tutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin
|
|
- Topi Korpela
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 FYSP102 / K2 KIMMOKERTOIMEN MÄÄRITYS Työn tavoitteita tutustuttaa materiaalien lujuusominaisuuksiin luentoja perusteellisemmin kerrata monia toistoja sisältävien laskujen sekä suoransovituksen tekemistä tietokoneella Peruskurssitasolla materiaalien ominaisuuksiin tutustuminen jää usein lyhyeksi ajanpuutteen vuoksi. Tämän työn tarkoituksena on tutustuttaa taivutuskimmoisuuteen ilmiöön, jolla on suurempi merkitys insinööritieteiden opinnoissa kuin fyysikon koulutuksessa. Kuitenkin pitää muistaa, että materiaalien lujuusominaisuuksien hallinta on tärkeää monilla aloilla kuten esim. rakentamisessa ja konetekniikassa. Työn tulosten analysoinnissa tehdään useita laskuja samoilla kaavoilla, minkä vuoksi tietokone on hyödyllinen apuväline. Työssä kerrataan kaavoilla laskeminen Excelin avulla eli työ sopii hyvin erityisesti niille, jotka eivät ole tehneet Heittoliike-lapputyötä (FYSP101/K2). Myös suoransovituksen tekeminen tietokoneella tulee kerratuksi. Yleistä Materiaalien kimmoisuusominaisuuksia käsitellään oppikirjoissa Randall D. Knight, Physics for Scientists and Engineers kappaleessa 15.6 ja Young & Freedman, University Physics 12 th ed., kappaleissa 11.4 ja Asiaan enemmän perehtymään haluavien kannattaa tutustua esim. oppilaslaboratoriossa olevaan kirjaan Lujuusopin perusteet [1]. Työhön liittyvä harjoitustehtävä on esitetty teoriaosan lopussa. Tehtävä tulee olla laskettuna (tai ainakin yritettynä laskea) työtä tekemään tultaessa.
2 FYSP102 / K2 Kimmokertoimen määritys Teoriaa 1.1 Hooken laki Kiinteillä kappaleilla on pyrkimys säilyttää muotonsa ja tilavuutensa. Kiinteään kappaleeseen, toisin kuin kaasuun tai nesteeseen, on siis mahdollista kohdistaa erilaisia rasituksia. Yksinkertainen esimerkki tilanteesta on tanko, johon vaikuttaa tangon suuntainen voima. Olkoon kyseinen voima F ja tangon poikkileikkauksen ala A. Oletetaan, että voima vaikuttaa tangon toiseen päähän ja toinen pää on kiinnitetty. Tällöin voima F on jokaiselle poikkileikkaukselle A sama, ja jokaiseen poikkileikkaukseen kohdistuva vetojännitys on F/A. Vaikuttava voima aiheuttaa tangossa voiman suunnasta riippuen joko venymistä tai kokoonpuristumista. Jos tangon pituus on L ja venymä L, on suhteellinen venymä L/L, joka on riippumaton tangon pituudesta. Suhteellisen venymän ja vetojännityksen välillä vallitsee Hooken laiksi kutsuttu verrannollisuus F A E L L, (1) jossa E on tangon materiaalista riippuva, aineelle ominainen kimmokerroin (modulus of elasticity). Hooken laki pätee pienille jännityksille ja venymille (Hooken lain pätevyysalueen ulkopuolella muutokset eivät enää ole täysin palautuvia). 1.2 Taivutuskimmoisuus Kimmokertoimet ovat kohtuullisen suuria, joten ohuenkin tangon venyttäminen vaatii kohtuullisen suuria voimia. Pienemmillä voimilla selvitään, kun tarkastellaan taivutuskimmoisuutta, joka on valitettavasti laskuiltaan hivenen monimutkaisempi. Kun kiinteän tangon toinen pää kiinnitetään ja toista kuormitetaan, tanko taipuu. Tangon eri kerrokset eivät veny yhtä paljon. Keskellä tankoa on neutraalikerros, joka ei veny eikä puristu. Sen yläpuolella olevan kerrokset venyvät ja alapuolella olevat puristuvat kokoon. Neutraalikerros kulkee tangon poikkileikkauksen painopisteen kautta.
3 FYSP102 / K2 Kimmokertoimen määritys Kuva 1. Taivutettu tanko (paksuus a, leveys b). Olkoon tilanne kuten kuvassa 1, jossa tankoa on taivutettu. Venyneen kerroksen (DD ) etäisyyttä neutraalikerroksesta (CC ) on merkitty kuvassa s:llä, taipuman kaarevuussädettä R:llä ja kaarevuuskulmaa :llä. Kuvasta nähdään, että CC :n pituus on R ja DD :n (R+s). Kerroksen DD venymä on siis s ja suhteellinen venymä eli muutos alkuperäiseen s /R = s/r. Hooken laista saadaan nyt df da E s R, (2) missä df on se (infintesimaalisen pieni) voima, joka pyrkii palauttamaan poikkileikkaukseltaan infinitesimaalisen pienen kerroksen da tasapainopituuteensa. Huomaa että Hooken lakia (lauseke 1) johdattaessa tavallisesti ajatellaan ulkoista voimaa, joka saa aikaan tangon pituuden poikkeaman; nyt ulkoinen voima ei ole tangon suuntainen, mutta kun tankoon saadaan aiheutetuksi suhteellinen venymä L/L, tangon sisäinen vetojännitys F/A noudattaa Hooken lain mukaista verrannollisuutta.
4 FYSP102 / K2 Kimmokertoimen määritys Pintahitausmomentti Staattisessa tasapainossa ulkoisten voimien ja sisäisten jännitysten vääntömomentit kumoavat toisensa. Edellä tarkasteltuun pinta-alkioon da vaikuttavan voiman df (infinitesimaalisen pieni) momentti dm on df s (neutraalikerros kulkee tangon painopisteen kautta!) Sijoittamalla tähän kaavasta 2 ratkaistu df saadaan dm dfs E s2 da. (3) R Kaikkien tangon poikkileikkaukseen vaikuttavien voimien yhteenlaskettu momentti M S on M S dm E s2 R da E R s2 da E R I A. (4) Suuretta I A nimitetään pintahitausmomentiksi (tai myös jäyhyysmomentiksi tai pinnan neliömomentiksi). I A :n arvo riippuu poikkipinnan muodosta ja akselista, jonka suhteen se on laskettu. Kuvan 2 merkintöjen mukaisesti pintahitausmomentti suorakaiteelle kuvaan merkityn akselin suhteen on I A a / 2 a / 2 / b a 3 ba s da s b ds / s (5) 3 a / 2 12 a / 2 a / 2 Kuva 2. Tangon poikkileikkauskaavio pintahitausmomentin laskemisessa.
5 FYSP102 / K2 Kimmokertoimen määritys ja ympyrän muotoiselle poikkipinnalle (johtaminen jätetään harjoitukseksi) I A 4 4 r d, (6) 4 64 jossa r on ympyräpinnan säde ja d ympyräpinnan halkaisija. 1.4 Kaareutumissäde Kuva 3. Taivutettu tanko ja kaareutumissäde R. Jotta kimmokerroin E voitasiin laskea, tulee tuntea myös kaareutumissäde R. Jos taipumaa tarkastellaan x- ja y-koordinaattien avulla kuvan 3 mukaisesti, pienille taipumille pätee 1/R d 2 y/dx 2 (yksityiskohtainen johtaminen: ks. [1]). Yhtälö 4 saadaan tällöin muotoon M S EI A d 2 y dx 2. (7) Koejärjestelyssä tutkitaan molemmista päistä tuettua, keskeltä kuormitettua tankoa. Laskuja varten valitaan origo kuormituspisteeseen. Kun tankoa kuormitetaan keskeltä voimalla F, pyrkivät F/2:n suuruiset tukivoimat taivuttamaan tankoa. Vaaditaan, että ulkoisten voimien momentti M u pisteessä (x,y) on yhtä suuri kuin tangon sisäisten jännitysvoimien momentti:
6 FYSP102 / K2 Kimmokertoimen määritys d 2 y EI A F dx 2 2 ( l x), (8) 2 missä l on tangon pituus. Erottamalla muuttujat x ja y ja integroimalla kahdesti (erinomaista harjoitusta!) saadaan lauseke muotoon EI A 2 3 F lx x y ( ), (9) josta y(x) eli y:n arvo x:n funktiona on 2 3 F lx x y ( x) ( ). (10) 2EI 4 6 Tuen kohdalla x = l / 2, joten siinä kohtaa y A Fl3 48EI A. (11) Tämä tulos antaa siis voiman F tangon keskikohtaan aiheuttaman poikkeaman suuruuden, kun tangon tukipisteiden etäisyys on l, pintahitausmomentti I A ja tangon materiaalin kimmokerroin E. Harjoitustehtävä: a) Kuinka paljon taipuu kahdesta pisteestä tuettu metallitanko, jos sen keskikohtaa kuormitetaan 1,0 kg punnuksella? Tangon tukipisteiden etäisyys on 0,50 m ja poikkileikkaus on suorakaiteen muotoinen (leveys b = 1,0 cm ja paksuus a = 0,50 cm) (vrt. kuva 1). Laske taipuma sekä alumiini- että terästangolle; tarvittavat kimmokerrointen arvot löytyvät esim. MAOL-taulukoista tai viitteestä [1]. b) Taipuvatko tangot enemmän vai vähemmän, jos ne käännetään siten, että leveys on 0,50 cm ja paksuus 1,0 cm? Perustele. (Taipumien lukuarvoja ei tarvitse laskea.) c) Kumpi taipuu helpommin, tanko, jonka poikkileikkaus on neliönmuotoinen (sivun pituus = s) vai tanko, jonka poikkileikkaus on ympyränmuotoinen (halkaisija = s)? Tangot on tehty samasta materiaalista.
7 FYSP102 / K2 Kimmokertoimen määritys Mittauslaitteisto Tutkittava tanko lepää vaakatasossa kahden tukipisteen varassa (statiivit). Tangon tukien kiinnityksessä pitää muistaa, että suorakaiteen muotoisen tangon poikkileikkauksen on oltava vaakasuorassa. Tangon keskikohtaan asetetaan riippumaan eripainoisia punnuksia, joiden aiheuttama taipuma mitataan mikrometriruuvilla tangon puolivälistä. Tarkastelu tehdään erilaisille sauvoille. 3 Mittaukset Sauvojen dimensiot mitataan mahdollisimman huolellisesti työntömitalla tai mikrometriruuvilla. Tankoa kuormitetaan keskeltä ja määritetään taipuma ylätankoon kiinnitetyllä mikrometriruuvilla. Työssä käytetään ainakin kolmea eri tankoa. Tutkittavien sauvojen tulee olla ainakin kahta eri materiaalia ja poikkileikkaukseltaan kahta eri tyyppiä (suorakaide ja ympyrä). 4 Tulosten käsittely Piirretään keskikohdan taipuma y kuormittavan voiman F funktiona. Pienimmän neliösumman sovitus 1 antaa pisteiden kautta kulkevan suoran kulmakertoimen (virhearvioineen). Kulmakertoimen avulla saadaan laskettua 2 kimmokerroin E (vrt. yhtälö 11). Määritetään kimmokertoimet työssä käytetyille sauvoille ja verrataan niitä kirjallisuusarvoihin [1]. Kimmokertoimien arvojen virheet määritetään maksimi-minimi -keinolla 2 joko suoraan laskemalla maksimi- ja minimiarvot ja näiden avulla virhe tai käyttämällä tulon ja osamäärän suhteellisten virheiden muistikaavaa (ks. Laboratoriotöiden perusteet - luennot). 1 Ks. tarvittaessa DataStudion ohjeen luku 6.1, Originin ohjeen luku 5.1 tai Gnuplotin ohjeen luvut 4 ja 5. 2 Koska sama lasku toistetaan kaikille sauvoille virhelaskuineen, kannattaa vaivan säästämiseksi käyttää esim. Exceliä apuna (vinkkiä laskujen tekemiseen löytyy tarvittaessa työohjeen lopussa olevasta liitteestä).
8 FYSP102 / K2 Kimmokertoimen määritys Kirjallisuutta: [1] Pennala, Erkki. Lujuusopin perusteet. Helsinki: Otatieto OY 1995, luku 4, s. 91- Liite: Laskujen laskeminen taulukkolaskentaohjelmalla (esim. Excel) Laskujen tekeminen tietokoneella säästää vaivaa varsinkin silloin, kun samoilla kaavoilla tarvitsee tehdä monia toistoja. Myös mahdolliset virheet pystyy korjaamaan nopeasti. 1) Ensimmäiseksi kannattaa kirjoittaa työssä käytettävien suureiden nimet (ja yksiköt) ohjelman (esim. Excel) työkirjan ylimmälle riville (ks. kuva 4, vrt. myös Excel-ohjeen luku 1.1). 2) Tämän jälkeen kirjataan ensimmäiseen tankoon liittyvät mittaustulokset sekä suoransovituksella määritetty kulmakerroin seuraavalle riville. Ohjelmoidaan pintahitausmomentin ja kimmokertoimen laskukaavat kyseisiin soluihin (ks. tarvittaessa apuja Excel-ohjeen luvuista 1.2 ja 1.3). 3) Kimmokertoimen maksimi- ja minimiarvot saadaan, kun sijoitetaan seuraaville riveille mittaustulosten maksimi- tai minimiarvot oikeilla tavoilla (mieti kimmokertoimen laskukaavan avulla, miten valinnat pitää tehdä, jotta saadaan kimmokertoimen maksimi tai vastaavasti minimi). Käytetyt laskukaavat voidaan kopioida ensiksi lasketulta riviltä (kopioinnin tekeminen on selitetty Excel-ohjeen luvussa 1.2). 4) Muiden tankojen laskut tehdään vastaavasti seuraaville riveille kaavat voidaan kopioida aina edellisiltä riveiltä. Muista kuitenkin muuttaa pintahitausmomentin laskukaava siirryttäessä suorakulmaisesta tangosta pyöreään tai päinvastoin. Kuva 4. Laskujen laskeminen Excelin avulla.
Palkin taivutus. 1 Johdanto. missä S on. määritetään taivuttamalla. man avulla.
PALKIN TAIVUTUS 1 Johdanto Jos homogeenista tasapaksua palkkia venytetäänn palkin suuntaisella voimalla F, on jännitys σ mielivaltaisellaa etäisyydellää tukipisteestä, 1 missä S on palkin poikkileikkauksen
y 1 x l 1 1 Kuva 1: Momentti
BMA58 Integraalilaskenta ja sovellukset Harjoitus 4, Kevät 17 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Integraalit eivät tosin ole niin vaikeita etteikö niitä suurimmassa
Koesuunnitelma Kimmokertoimien todentaminen
KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Koesuunnitelma Kimmokertoimien todentaminen Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Sisällysluettelo 1 Johdanto...
Työn tavoitteita. Yleistä. opetella johtamaan yleisestä teoriasta tai mallista mitattavissa olevia ennusteita ja testaamaan niitä kokeellisesti
FYSP101/K2 HEITTOLIIKE Työn tavoitteita opetella johtamaan yleisestä teoriasta tai mallista mitattavissa olevia ennusteita ja testaamaan niitä kokeellisesti oppia tekemään toistomittaukseen liittyviä laskuja
tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista
FYSP102 / 2 KIERTOHEILURI Työn tavoitteita tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista Kiertoheiluri on aihe, joka
LIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
Harjoitus 6. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
KJR-C001 Kiinteän aineen mekaniikan perusteet, IV/01 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 1:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri
LIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
Perusopintojen Laboratoriotöiden Työselostus 1
Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa
havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä
FYSP0 / K3 DOPPLERIN ILMIÖ Työn tavoitteita havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä harjoitella mittausarvojen poimimista Capstonen kuvaajalta sekä kerrata maksimiminimi
FYSP1082 / K4 HELMHOLTZIN KELAT
FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja
Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä
FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä
tutustua kiertoheilurin teoriaan ja toimintaan
FYSP102 / 2 KIERTOHEILURI Työn tavoitteita tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista Kiertoheiluri on aihe, joka
LIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
Tuulen nopeuden mittaaminen
KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
CHEM-A1410 Materiaalitieteen perusteet
CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
Differentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.
Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina
4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys
PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
yleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
Työn tavoitteita. 1 Johdanto
FYSP103 / K2 FRAUNHOFERIN DIFFRAKTIO Työn tavoitteita havainnollistaa valon taipumiseen (diffraktio) ja interferenssiin liittyviä ilmiöitä erilaisissa rakosysteemeissä sekä syventää kyseisten ilmiöiden
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)
Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa
8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.
PAINOPISTE JA MASSAKESKIPISTE
PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen
Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
Työn tavoitteita. 1 Teoriaa
FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä
Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!
MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
PUHDAS, SUORA TAIVUTUS
PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso
y=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
TASAVIRTAPIIRI - VASTAUSLOMAKE
TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan
SOLENOIDIN MAGNEETTIKENTTÄ
SOLENOIDIN MAGNEETTIKENTTÄ 1 Johdanto Tarkastellaan suljettua pyöreää virtasilmukkaa (virta I), jonka säde on R. Biot-Savartin laista voidaan johtaa magneettivuon tiheydelle virtasilmukan keskiakselilla,
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä
Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn
Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)
MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon
MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8..08 KERTAUS KERTAUSTEHTÄVIÄ K. a) Keskimääräinen muutosnopeus välillä [0, ] saadaan laskemalla kohtia x = 0 ja x = vastaavien kuvaajan
origo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.
nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva
Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa
SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
Matematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
BM20A0900, Matematiikka KoTiB3
BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ
FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää
Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on
Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin
KJR-C2002 Kontinuumimekaniikan perusteet
KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla
Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
Materiaalien mekaniikka
Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
4. Kertausosa. 1. a) 12
. Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle
Laskuharjoitus 7 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan
PALKIN KIMMOVIIVA M EI. Kaarevuudelle saatiin aiemmin. Matematiikassa esitetään kaarevuudelle v. 1 v
PALKIN KIMMOVIIVA Palkin akseli taipuu suorassa taivutuksessa kuormitustasossa tasokäyräksi, jota kutsutaan kimmoviivaksi tai taipumaviivaksi. Palkin akselin pisteen siirtymästä y akselin suunnassa käytetään
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima
Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TYÖN TAVOITE Tavoitteena on ymmärtää aineen kimmoisuuteen liittyviä käsitteitä sekä aineen lämpölaajenemista. Sovelluksena
Derivointiesimerkkejä 2
Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin
MUODONMUUTOKSET. Lähtöotaksumat:
MUODONMUUTOKSET Lähtöotaksumat:. Materiaali on isotrooppista ja homogeenista. Hooken laki on voimassa (fysikaalinen lineaarisuus) 3. Bernoullin hypoteesi on voimassa (tekninen taivutusteoria) 4. Muodonmuutokset
Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
Ch 12-4&5 Elastisuudesta ja lujuudesta
Ch 12-4&5 Elastisuudesta ja lujuudesta Jännitys ja venymä Hooken laki F = k l Δl = 1 k F Jousivakio k riippuu langan dimensioista Saadaan malli Δl = l o EA F k = E A l o Lisäksi tarvitaan materiaalia kuvaava
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali
Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon
Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no
= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA
1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla
Laskuharjoitus 2 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.
Muutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin