SMG-4450 Aurinkosähkö

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "SMG-4450 Aurinkosähkö"

Transkriptio

1 SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate Miksi ja miten auringonsäteily synnyttää puolijohteeseen vapaita varauksia? Miksi puhdas puolijohde ei toimi aurinkokennona? Miksi pn-liitos toimii aurinkokennona? 1 AURINKOSÄHKÖN HISTORIA (1/2) Ranskalainen Becquerel havaitsi 1839, että elektrolyyttiin upotettujen elektrodien välinen jännite riippuu valon määrästä. Vuonna 1873 englantilainen Smith havaitsi saman ilmiön ensimmäisen kerran kiinteässä aineessa, seleenissä. Yhdysvaltalainen Fritts rakensi 1883 ensimmäisen toiminnallisen aurinkokennon. Materiaali oli seleeni. Aurinkokennojen nykyisen aikakauden katsotaan alkavan vuodesta 1954, jolloin yhdysvaltalaisessa Bell Labs -tutkimuskeskuksessa havaittiin valosähköinen ilmiö piistä valmistetussa pn-liitoksessa. Tämän havainnon perusteella valmistettiin vielä samana vuonna aurinkokenno, joka muunsi auringonvaloa sähköksi ylivoimaisella hyötysuhteella (6%). Puolijohdeaurinkokennojen perusteoria ymmärrettiin vuoteen 1960 mennessä. 2 1

2 AURINKOSÄHKÖN HISTORIA (2/2) Vuotta 1973 pidetään merkittävänä aurinkosähkön historiassa. Yhdysvalloissa syntyi Cherry Hill -konferenssin seurauksena US Energy Research and Development Agency (myöhemmin US Dept. of Energy), joka alkoi merkittävästi rahoittaa uusiutuvien energiamuotojen tutkimusta. Öljykriisi sai monet valtiot panostamaan uusiutuviin energiamuotoihin luvulla piipohjaisten aurinkokennojen valmistustekniikka alkoi olla kypsää. Suurehkoja tehtaita nousi Yhdysvaltoihin, Japaniin ja Eurooppaan. Ongelmana oli kuitenkin aurinkokennojen korkea hinta. Öljyn hinnan nousu ja ilmastonmuutos ovat lisänneet uusiutuvien energiamuotojen suosiota ja tarpeellisuutta. Saksa, Japani ja Espanja ovat tänä päivänä edelläkävijöitä aurinkosähkön hyödyntäjinä hajautetussa energiantuotannossa. Viime vuosina aurinkosähkön maailmanlaajuinen kasvu on ollut erittäin voimakasta. Vuoden 2011 kokonaiskapasiteetti oli 70 GW, josta noin 30 GW asennettiin VALOSÄHKÖINEN ILMIÖ (photoelectric effect) (1/2) Valosähköinen ilmiö on pohjimmiltaan sähkömagneettisen säteilyn ja sähkövarausten välistä vuorovaikutusta. Kyse on siitä, että aineen elektronit voivat saada niin paljon energiaa sähkömagneettisesta säteilystä, että ne irtautuvat atomiytimen vetovoimasta. Ilmiön huomasi vuonna 1887 saksalainen fyysikko Heinrich Hertz, joka tarkasteli kahden vastakkaismerkkisesti varatun metallipallon välistä läpilyöntiä. Hertz huomasi, että läpilyöntijännite riippuu metallipalloihin kohdistuvan valon määrästä. Havainto aiheutti hämmennystä, sillä valon ei vielä tässä vaiheessa ymmärretty olevan sähkömagneettista säteilyä. 4 2

3 VALOSÄHKÖINEN ILMIÖ (photoelectric effect) (2/2) Saksalaiset fyysikot Hallwachs ja Lenard jatkoivat Hertzin havaitseman ilmiön tutkimista ja tekivät seuraavanlaisia havaintoja. 5 VALOSÄHKÖINEN ILMIÖ JA AURINKOKENNOT (1/2) Kaikkien puolijohdetekniikkaan perustuvien aurinkokennojen taustalla on valosähköinen ilmiö, joka on pohjimmiltaan sähkömagneettisen säteilyn fotonien ja aineen elektronien välistä vuorovaikutusta. Yksinkertaisesti selitettynä osa aurinkokennoon osuvien fotonien energiasta siirtyy kennomateriaalin elektroneille, ja kennon rakenteen ansiosta tämä energia saadaan hyödynnettyä sähkövirtana ja jännitteenä. Seuraavassa aletaan tarkastella puolijohteita ja niistä valmistettuja aurinkokennoja. Tavoitteena on selvittää, mitä fotonin absorboituminen tarkoittaa puolijohteessa. mikä on se kennon rakenne, jonka ansiosta osa fotonien energiasta saadaan hyötykäyttöön. 6 3

4 VALOSÄHKÖINEN ILMIÖ JA AURINKOKENNOT (2/2) Tavoitteena on yrittää ymmärtää, miksi valolle altistettuun pn-liitokseen syntyy oheisen kuvan suuntainen sähkövirta. 7 ELEKTRONIN ENERGIATILAMALLIT (1/3) Vapaassa tilassa olevan elektronin energia ei ole sidottu. Vapaassa tilassa olevan atomin elektroneilla on tietty määrä sallittuja energiatiloja. Elektronin on sijaittava atomin jollain elektronikuorella. Jos atomin yksittäisen elektronin energia kasvaa ulointa elektronikuorta vastaavaa energiaa suuremmaksi, elektroni irtoaa atomista, jolloin siitä tulee vapaassa tilassa oleva elektroni. Materiaalin kiderakenteessa atomit ovat niin lähekkäin, että ne vuorovaikuttavat keskenään. Elektronin sallitut energiatilat levittäytyvät kiderakenteessa sallituiksi energiavöiksi. Energiavyö siis koostuu lähekkäisistä ja osittain päällekkäisistä elektronin sallituista energiatiloista. 8 4

5 ELEKTRONIN ENERGIATILAMALLIT (2/3) Alhaisissa lämpötiloissa kiderakenteen elektronit miehittävät mahdollisimman alhaiset energiatilat. Tämä ei kuitenkaan tarkoita sitä, että kaikki elektronit olisivat atomin alhaisimmalla sallitulla energiatasolla. Wolfgang Pauli havaitsi vuonna 1925, että atomin kaikilla elektroneilla täytyy olla erilainen kvanttimekaaninen tila. Paulin kieltosääntö: Jokaisella sallitulla energiatasolla voi olla korkeintaan kaksi elektronia. Näiden elektronien spinmomenttien on oltava vastakkaiset. Paulin kieltosäännöstä seuraa, että absoluuttisessa nollapisteessä kaikki kiderakenteen sallitut energiatilat ovat elektronien miehittämiä tiettyyn materiaalille ominaiseen energia-tasoon, Fermienergiaan, asti. 9 ELEKTRONIN ENERGIATILAMALLIT (3/3) Kun lämpötila kasvaa, joidenkin elektronien energia ylittää Fermi-energian. Fermi-Dirac-jakauma antaa todennäköisyyden sille, että aineen kiderakenteesta löytyy elektroni, jolla on energia W. 10 5

6 PUOLIJOHTEISTA (1/3) Tarkastellaan materiaaleja, joiden Fermi-energia osuu energiavöiden väliin. Fermi-energian alapuolista energiavyötä kutsutaan valenssivyöksi, ja Fermienergian yläpuolella oleva energiavyö on johtavuusvyö. Energiavyömallilla mallinnetaan elektronien energiaa materiaalin kiderakenteessa. Mieti, mitkä ovat valenssi- ja johtavuusvyön fysikaaliset tulkinnat. Mitä se tarkoittaa, että "täyden energiavyön elektroneilla ei ole tilaa liikkua"? Alhaisissa lämpötiloissa puolijohde ei johda sähköä, koska valenssivyö on täynnä, ja johtavuusvyö on tyhjä. Kun lämpötila kasvaa, osalla valenssivyön elektroneista saattaa olla niin paljon energiaa, että ne siirtyvät johtavuusvyölle. 11 PUOLIJOHTEISTA (2/3) Elektronit ovat varauksenkuljettajia sekä johtavuus- että valenssivyöllä. Kun tarkastellaan elektronien liikettä valenssivyöllä, näyttää siltä, kuin tyhjä elektronipaikka liikkuisi. Siksi valenssivyöllä tapahtuva elektronien liike on yksinkertaisinta kuvata positiivisesti varautuneen aukon liikkeenä. Tyhjällä elektronipaikalla ei tietenkään todellisuudessa ole varausta, mutta negatiivisen varauksen liike tiettyyn suuntaan voidaan mallintaa itseisarvoltaan yhtäsuuren positiivisen varauksen liikkeenä vastakkaiseen suuntaan. Miksi aurinkokennot valmistetaan puolijohteista? 12 6

7 PUOLIJOHTEISTA (3/3) Pii on aurinkokennojen yleisin raaka-aine. Piin energia-aukon (W g ) suuruus on 1.09 ev. Millä välillä fotonin energia vaihtelee auringosäteilyn energiaspektrissä? Valtaosa AM1.5-säteilystä pystyy synnyttämään piihin vapaita varauksenkuljettajia. 13 MIKSI AURINKOKENNOJA EI VALMISTETA PUHTAISTA PUOLIJOHTEISTA? Jos aurinkokennot valmistettaisiin puhtaasta puolijohteesta: Auringonsäteily kyllä synnyttäisi materiaaliin vapaita varauksenkuljettajia. Johtavuusvyölle nousseet elektronit palaisivat takaisin valenssivyölle, sillä ei ole olemassa voimaa, joka erottelisi syntyneet elektronit ja aukot on toisistaan. Johtavuusvyölle nousseiden elektronien putoamista takaisin valenssivyölle kutsutaan rekombinaatioksi. Tällöin auringonsäteilyn synnyttämä varauksenkuljettajapari menetetään. Jos aurinkokenno valmistetaan puhtaasta puolijohteesta, auringonsäteilyn synnyttämiä varauksenkuljettajia ei saada hyödynnettyä sähkötehon tuottamiseen. Syntyneet varauksenkuljettajat (elektronit ja aukot) saadaan eroteltua kennon rakenteen (kalvo 6) avulla. Seuraavassa aletaan tarkastella tätä rakennetta. 14 7

8 PUHTAASTA PUOLIJOHTEESTA N- JA P-TYYPPISEKSI (1/2) Puhdas pii (Si) Puhtaan piin kiderakenne on sellainen, että uloimman elektronikuoren kaikki neljä elektronia osallistuvat atomien välisiin sidoksiin. n-tyyppi: fosforilla (P) seostettu pii P:n uloimman elektronikuoren neljä elektronia osallistuvat piin kiderakenteessa atomien välisiin sidoksiin. Kiderakenteeseen jää yksi ylimääräinen elektroni, joka on kiinni P-atomissa. p-tyyppi: boorilla (B) seostettu pii B:n uloimman elektronikuoren kaikki kolme elektronia osallistuvat piin kiderakenteessa atomien välisiin sidoksiin. Siihen sidokseen, johon B-atomi liittyy, jää yhden elektronin vaje, jota kutsutaan aukoksi. 15 PUHTAASTA PUOLIJOHTEESTA N- JA P-TYYPPISEKSI (2/2) Kun tarkastellaan valolle altistamatonta seostettua puolijohdetta absoluuttisessa nollapisteessä, materiaalin kiderakenteessa ei ole vapaita varauksenkuljettajia. Kun tarkastellaan valolle altistamatonta seostettua puolijohdetta huoneenlämpötilassa, n-tyypin puolijohteen kiderakenteessa on vapaasti liikkuvia elektroneja. Kiderakenteessa on siis elektroneja, joiden energia osuu johtavuusvyölle. p-tyypin puolijohteen kiderakenteessa on vapaita elektronitiloja (aukkoja), joihin viereiset valenssivyön elektronit voivat siirtyä. Kun ollaan huoneenlämpötilassa, n-tyypin puolijohteessa on elektroneja johtavuusvyöllä, ja p-tyypin puolijohteessa on aukkoja valenssivyöllä. Puolijohteen sähkönjohtavuutta saadaan kasvatettua seostamisen avulla, sillä seostaminen tekee varausten liikkumisen kiderakenteessa mahdolliseksi. Koska johtavuusvyön elektronit pääasiassa synnyttävät n-tyypin puolijohteen sähkövirran, niitä kutsutaan enemmistövarauksenkuljettajiksi. Vastaavasti valenssivyön aukot ovat n-tyypin puolijohteessa vähemmistövarauksenkuljettajia. P-tyypin puolijohteessa tilanne on päinvastainen. 16 8

9 PN-LIITOS (1/2) Kun p- ja n-tyypin puolijohteet viedään yhteen, syntyy pn-liitos. 17 PN-LIITOS (2/2) Tyhjennysalueeseen syntyy sähkökenttä, jonka suunta on n-puolelta p-puolelle. 18 9

10 PN-LIITOKSEN TOIMIMINEN AURINKOKENNONA Auringonsäteily synnyttää sähkövirran pn-liitokseen! Tyhjennysalue on varauksenkuljettajia erottelevan sähkökenttänsä vuoksi se rakenne (sivu 6), jonka ansiosta aurinkokennosta saadaan sähkötehoa. 19 SUORAN JA EPÄSUORAN ENERGIA-AUKON PUOLIJOHTEET (1/2) Puolijohteet jaetaan kahteen luokkaan sen mukaan, miten elektronin liikemäärä p vaikuttaa energia-aukon suuruuteen W cmin W vmax. Elektronien liikemäärä vaihtelee jatkuvasti, sillä ne vuorovaikuttavat kiderakenteen mekaanista värähtelyliikettä mallintavan hiukkasen, fononin, kanssa. Fononilla on paljon liikemäärää mutta vähän energiaa. SMG-säteilyä mallintavalla fotonilla tilanne on päinvastainen. Suoran energia-aukon puolijohteilla elektronin liikemäärä ei juurikaan vaikuta energia-aukon suuruuteen. Kiinteän olomuodon fysiikan kirjoissa asia esitetään niin, että W vmax ja W cmin osuvat samalle elektronin liikemäärän arvolle. Valenssielektronien virittyminen johtavuusvyölle toteutuu pelkkien fotonien avulla

11 SUORAN JA EPÄSUORAN ENERGIA-AUKON PUOLIJOHTEET (2/2) Epäsuoran energia-aukon puolijohteissa elektronin liikemäärä vaikuttaa merkittävästi energia-aukon suuruuteen. KOF:n kirjoissa asia esitetään niin, että epäsuoran energia-aukon puolijohteissa W vmax ja W cmin osuvat liikemäärän eri arvoille. Jotta valenssielektroni voi virittyä johtavuusvyölle minimienergialla, elektronin liikemäärän on oltava juuri sopiva. Valenssielektronien virittyminen johtavuusvyölle vaatii fotonivuorovaikutuksen lisäksi myös fononivuorovaikutuksen. Fononivuorovaikutuksen vaatimus vaikuttaa merkittävästi aineen kykyyn absorboida sähkömagneettista säteilyä Suoran energia-aukon materiaalista voidaan valmistaa huomattavasti ohuempi aurinkokenno (~1 m) kuin epäsuoran energia-aukon materiaalista (~100 m)

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate

Lisätiedot

DEE-53010 Aurinkosähkön perusteet

DEE-53010 Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Pinnallinen tapa aurinkokennon virta-jännite-käyrän

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Kolmannen luennon aihepiirit Reduktionistinen tapa aurinkokennon virta-jännite-käyrän muodon ymmärtämiseen Lähdetään liikkeelle aurinkokennosta, ja pilkotaan sitä pienempiin

Lisätiedot

SMG-4300: Yhteenveto ensimmäisestä luennosta

SMG-4300: Yhteenveto ensimmäisestä luennosta SMG-4300: Yhteenveto ensimmäisestä luennosta Aurinko lähettää avaruuteen sähkömagneettista säteilyä. Säteilyn aallonpituusjakauma määräytyy käytännössä auringon pintalämpötilan (n. 6000 K) perusteella.

Lisätiedot

SMG-4300 Aurinkosähkö ja Tuulivoima

SMG-4300 Aurinkosähkö ja Tuulivoima SMG-4300 Aurinkosähkö ja Tuulivoima Aurinkosähkön 1. luento Katsaus aurinkosähkön historiaan. Auringon energiantuotanto: Miten ja miksi auringosta tulee energiaa maahan? Kuinka suurella teholla maa vastaanottaa

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen 6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi

Lisätiedot

PUOLIJOHTEISTA. Yleistä

PUOLIJOHTEISTA. Yleistä 39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö Väriaineaurinkokenno Rakenne Toimintaperiaate Kehityskohteet SMG-4450 Aurinkosähkö Neljännen luennon aihepiirit 1 AURINKOKENNOJEN SUKUPOLVET Aurinkokennotyypit luokitellaan yleensä kolmeen sukupolveen.

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Kuudennen luennon aihepiirit Tulevaisuuden aurinkokennotyypit: väriaineaurinkokenno Rakenne Toimintaperiaate Kehityskohteet 1 AURINKOKENNOJEN NYKYTUTKIMUS Aurinkokennotutkimuksessa

Lisätiedot

SMG-4300: Yhteenveto kolmannesta luennosta. PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran.

SMG-4300: Yhteenveto kolmannesta luennosta. PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran. SMG-4300: Yhteenveto kolmannesta luennosta PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran. Aurinkokennon maksimiteho P max voidaan lausua tyhjäkäyntijännitteen

Lisätiedot

Jukka Kitunen Aurinkosähkön soveltuvuus hajautettuun energiantuotantoon Suomessa. Diplomityö

Jukka Kitunen Aurinkosähkön soveltuvuus hajautettuun energiantuotantoon Suomessa. Diplomityö Jukka Kitunen Aurinkosähkön soveltuvuus hajautettuun energiantuotantoon Suomessa Diplomityö Tarkastajat: Yliassistentti Aki Korpela ja Lehtori Risto Mikkonen Tarkastajat ja aihe hyväksytty Sähköosastoneuvoston

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Neljännen luennon aihepiirit Aurinkokennon virta-jännite-käyrän muodostuminen Edellisellä luennolla tarkasteltiin aurinkokennon toimintaperiaatetta kennon sisäisten tapahtumisen

Lisätiedot

Luento 12. Kiinteät aineet

Luento 12. Kiinteät aineet Kiinteät aineet Luento 12 Kiinteät aineet ja nesteet kuuluvat molemmat kondensoituneisiin aineisiin. Niissä atomien väliset etäisyydet ovat atomien koon suuruusluokkaa eli 0.1 0.5 nm. Kiinteä aineen erottaa

Lisätiedot

Puolijohteet. luku 7(-7.3)

Puolijohteet. luku 7(-7.3) Puolijohteet luku 7(-7.3) Metallit vs. eristeet/puolijohteet Energia-aukko ja johtavuus gap size (ev) InSb 0.18 InAs 0.36 Ge 0.67 Si 1.11 GaAs 1.43 SiC 2.3 diamond 5.5 MgF2 11 Valenssivyö Johtavuusvyö

Lisätiedot

PUOLIJOHTEET + + - - - + + + - - tyhjennysalue

PUOLIJOHTEET + + - - - + + + - - tyhjennysalue PUOLIJOHTEET n-tyypin- ja p-tyypin puolijohteet - puolijohteet ovat aineita, jotka johtavat sähköä huonommin kuin johteet, mutta paremmin kuin eristeet (= eristeen ja johteen välimuotoja) - resistiivisyydet

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Viidennen luennon aihepiirit Olosuhteiden vaikutus aurinkokennon toimintaan: Mietitään kennon sisäisten tapahtumien avulla, miksi ja miten lämpötilan ja säteilyintensiteetin

Lisätiedot

TUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ

TUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ TUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ Diplomityö Tarkastajat: professori Seppo Valkealahti ja lehtori Aki Korpela Tarkastajat ja aihe hyväksytty Tieto- ja sähkötekniikan

Lisätiedot

SMG-4300: Yhteenveto toisesta luennosta. Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta?

SMG-4300: Yhteenveto toisesta luennosta. Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta? SMG-4300: Yhteenveto toisesta luennosta Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta? Puolijohteesta tulee sähköä johtava, kun valenssivyön elektronit saavat vähintään

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon virta-jännite-käyrän muodostuminen Miksi aurinkokennon virta-jännite-käyrä on tietyn muotoinen? Miten aurinkokennon virta-jännite-käyrää

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Yleistietomateriaalia luentojen tueksi Aurinkokennotyypit: Mitä erilaisia aurinkokennotyyppejä on olemassa, ja miten ne poikkeavat ominaisuuksiltaan toisistaan? Yksikiteisen

Lisätiedot

SMG-4050 Energian varastointi ja uudet energialähteet

SMG-4050 Energian varastointi ja uudet energialähteet SMG-4050 Energian varastointi ja uudet energialähteet AURINKOENERGIA Maapallolle saapuva säteilyteho Aurinkolämpöjärjestelmät Aurinkosähkö Valosähköinen ilmiö Aurinkokennon toimintaperiaate Aurinkosähköjärjestelmät

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 4. Kennon komponenteista huokoinen puolijohde

Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 4. Kennon komponenteista huokoinen puolijohde Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 1. Johdanto 2. Rakenne ja toimintaperiaate 3. Kennon suorituskyvyn karakterisointi 4. Kennon komponenteista huokoinen puolijohde 5. Kennon komponenteista

Lisätiedot

ARTO HILTUNEN AURINKOKENNON MAKSIMITEHOPISTEEN RIIPPUVUUS TOIMINTAOLOSUHTEISTA Kandidaatintyö

ARTO HILTUNEN AURINKOKENNON MAKSIMITEHOPISTEEN RIIPPUVUUS TOIMINTAOLOSUHTEISTA Kandidaatintyö ARTO HILTUNEN AURINKOKENNON MAKSIMITEHOPISTEEN RIIPPUVUUS TOIMINTAOLOSUHTEISTA Kandidaatintyö Tarkastaja: lehtori Aki Korpela 26. toukokuuta 2009 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Sähkötekniikka

Lisätiedot

Vyöteoria. Orbitaalivyöt

Vyöteoria. Orbitaalivyöt Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien

Lisätiedot

Nanoteknologia aurinkokennoissa

Nanoteknologia aurinkokennoissa Nanoteknologia aurinkokennoissa Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Kemian laitos Kemian opettajankoulutus Kandidaatintutkielma Tekijä: Kati Kolehmainen Pvm: 3.10.2011 Ohjaajat:

Lisätiedot

Kemian syventävät kurssit

Kemian syventävät kurssit Kemian syventävät kurssit KE2 Kemian mikromaailma aineen rakenteen ja ominaisuuksien selittäminen KE3 Reaktiot ja energia laskuja ja reaktiotyyppejä KE4 Metallit ja materiaalit sähkökemiaa: esimerkiksi

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa Synkrotronisäteily ja elektronispektroskopia Tutkimus Oulun yliopistossa Ryhmätyö Keskustelkaa n. 4 hengen ryhmissä, mitä on synkrotronisäteily ja miten sitä tuotetaan. Kirjoittakaa ylös ajatuksianne.

Lisätiedot

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet. a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa

Lisätiedot

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

Fysikaalisten tieteiden esittely puolijohdesuperhiloista Fysikaalisten tieteiden esittely puolijohdesuperhiloista "Perhaps a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing the same thing."

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Määritelmä, metallisidos, metallihila:

Määritelmä, metallisidos, metallihila: ALKUAINEET KEMIAA KAIK- KIALLA, KE1 Metalleilla on tyypillisesti 1-3 valenssielektronia. Yksittäisten metalliatomien sitoutuessa toisiinsa jokaisen atomin valenssielektronit tulevat yhteiseen käyttöön

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

10. Puolijohteet. 10.1. Itseispuolijohde

10. Puolijohteet. 10.1. Itseispuolijohde 10. Puolijohteet KOF-E, kl 2005 69 Metallit, puolijohteet ja useat eristeet ovat kiteisiä kiinteitä aineita, joilla on säännönmukainen jaksollinen atomijärjestys ja elektronien energioiden kaistarakenne.

Lisätiedot

FYSIIKKA. Pasi Ketolainen Mirjami Kiuru. Helsingissä Kustannusosakeyhtiö Otava

FYSIIKKA. Pasi Ketolainen Mirjami Kiuru. Helsingissä Kustannusosakeyhtiö Otava FYSKK Pasi Ketolainen Mirjami Kiuru Helsingissä Kustannusosakeyhtiö Otava Sisällys Ylioppilastutkinnon fysiikan koe... 4 Kokeen rakenne... 4 Erilaisia tehtävätyyppejä... 5 Tehtävien pisteytys... 0 FY Fysiikka

Lisätiedot

Valosähköisten aurinkopaneeleiden hyötysuhteet

Valosähköisten aurinkopaneeleiden hyötysuhteet Lappeenrannan teknillinen yliopisto Teknillinen tiedekunta Energiatekniikan koulutusohjelma BH10A0200 Energiatekniikan kandidaatintyö ja seminaari Valosähköisten aurinkopaneeleiden hyötysuhteet Efficiencies

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli Aineen rakenteen teoria alkoi hahmottua, kun 1800-luvun alkupuolella John Dalton kehitteli teoriaa atomeista jakamattomina aineen perusosasina. Toki

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 5. Ilmaisimet Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmaisimet Ilmaisimet (kuvat: @ursa: havaitseva tähtitiede, @kqedscience.tumblr.com) Ilmaisin = Detektori: rekisteröi valon ja muuttaa käsiteltävään

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

9. JAKSOLLINEN JÄRJESTELMÄ

9. JAKSOLLINEN JÄRJESTELMÄ 9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,

Lisätiedot

Kvanttisointi Aiheet:

Kvanttisointi Aiheet: Kvanttisointi Luento 5 4 Aiheet: Valosähköilmiö Einsteinin selitys Fotonit Aineaallot ja energian kvantittuminen Bohrin kvanttimalli atomille Bohrin malli vetyatomille Vedyn spektri Mitä olet oppinut?

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

2. Fotonit, elektronit ja atomit

2. Fotonit, elektronit ja atomit Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 A B B Piirroksen alue 1: Sularajan yläpuolella on seos aina täysin sula => yksifaasialue (L). Alueet 2 ja 5: Nämä ovat

Lisätiedot

JARNO KESKINEN SÄHKÖENERGIAN TUOTANTOON SOVELTUVAT AURINKOKENNOTEKNOLOGIAT JA NIIDEN KEHITTYMINEN Diplomityö

JARNO KESKINEN SÄHKÖENERGIAN TUOTANTOON SOVELTUVAT AURINKOKENNOTEKNOLOGIAT JA NIIDEN KEHITTYMINEN Diplomityö JARNO KESKINEN SÄHKÖENERGIAN TUOTANTOON SOVELTUVAT AURINKOKENNOTEKNOLOGIAT JA NIIDEN KEHITTYMINEN Diplomityö Tarkastajat: professori Seppo Valkealahti ja professori Teuvo Suntio Tarkastajat ja aihe hyväksytty

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

erilaisten mittausmenetelmien avulla

erilaisten mittausmenetelmien avulla Säteilynkestävien pii-ilmaisimien ilmaisimien karakterisointi erilaisten mittausmenetelmien avulla Motivaatio sekä taustaa Miksi Czochralski-pii on kiinnostava materiaali? Piinauhailmaisimen toimintaperiaate

Lisätiedot

ERIKA KAITARANTA AURINKOKENNON JA KERÄIMEN YHDISTÄMINEN ENERGIANTUOTON KASVATTAMISEKSI

ERIKA KAITARANTA AURINKOKENNON JA KERÄIMEN YHDISTÄMINEN ENERGIANTUOTON KASVATTAMISEKSI ERIKA KAITARANTA AURINKOKENNON JA KERÄIMEN YHDISTÄMINEN ENERGIANTUOTON KASVATTAMISEKSI Kandidaatintyö Tarkastaja: Aki Korpela II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Sähkötekniikan koulutusohjelma

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

TL6931 RF-ASIC. Tavoitteet

TL6931 RF-ASIC. Tavoitteet TL6931 RF-ASIC Veijo Korhonen Tavoitteet Opiskelija saa kuvan integroitujen RFpiirien suunnittelusta. Perehtyminen yleisimpiin valmistusprosesseihin, pakkaustekniikoihin ja suunnittelutyökaluihin antaa

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

1. Materiaalien rakenne

1. Materiaalien rakenne 1. Materiaalien rakenne 1.1 Johdanto 1. Luento 2.11.2010 1.1 Johdanto Materiaalit voidaan luokitella useilla eri tavoilla Kemiallisen sidoksen mukaan: metallit, keraamit, polymeerit Käytön mukaan: komposiitit,

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Diodi ja puolijohteet Luento Ideaalidiodi = kytkin Puolijohdediodi = epälineaarinen vastus Sovelluksia, mm. ilmaisin ja LED, tasasuuntaus viimeis. viikolla

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

1 Johdanto. energiavyö, saavutetaan (1) missä E on

1 Johdanto. energiavyö, saavutetaan (1) missä E on 35 PUOLIJOHTEEN ENERGIA-AUKKO 1 Johdanto Kiinteissä aineissa aineen elektronitt ovat järjestyneet niin kutsutuille energiavöille. Hyvissä sähkönjohteissa ylin elektroneita sisältävä energiavyö on vain

Lisätiedot

4 ev OY/MFP R Materiaalifysiikan perusteet P Ratkaisut 6, Kevät 2017

4 ev OY/MFP R Materiaalifysiikan perusteet P Ratkaisut 6, Kevät 2017 OY/MFP R6 017 Materiaalifysiikan perusteet 514P Ratkaisut 6, Kevät 017 1. Koska kuvitteellisten materiaalien hila on pkk-hila, niiden käänteishila on tkk-hila ja Brillouin-koppi on Kuvan 1.1 mukainen.

Lisätiedot

Aurinkopaneelit tansanialaisessa oppimisympäristössä

Aurinkopaneelit tansanialaisessa oppimisympäristössä Petteri Välimäki Aurinkopaneelit tansanialaisessa oppimisympäristössä Metropolia Ammattikorkeakoulu Insinööri (AMK) Sähkötekniikka Insinöörityö 4.6.2013 Tiivistelmä Tekijä Otsikko Sivumäärä Aika Petteri

Lisätiedot

Aalto-yliopisto Kemian tekniikan korkeakoulu Kemian laitos Epäorgaaninen kemia Fysikaalinen kemia Litiumioniakku

Aalto-yliopisto Kemian tekniikan korkeakoulu Kemian laitos Epäorgaaninen kemia Fysikaalinen kemia Litiumioniakku Aalto-yliopisto Kemian tekniikan korkeakoulu Kemian laitos Epäorgaaninen kemia Fysikaalinen kemia Litiumioniakku CHEM-A1400 Tulevaisuuden materiaalit Työstä vastaa Tanja Kallio (tanja.kallio@aalto.fi)

Lisätiedot

Aikaerotteinen spektroskopia valokemian tutkimuksessa

Aikaerotteinen spektroskopia valokemian tutkimuksessa Aikaerotteinen spektroskopia valokemian tutkimuksessa TkT Marja Niemi Tampereen teknillinen yliopisto Kemian ja biotekniikan laitos 23.4.2012 Suomalainen Tiedeakatemia, Nuorten klubi DI 2002, TTKK Materiaalitekniikan

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Neljännen luennon aihepiirit Aurinkosähkö hajautetussa sähköntuotannossa Tampereen olosuhteissa Tarkastellaan mittausten perusteella aurinkosähkön mahdollisuuksia hajautetussa energiantuotannossa

Lisätiedot

TAAMIR FAREED VILLE LAMBERG JOUNI LANTTO TUOMO VORNANEN. HAJAUTETTU ENERGIANTUOTANTO Harjoitustyö. Tarkastaja: Aki Korpela

TAAMIR FAREED VILLE LAMBERG JOUNI LANTTO TUOMO VORNANEN. HAJAUTETTU ENERGIANTUOTANTO Harjoitustyö. Tarkastaja: Aki Korpela TAAMIR FAREED VILLE LAMBERG JOUNI LANTTO TUOMO VORNANEN HAJAUTETTU ENERGIANTUOTANTO Harjoitustyö Tarkastaja: Aki Korpela II SISÄLLYS 1. Johdanto...1 2. Hajautetun energiantuotannon määritelmä...2 3. Hajautetun

Lisätiedot

Neutriino-oskillaatiot

Neutriino-oskillaatiot Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen

Lisätiedot

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni 3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja

Lisätiedot

PUOLIJOHTEEN SÄHKÖNJOHTAVUUS

PUOLIJOHTEEN SÄHKÖNJOHTAVUUS PUOLIJOHTEEN SÄHKÖNJOHTAVUUS 1 Johdanto Kiinteissä aineissa aineen elektronit ovat järjestyneet niin kutsutuille energiavöille. Hyvissä sähkönjohteissa ylin elektroneita sisältävä energiavyö on vain osittain

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli

Lisätiedot

Luku 2: Atomisidokset ja ominaisuudet

Luku 2: Atomisidokset ja ominaisuudet Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Hiukkaskiihdyttimet ja -ilmaisimet

Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan näkökulmasta, vastaavia

Lisätiedot

FRANCKIN JA HERTZIN KOE

FRANCKIN JA HERTZIN KOE FRANCKIN JA HRTZIN KO 1 Atomin kokonaisenergian kvantittuneisuuden osoittaminen Franck ja Hertz suorittivat vuonna 1914 ensimmäisinä kokeen, jonka avulla voitiin osoittaa oikeaksi Bohrin olettamus, että

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

ANNA HAKKARAINEN PIIKARBIDI-DIODI-AURINKOSÄHKÖVAIHTOSUUNTAAJAN HYÖ- TYSUHDETARKASTELU

ANNA HAKKARAINEN PIIKARBIDI-DIODI-AURINKOSÄHKÖVAIHTOSUUNTAAJAN HYÖ- TYSUHDETARKASTELU ANNA HAKKARAINEN PIIKARBIDI-DIODI-AURINKOSÄHKÖVAIHTOSUUNTAAJAN HYÖ- TYSUHDETARKASTELU Diplomityö Tarkastaja: professori Heikki Tuusa Tarkastaja ja aihe hyväksytty Tieto- ja sähkötekniikan tiedekuntaneuvoston

Lisätiedot

DEE Suprajohtavuus Harjoitus 1(6): suprajohtavuuden teoriaa Ratkaisuehdotukset. Resistiivisyyden katoaminen

DEE Suprajohtavuus Harjoitus 1(6): suprajohtavuuden teoriaa Ratkaisuehdotukset. Resistiivisyyden katoaminen DEE-54011 Suprajohtavuus Harjoitus 1(6): suprajohtavuuden teoriaa Ratkaisuehdotukset Resistiivisyyden katoaminen Suprajohtavuusilmiön havaitsemisen jälkeen alettiin rakentaa suprajohtavuuden teoriaa. Toisin

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

KANDIDAATINTYÖ 2011. Jarno Luoma

KANDIDAATINTYÖ 2011. Jarno Luoma KANDIDAATINTYÖ 2011 Jarno Luoma Aalto-yliopisto Sähkötekniikan korkeakoulu Elektroniikan ja sähkötekniikan tutkinto-ohjelma Jarno Luoma Resonanssikammioloistediodi Kandidaatintyö 12.05.2011 Työn ohjaaja:

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot