Tilausesimerkki. Materiaali ja pintakäsittely.

Kanavasäleikkö. Mitat. Tuotekuvaus. Hoito Säleikkö irrotetaan kanavaan pääsyä varten. Tilausesimerkki. Materiaali ja pintakäsittely. Mitat B+0 A+0 A B Tuotekuvaus on suorakaiteen muotoinen, pystysuorilla, säädettävillä säleillä varustettu ilmanvaihtosäleikkö asennettavaksi suoraan pyöreisiin kanaviin. Säleikköä voidaan käyttää sekä

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

18. Muotin täyttöjärjestelmä

18. Muotin täyttöjärjestelmä 18. Muotin täyttöjärjestelmä Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Kanavistoa, jota pitkin sula metalli virtaa muottionteloon, kutsutaan muotin täyttöjärjestelmäksi. Täyttämisen ohella sillä

Lisätiedot

YLIVIRTAUSVENTTIILI Tyyppi 44-6B. Kuva 1 Tyyppi 44-6B. Asennusja käyttöohje EB 2626-2 FI

YLIVIRTAUSVENTTIILI Tyyppi 44-6B. Kuva 1 Tyyppi 44-6B. Asennusja käyttöohje EB 2626-2 FI YLIVIRTAUSVENTTIILI Tyyppi 44-6B Kuva 1 Tyyppi 44-6B Asennusja käyttöohje EB 2626-2 FI Painos huhtikuu 2003 SISÄLLYS SISÄLLYS Sivu 1 Rakenne ja toiminta.......................... 4 2 Asennus................................

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

MAAKAUHAT LUMIKAUHAT

MAAKAUHAT LUMIKAUHAT FIN 2012 MAAKAUHAT Maakauha 400 400 1400 155 365 Maakauha 600 600 1700 215 455B Maakauha 850 850 1800 335 655C Maakauha 1000 1000 2100 365 655C Maakauha 1300 1300 2300 450 855C - Erilaisten maalajien kuormaukseen

Lisätiedot

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p 2. Pyöräilijä lähti Pietarsaaresta kohti Kokkolaa, jonne on matkaa 33 km. Hän asetti tavoitteeksi ajaa edestakaisen matkan keskinopeudella 24 km/h. Vastatuulen takia hän joutui käyttämään menomatkaan aikaa

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot