SMG-4450 Aurinkosähkö

Koko: px
Aloita esitys sivulta:

Download "SMG-4450 Aurinkosähkö"

Transkriptio

1 SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate Miksi ja miten auringonsäteily synnyttää puolijohteeseen vapaita varauksia? Miksi puhdas puolijohde ei toimi aurinkokennona? Miksi pn-liitos toimii aurinkokennona? 1 AURINKOSÄHKÖN HISTORIA (1/2) Ranskalainen Becquerel havaitsi 1839, että elektrolyyttiin upotettujen elektrodien välinen jännite riippuu valon määrästä. Vuonna 1873 englantilainen Smith havaitsi saman ilmiön ensimmäisen kerran kiinteässä aineessa, seleenissä. Yhdysvaltalainen Fritts rakensi 1883 ensimmäisen toiminnallisen aurinkokennon. Materiaali oli seleeni. Aurinkokennojen nykyisen aikakauden katsotaan alkavan vuodesta 1954, jolloin yhdysvaltalaisessa Bell Labs -tutkimuskeskuksessa havaittiin valosähköinen ilmiö piistä valmistetussa pn-liitoksessa. Tämän havainnon perusteella valmistettiin vielä samana vuonna aurinkokenno, joka muunsi auringonvaloa sähköksi ylivoimaisella hyötysuhteella (6%). Puolijohdeaurinkokennojen perusteoria ymmärrettiin vuoteen 1960 mennessä. 2 1

2 AURINKOSÄHKÖN HISTORIA (2/2) Vuotta 1973 pidetään merkittävänä aurinkosähkön historiassa. Yhdysvalloissa syntyi Cherry Hill -konferenssin seurauksena US Energy Research and Development Agency (myöhemmin US Dept. of Energy), joka alkoi merkittävästi rahoittaa uusiutuvien energiamuotojen tutkimusta. Öljykriisi sai monet valtiot panostamaan uusiutuviin energiamuotoihin luvulla piipohjaisten aurinkokennojen valmistustekniikka alkoi olla kypsää. Suurehkoja tehtaita nousi Yhdysvaltoihin, Japaniin ja Eurooppaan. Ongelmana oli kuitenkin aurinkokennojen korkea hinta. Öljyn hinnan nousu ja ilmastonmuutos ovat lisänneet uusiutuvien energiamuotojen suosiota ja tarpeellisuutta. Saksa, Japani ja Espanja ovat tänä päivänä edelläkävijöitä aurinkosähkön hyödyntäjinä hajautetussa energiantuotannossa. Viime vuosina aurinkosähkön maailmanlaajuinen kasvu on ollut erittäin voimakasta. Vuoden 2011 kokonaiskapasiteetti oli 70 GW, josta noin 30 GW asennettiin VALOSÄHKÖINEN ILMIÖ (photoelectric effect) (1/2) Valosähköinen ilmiö on pohjimmiltaan sähkömagneettisen säteilyn ja sähkövarausten välistä vuorovaikutusta. Kyse on siitä, että aineen elektronit voivat saada niin paljon energiaa sähkömagneettisesta säteilystä, että ne irtautuvat atomiytimen vetovoimasta. Ilmiön huomasi vuonna 1887 saksalainen fyysikko Heinrich Hertz, joka tarkasteli kahden vastakkaismerkkisesti varatun metallipallon välistä läpilyöntiä. Hertz huomasi, että läpilyöntijännite riippuu metallipalloihin kohdistuvan valon määrästä. Havainto aiheutti hämmennystä, sillä valon ei vielä tässä vaiheessa ymmärretty olevan sähkömagneettista säteilyä. 4 2

3 VALOSÄHKÖINEN ILMIÖ (photoelectric effect) (2/2) Saksalaiset fyysikot Hallwachs ja Lenard jatkoivat Hertzin havaitseman ilmiön tutkimista ja tekivät seuraavanlaisia havaintoja. 5 VALOSÄHKÖINEN ILMIÖ JA AURINKOKENNOT (1/2) Kaikkien puolijohdetekniikkaan perustuvien aurinkokennojen taustalla on valosähköinen ilmiö, joka on pohjimmiltaan sähkömagneettisen säteilyn fotonien ja aineen elektronien välistä vuorovaikutusta. Yksinkertaisesti selitettynä osa aurinkokennoon osuvien fotonien energiasta siirtyy kennomateriaalin elektroneille, ja kennon rakenteen ansiosta tämä energia saadaan hyödynnettyä sähkövirtana ja jännitteenä. Seuraavassa aletaan tarkastella puolijohteita ja niistä valmistettuja aurinkokennoja. Tavoitteena on selvittää, mitä fotonin absorboituminen tarkoittaa puolijohteessa. mikä on se kennon rakenne, jonka ansiosta osa fotonien energiasta saadaan hyötykäyttöön. 6 3

4 VALOSÄHKÖINEN ILMIÖ JA AURINKOKENNOT (2/2) Tavoitteena on yrittää ymmärtää, miksi valolle altistettuun pn-liitokseen syntyy oheisen kuvan suuntainen sähkövirta. 7 ELEKTRONIN ENERGIATILAMALLIT (1/3) Vapaassa tilassa olevan elektronin energia ei ole sidottu. Vapaassa tilassa olevan atomin elektroneilla on tietty määrä sallittuja energiatiloja. Elektronin on sijaittava atomin jollain elektronikuorella. Jos atomin yksittäisen elektronin energia kasvaa ulointa elektronikuorta vastaavaa energiaa suuremmaksi, elektroni irtoaa atomista, jolloin siitä tulee vapaassa tilassa oleva elektroni. Materiaalin kiderakenteessa atomit ovat niin lähekkäin, että ne vuorovaikuttavat keskenään. Elektronin sallitut energiatilat levittäytyvät kiderakenteessa sallituiksi energiavöiksi. Energiavyö siis koostuu lähekkäisistä ja osittain päällekkäisistä elektronin sallituista energiatiloista. 8 4

5 ELEKTRONIN ENERGIATILAMALLIT (2/3) Alhaisissa lämpötiloissa kiderakenteen elektronit miehittävät mahdollisimman alhaiset energiatilat. Tämä ei kuitenkaan tarkoita sitä, että kaikki elektronit olisivat atomin alhaisimmalla sallitulla energiatasolla. Wolfgang Pauli havaitsi vuonna 1925, että atomin kaikilla elektroneilla täytyy olla erilainen kvanttimekaaninen tila. Paulin kieltosääntö: Jokaisella sallitulla energiatasolla voi olla korkeintaan kaksi elektronia. Näiden elektronien spinmomenttien on oltava vastakkaiset. Paulin kieltosäännöstä seuraa, että absoluuttisessa nollapisteessä kaikki kiderakenteen sallitut energiatilat ovat elektronien miehittämiä tiettyyn materiaalille ominaiseen energia-tasoon, Fermienergiaan, asti. 9 ELEKTRONIN ENERGIATILAMALLIT (3/3) Kun lämpötila kasvaa, joidenkin elektronien energia ylittää Fermi-energian. Fermi-Dirac-jakauma antaa todennäköisyyden sille, että aineen kiderakenteesta löytyy elektroni, jolla on energia W. 10 5

6 PUOLIJOHTEISTA (1/3) Tarkastellaan materiaaleja, joiden Fermi-energia osuu energiavöiden väliin. Fermi-energian alapuolista energiavyötä kutsutaan valenssivyöksi, ja Fermienergian yläpuolella oleva energiavyö on johtavuusvyö. Energiavyömallilla mallinnetaan elektronien energiaa materiaalin kiderakenteessa. Mieti, mitkä ovat valenssi- ja johtavuusvyön fysikaaliset tulkinnat. Mitä se tarkoittaa, että "täyden energiavyön elektroneilla ei ole tilaa liikkua"? Alhaisissa lämpötiloissa puolijohde ei johda sähköä, koska valenssivyö on täynnä, ja johtavuusvyö on tyhjä. Kun lämpötila kasvaa, osalla valenssivyön elektroneista saattaa olla niin paljon energiaa, että ne siirtyvät johtavuusvyölle. 11 PUOLIJOHTEISTA (2/3) Elektronit ovat varauksenkuljettajia sekä johtavuus- että valenssivyöllä. Kun tarkastellaan elektronien liikettä valenssivyöllä, näyttää siltä, kuin tyhjä elektronipaikka liikkuisi. Siksi valenssivyöllä tapahtuva elektronien liike on yksinkertaisinta kuvata positiivisesti varautuneen aukon liikkeenä. Tyhjällä elektronipaikalla ei tietenkään todellisuudessa ole varausta, mutta negatiivisen varauksen liike tiettyyn suuntaan voidaan mallintaa itseisarvoltaan yhtäsuuren positiivisen varauksen liikkeenä vastakkaiseen suuntaan. Miksi aurinkokennot valmistetaan puolijohteista? 12 6

7 PUOLIJOHTEISTA (3/3) Pii on aurinkokennojen yleisin raaka-aine. Piin energia-aukon (W g ) suuruus on 1.09 ev. Millä välillä fotonin energia vaihtelee auringosäteilyn energiaspektrissä? Valtaosa AM1.5-säteilystä pystyy synnyttämään piihin vapaita varauksenkuljettajia. 13 MIKSI AURINKOKENNOJA EI VALMISTETA PUHTAISTA PUOLIJOHTEISTA? Jos aurinkokennot valmistettaisiin puhtaasta puolijohteesta: Auringonsäteily kyllä synnyttäisi materiaaliin vapaita varauksenkuljettajia. Johtavuusvyölle nousseet elektronit palaisivat takaisin valenssivyölle, sillä ei ole olemassa voimaa, joka erottelisi syntyneet elektronit ja aukot on toisistaan. Johtavuusvyölle nousseiden elektronien putoamista takaisin valenssivyölle kutsutaan rekombinaatioksi. Tällöin auringonsäteilyn synnyttämä varauksenkuljettajapari menetetään. Jos aurinkokenno valmistetaan puhtaasta puolijohteesta, auringonsäteilyn synnyttämiä varauksenkuljettajia ei saada hyödynnettyä sähkötehon tuottamiseen. Syntyneet varauksenkuljettajat (elektronit ja aukot) saadaan eroteltua kennon rakenteen (kalvo 6) avulla. Seuraavassa aletaan tarkastella tätä rakennetta. 14 7

8 PUHTAASTA PUOLIJOHTEESTA N- JA P-TYYPPISEKSI (1/2) Puhdas pii (Si) Puhtaan piin kiderakenne on sellainen, että uloimman elektronikuoren kaikki neljä elektronia osallistuvat atomien välisiin sidoksiin. n-tyyppi: fosforilla (P) seostettu pii P:n uloimman elektronikuoren neljä elektronia osallistuvat piin kiderakenteessa atomien välisiin sidoksiin. Kiderakenteeseen jää yksi ylimääräinen elektroni, joka on kiinni P-atomissa. p-tyyppi: boorilla (B) seostettu pii B:n uloimman elektronikuoren kaikki kolme elektronia osallistuvat piin kiderakenteessa atomien välisiin sidoksiin. Siihen sidokseen, johon B-atomi liittyy, jää yhden elektronin vaje, jota kutsutaan aukoksi. 15 PUHTAASTA PUOLIJOHTEESTA N- JA P-TYYPPISEKSI (2/2) Kun tarkastellaan valolle altistamatonta seostettua puolijohdetta absoluuttisessa nollapisteessä, materiaalin kiderakenteessa ei ole vapaita varauksenkuljettajia. Kun tarkastellaan valolle altistamatonta seostettua puolijohdetta huoneenlämpötilassa, n-tyypin puolijohteen kiderakenteessa on vapaasti liikkuvia elektroneja. Kiderakenteessa on siis elektroneja, joiden energia osuu johtavuusvyölle. p-tyypin puolijohteen kiderakenteessa on vapaita elektronitiloja (aukkoja), joihin viereiset valenssivyön elektronit voivat siirtyä. Kun ollaan huoneenlämpötilassa, n-tyypin puolijohteessa on elektroneja johtavuusvyöllä, ja p-tyypin puolijohteessa on aukkoja valenssivyöllä. Puolijohteen sähkönjohtavuutta saadaan kasvatettua seostamisen avulla, sillä seostaminen tekee varausten liikkumisen kiderakenteessa mahdolliseksi. Koska johtavuusvyön elektronit pääasiassa synnyttävät n-tyypin puolijohteen sähkövirran, niitä kutsutaan enemmistövarauksenkuljettajiksi. Vastaavasti valenssivyön aukot ovat n-tyypin puolijohteessa vähemmistövarauksenkuljettajia. P-tyypin puolijohteessa tilanne on päinvastainen. 16 8

9 PN-LIITOS (1/2) Kun p- ja n-tyypin puolijohteet viedään yhteen, syntyy pn-liitos. 17 PN-LIITOS (2/2) Tyhjennysalueeseen syntyy sähkökenttä, jonka suunta on n-puolelta p-puolelle. 18 9

10 PN-LIITOKSEN TOIMIMINEN AURINKOKENNONA Auringonsäteily synnyttää sähkövirran pn-liitokseen! Tyhjennysalue on varauksenkuljettajia erottelevan sähkökenttänsä vuoksi se rakenne (sivu 6), jonka ansiosta aurinkokennosta saadaan sähkötehoa. 19 SUORAN JA EPÄSUORAN ENERGIA-AUKON PUOLIJOHTEET (1/2) Puolijohteet jaetaan kahteen luokkaan sen mukaan, miten elektronin liikemäärä p vaikuttaa energia-aukon suuruuteen W cmin W vmax. Elektronien liikemäärä vaihtelee jatkuvasti, sillä ne vuorovaikuttavat kiderakenteen mekaanista värähtelyliikettä mallintavan hiukkasen, fononin, kanssa. Fononilla on paljon liikemäärää mutta vähän energiaa. SMG-säteilyä mallintavalla fotonilla tilanne on päinvastainen. Suoran energia-aukon puolijohteilla elektronin liikemäärä ei juurikaan vaikuta energia-aukon suuruuteen. Kiinteän olomuodon fysiikan kirjoissa asia esitetään niin, että W vmax ja W cmin osuvat samalle elektronin liikemäärän arvolle. Valenssielektronien virittyminen johtavuusvyölle toteutuu pelkkien fotonien avulla

11 SUORAN JA EPÄSUORAN ENERGIA-AUKON PUOLIJOHTEET (2/2) Epäsuoran energia-aukon puolijohteissa elektronin liikemäärä vaikuttaa merkittävästi energia-aukon suuruuteen. KOF:n kirjoissa asia esitetään niin, että epäsuoran energia-aukon puolijohteissa W vmax ja W cmin osuvat liikemäärän eri arvoille. Jotta valenssielektroni voi virittyä johtavuusvyölle minimienergialla, elektronin liikemäärän on oltava juuri sopiva. Valenssielektronien virittyminen johtavuusvyölle vaatii fotonivuorovaikutuksen lisäksi myös fononivuorovaikutuksen. Fononivuorovaikutuksen vaatimus vaikuttaa merkittävästi aineen kykyyn absorboida sähkömagneettista säteilyä Suoran energia-aukon materiaalista voidaan valmistaa huomattavasti ohuempi aurinkokenno (~1 m) kuin epäsuoran energia-aukon materiaalista (~100 m)

DEE-53010 Aurinkosähkön perusteet

DEE-53010 Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Pinnallinen tapa aurinkokennon virta-jännite-käyrän

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen 6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi

Lisätiedot

PUOLIJOHTEISTA. Yleistä

PUOLIJOHTEISTA. Yleistä 39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa

Lisätiedot

Jukka Kitunen Aurinkosähkön soveltuvuus hajautettuun energiantuotantoon Suomessa. Diplomityö

Jukka Kitunen Aurinkosähkön soveltuvuus hajautettuun energiantuotantoon Suomessa. Diplomityö Jukka Kitunen Aurinkosähkön soveltuvuus hajautettuun energiantuotantoon Suomessa Diplomityö Tarkastajat: Yliassistentti Aki Korpela ja Lehtori Risto Mikkonen Tarkastajat ja aihe hyväksytty Sähköosastoneuvoston

Lisätiedot

SMG-4300: Yhteenveto kolmannesta luennosta. PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran.

SMG-4300: Yhteenveto kolmannesta luennosta. PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran. SMG-4300: Yhteenveto kolmannesta luennosta PN-liitokseen perustuva aurinkokenno on kuin diodi, jossa auringonsäteily synnyttää estosuuntaisen virran. Aurinkokennon maksimiteho P max voidaan lausua tyhjäkäyntijännitteen

Lisätiedot

Luento 12. Kiinteät aineet

Luento 12. Kiinteät aineet Kiinteät aineet Luento 12 Kiinteät aineet ja nesteet kuuluvat molemmat kondensoituneisiin aineisiin. Niissä atomien väliset etäisyydet ovat atomien koon suuruusluokkaa eli 0.1 0.5 nm. Kiinteä aineen erottaa

Lisätiedot

PUOLIJOHTEET + + - - - + + + - - tyhjennysalue

PUOLIJOHTEET + + - - - + + + - - tyhjennysalue PUOLIJOHTEET n-tyypin- ja p-tyypin puolijohteet - puolijohteet ovat aineita, jotka johtavat sähköä huonommin kuin johteet, mutta paremmin kuin eristeet (= eristeen ja johteen välimuotoja) - resistiivisyydet

Lisätiedot

TUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ

TUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ TUOMAS LAPP AURINKOVOIMALAN KÄYTTÖ LISÄENERGIAN LÄHTEENÄ KIILTO OY:SSÄ Diplomityö Tarkastajat: professori Seppo Valkealahti ja lehtori Aki Korpela Tarkastajat ja aihe hyväksytty Tieto- ja sähkötekniikan

Lisätiedot

Nanoteknologia aurinkokennoissa

Nanoteknologia aurinkokennoissa Nanoteknologia aurinkokennoissa Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Kemian laitos Kemian opettajankoulutus Kandidaatintutkielma Tekijä: Kati Kolehmainen Pvm: 3.10.2011 Ohjaajat:

Lisätiedot

Vyöteoria. Orbitaalivyöt

Vyöteoria. Orbitaalivyöt Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien

Lisätiedot

FYSIIKKA. Pasi Ketolainen Mirjami Kiuru. Helsingissä Kustannusosakeyhtiö Otava

FYSIIKKA. Pasi Ketolainen Mirjami Kiuru. Helsingissä Kustannusosakeyhtiö Otava FYSKK Pasi Ketolainen Mirjami Kiuru Helsingissä Kustannusosakeyhtiö Otava Sisällys Ylioppilastutkinnon fysiikan koe... 4 Kokeen rakenne... 4 Erilaisia tehtävätyyppejä... 5 Tehtävien pisteytys... 0 FY Fysiikka

Lisätiedot

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

Fysikaalisten tieteiden esittely puolijohdesuperhiloista Fysikaalisten tieteiden esittely puolijohdesuperhiloista "Perhaps a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing the same thing."

Lisätiedot

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet. a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa

Lisätiedot

10. Puolijohteet. 10.1. Itseispuolijohde

10. Puolijohteet. 10.1. Itseispuolijohde 10. Puolijohteet KOF-E, kl 2005 69 Metallit, puolijohteet ja useat eristeet ovat kiteisiä kiinteitä aineita, joilla on säännönmukainen jaksollinen atomijärjestys ja elektronien energioiden kaistarakenne.

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 5. Ilmaisimet Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmaisimet Ilmaisimet (kuvat: @ursa: havaitseva tähtitiede, @kqedscience.tumblr.com) Ilmaisin = Detektori: rekisteröi valon ja muuttaa käsiteltävään

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

ERIKA KAITARANTA AURINKOKENNON JA KERÄIMEN YHDISTÄMINEN ENERGIANTUOTON KASVATTAMISEKSI

ERIKA KAITARANTA AURINKOKENNON JA KERÄIMEN YHDISTÄMINEN ENERGIANTUOTON KASVATTAMISEKSI ERIKA KAITARANTA AURINKOKENNON JA KERÄIMEN YHDISTÄMINEN ENERGIANTUOTON KASVATTAMISEKSI Kandidaatintyö Tarkastaja: Aki Korpela II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Sähkötekniikan koulutusohjelma

Lisätiedot

TAAMIR FAREED VILLE LAMBERG JOUNI LANTTO TUOMO VORNANEN. HAJAUTETTU ENERGIANTUOTANTO Harjoitustyö. Tarkastaja: Aki Korpela

TAAMIR FAREED VILLE LAMBERG JOUNI LANTTO TUOMO VORNANEN. HAJAUTETTU ENERGIANTUOTANTO Harjoitustyö. Tarkastaja: Aki Korpela TAAMIR FAREED VILLE LAMBERG JOUNI LANTTO TUOMO VORNANEN HAJAUTETTU ENERGIANTUOTANTO Harjoitustyö Tarkastaja: Aki Korpela II SISÄLLYS 1. Johdanto...1 2. Hajautetun energiantuotannon määritelmä...2 3. Hajautetun

Lisätiedot

TL6931 RF-ASIC. Tavoitteet

TL6931 RF-ASIC. Tavoitteet TL6931 RF-ASIC Veijo Korhonen Tavoitteet Opiskelija saa kuvan integroitujen RFpiirien suunnittelusta. Perehtyminen yleisimpiin valmistusprosesseihin, pakkaustekniikoihin ja suunnittelutyökaluihin antaa

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Diodi ja puolijohteet Luento Ideaalidiodi = kytkin Puolijohdediodi = epälineaarinen vastus Sovelluksia, mm. ilmaisin ja LED, tasasuuntaus viimeis. viikolla

Lisätiedot

erilaisten mittausmenetelmien avulla

erilaisten mittausmenetelmien avulla Säteilynkestävien pii-ilmaisimien ilmaisimien karakterisointi erilaisten mittausmenetelmien avulla Motivaatio sekä taustaa Miksi Czochralski-pii on kiinnostava materiaali? Piinauhailmaisimen toimintaperiaate

Lisätiedot

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen

Lisätiedot

Aikaerotteinen spektroskopia valokemian tutkimuksessa

Aikaerotteinen spektroskopia valokemian tutkimuksessa Aikaerotteinen spektroskopia valokemian tutkimuksessa TkT Marja Niemi Tampereen teknillinen yliopisto Kemian ja biotekniikan laitos 23.4.2012 Suomalainen Tiedeakatemia, Nuorten klubi DI 2002, TTKK Materiaalitekniikan

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Aurinkopaneelit tansanialaisessa oppimisympäristössä

Aurinkopaneelit tansanialaisessa oppimisympäristössä Petteri Välimäki Aurinkopaneelit tansanialaisessa oppimisympäristössä Metropolia Ammattikorkeakoulu Insinööri (AMK) Sähkötekniikka Insinöörityö 4.6.2013 Tiivistelmä Tekijä Otsikko Sivumäärä Aika Petteri

Lisätiedot

ANNA HAKKARAINEN PIIKARBIDI-DIODI-AURINKOSÄHKÖVAIHTOSUUNTAAJAN HYÖ- TYSUHDETARKASTELU

ANNA HAKKARAINEN PIIKARBIDI-DIODI-AURINKOSÄHKÖVAIHTOSUUNTAAJAN HYÖ- TYSUHDETARKASTELU ANNA HAKKARAINEN PIIKARBIDI-DIODI-AURINKOSÄHKÖVAIHTOSUUNTAAJAN HYÖ- TYSUHDETARKASTELU Diplomityö Tarkastaja: professori Heikki Tuusa Tarkastaja ja aihe hyväksytty Tieto- ja sähkötekniikan tiedekuntaneuvoston

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

KANDIDAATINTYÖ 2011. Jarno Luoma

KANDIDAATINTYÖ 2011. Jarno Luoma KANDIDAATINTYÖ 2011 Jarno Luoma Aalto-yliopisto Sähkötekniikan korkeakoulu Elektroniikan ja sähkötekniikan tutkinto-ohjelma Jarno Luoma Resonanssikammioloistediodi Kandidaatintyö 12.05.2011 Työn ohjaaja:

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

1. Puolijohdekiteiden kasvatus

1. Puolijohdekiteiden kasvatus 1. Puolijohdekiteiden kasvatus PTP, sl 2011 1 Aineiden ominaisuuksien perusta on niiden atomaarisessa rakenteessa, siinä kuinka elektronit sitovat atomeja toisiinsa sekä siinä kuinka atomit ja elektronit

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

Puolijohdediodit ulkoisen sädehoidon potilasannosmittauksissa. Laura Tuomikoski

Puolijohdediodit ulkoisen sädehoidon potilasannosmittauksissa. Laura Tuomikoski Puolijohdediodit ulkoisen sädehoidon potilasannosmittauksissa Laura Tuomikoski Pro gradu -tutkielma Jyväskylän yliopisto Fysiikan laitos Kesäkuu 2008 i Kiitokset Ensimmäiseksi haluan kiittää Pro gradu

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Neljännen luennon aihepiirit Aurinkosähkö hajautetussa sähköntuotannossa Tampereen olosuhteissa Tarkastellaan mittausten perusteella aurinkosähkön mahdollisuuksia hajautetussa energiantuotannossa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

AURINKOPANEELIT. 1. Aurinkopaneelin toimintaperiaate. Kuva 1. Aurinkopaneelin toimintaperiaate.

AURINKOPANEELIT. 1. Aurinkopaneelin toimintaperiaate. Kuva 1. Aurinkopaneelin toimintaperiaate. AURINKOPANEELIT 1. Aurinkopaneelin toimintaperiaate Kuva 1. Aurinkopaneelin toimintaperiaate. Aurinkokennon rakenne ja toimintaperiaate on esitetty kuvassa 1. Kennossa auringon valo muuttuu suoraan sähkövirraksi.

Lisätiedot

Jyväskylän Normaalikoulun lukio Nanokurssi Kevät 2007

Jyväskylän Normaalikoulun lukio Nanokurssi Kevät 2007 Jyväskylän Normaalikoulun lukio Nanokurssi Kevät 2007 Vesa kolhinen Riku Järvinen Juho Korhonen 2 Sisältö I Teoriaa 7 1 Aineen rakenne ja sähkönjohtavuus 9 1.1 Atomimallin historiaa......................

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

AURINKOSÄHKÖN HYÖDYNTÄMISMAHDOLLISUUDET SUOMESSA

AURINKOSÄHKÖN HYÖDYNTÄMISMAHDOLLISUUDET SUOMESSA AURINKOSÄHKÖN HYÖDYNTÄMISMAHDOLLISUUDET SUOMESSA Esityksen sisältö Johdanto aiheeseen Aurinkosähkö Suomen olosuhteissa Lyhyesti tekniikasta Politiikkaa 1 AURINKOSÄHKÖ MAAILMANLAAJUISESTI (1/3) kuva: www.epia.org

Lisätiedot

Ilmaisimet. () 17. syyskuuta 2008 1 / 34

Ilmaisimet. () 17. syyskuuta 2008 1 / 34 Ilmaisimet Ilmaisin eli detektori on laite, jolla kaukoputken kokoama valo rekisteröidään ja muutetaan käsiteltävään muotoon. Aina 1800-luvun puoliväliin saakka ainoana ilmaisimena oli silmä. Sen jälkeen

Lisätiedot

SPIRIDON VAMPOULAS AURINKOPANEELITEKNIIKAN SOVELTUVUUS- JA TALOUDELLISUUSTARKASTELU TEOLLISESSA SOVELLUKSESSA

SPIRIDON VAMPOULAS AURINKOPANEELITEKNIIKAN SOVELTUVUUS- JA TALOUDELLISUUSTARKASTELU TEOLLISESSA SOVELLUKSESSA SPIRIDON VAMPOULAS AURINKOPANEELITEKNIIKAN SOVELTUVUUS- JA TALOUDELLISUUSTARKASTELU TEOLLISESSA SOVELLUKSESSA Diplomityö Tarkastajat: lehtori Risto Mikkonen, kehittämispäällikkö Reino Virrankoski Tarkastaja

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

FRANCKIN JA HERTZIN KOE

FRANCKIN JA HERTZIN KOE FYSP106/2 Franckin ja Hertzin koe 1 FYSP106/2 FRANCKIN JA HERTZIN KOE Työssä mitataan elohopea-atomin erään viritystilan energia käyttäen samantyyppistä koejärjestelyä, jolla Franck ja Hertz vuonna 1914

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a)

www.mafyvalmennus.fi YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) YO-harjoituskoe A / fysiikka Mallivastaukset 1. a) 1 b) Lasketaan 180 N:n voimaa vastaava kuorma. G = mg : g m = G/g (1) m = 180 N/9,81 m/s 2 m = 18,348... kg Luetaan kuvaajista laudan ja lankun taipumat

Lisätiedot

Sähkötekiikka muistiinpanot

Sähkötekiikka muistiinpanot Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

LASERIN JA LEDIN KÄYTTÖ OPTISESSA TIEDONSIIRROSSA

LASERIN JA LEDIN KÄYTTÖ OPTISESSA TIEDONSIIRROSSA Opinnäytetyö (AMK) Elektroniikka Tietoliikennejärjestelmät 2012 Tuukka Välilä LASERIN JA LEDIN KÄYTTÖ OPTISESSA TIEDONSIIRROSSA OPINNÄYTETYÖ (AMK) TIIVISTELMÄ Turun ammattikorkeakoulu Elektroniikka Tietoliikennejärjestelmät

Lisätiedot

CCD-anturin lämpötilan vaikutus elektroluminesenssimittauksen signaali-kohinasuhteeseen

CCD-anturin lämpötilan vaikutus elektroluminesenssimittauksen signaali-kohinasuhteeseen CCD-anturin lämpötilan vaikutus elektroluminesenssimittauksen signaali-kohinasuhteeseen 2.12.2014 Sampo Hyvärinen 1 TABLE OF CONTENTS 1 Johdanto... 3 2 Teoria... 4 2.1 Aurinkokenno... 4 2.2 Elektroluminesenssi...

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma.

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma. Ketaustehtäviä 1. b) Vastuksen esistanssi on U 4,5 V R 53,5714 Ω. I,84 A Vastuksen läpi kulkevan sähkövian suuuus uudessa tapauksessa on U 1 V I ma. R 53,5714 Ω. b) Koska vastukset on kytketty innan, kummankin

Lisätiedot

IGBT-TRANSISTORI. Janne Salonen. Opinnäytetyö Joulukuu 2013 Tietoliikennetekniikka Sulautetutjärjestelmät ja elektroniikka

IGBT-TRANSISTORI. Janne Salonen. Opinnäytetyö Joulukuu 2013 Tietoliikennetekniikka Sulautetutjärjestelmät ja elektroniikka IGBT-TRANSISTORI Janne Salonen Opinnäytetyö Joulukuu 2013 Tietoliikennetekniikka Sulautetutjärjestelmät ja elektroniikka TIIVISTELMÄ Tampereen ammattikorkeakoulu Tietoliikennetekniikka Sulautetutjärjestelmät

Lisätiedot

ELEKTRONIIKAN PERUSTEET T700504

ELEKTRONIIKAN PERUSTEET T700504 ELEKTRONIIKAN PERUSTEET T700504 SAH3sn-luokalle syksyllä 2014 OSA 1 Veijo Korhonen Sisältö opinto-oppaan mukaan: Piirilevy- ja juotostekniikka. Passiiviset komponentit. Tavallisimmat puolijohdemateriaalit.

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

Mikä on Vaihtoehtoisten Sähköenergiateknologioiden ammattiaineen idea?

Mikä on Vaihtoehtoisten Sähköenergiateknologioiden ammattiaineen idea? Mikä on Vaihtoehtoisten Sähköenergiateknologioiden ammattiaineen idea? VAIHTOEHTOISET SÄHKÖENERGIATEKNOLOGIAT ON UUSIUTUVIEN SÄHKÖENERGIAMUOTOJEN TEKNIIKKAA Lähtökohta: Ilmastonmuutoksen seurauksena uusiutuvien

Lisätiedot

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 CERN ja LHC LHC-kiihdytin ja sen koeasemat sijaitsevat 27km pitkässä tunnelissa noin 100 m maan alla Ranskan ja Sveitsin raja-alueella.

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

DEE-53010 Aurinkosähkön perusteet

DEE-53010 Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Seitsemännen luennon aihepiirit Aurinkosähkön energiantuotanto-odotukset Etelä-Suomessa Mittaustuloksia Sähkömagnetiikan mittauspaneelista ja Kiilto Oy:n 66 kw:n aurinkosähkövoimalasta

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

1. Malmista metalliksi

1. Malmista metalliksi 1. Malmista metalliksi Metallit esiintyvät maaperässä yhdisteinä, mineraaleina Malmiksi sanotaan kiviainesta, joka sisältää jotakin hyödyllistä metallia niin paljon, että sen erottaminen on taloudellisesti

Lisätiedot

3 SÄTEILYN JA AINEEN VUOROVAIKUTUS

3 SÄTEILYN JA AINEEN VUOROVAIKUTUS 35 3 SÄTEILYN JA AINEEN VUOROVAIKUTUS Säteilyn hiukkaset ja kvantit vuorovaikuttavat aineen rakenneosasten kanssa. Vuorovaikutusten aiheuttamat prosessit voivat muuttaa aineen rakennetta ja ominaisuuksia,

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

Mitä ledi on ja mitkä ovat sen edut ja haitat?

Mitä ledi on ja mitkä ovat sen edut ja haitat? Mitä ledi on ja mitkä ovat sen edut ja haitat? Eino Tetri, TkT Valaistusyksikkö Elektroniikan, tietoliikenteen ja automaation tiedekunta Elektroniikan laitos Valaistusyksikön tutkimusalueet: Sisävalaistus

Lisätiedot

BL40A1711 Johdanto digitaalielektroniikkaan: CMOS-tekniikka ja siihen perustuvat logiikkapiiriperheet

BL40A1711 Johdanto digitaalielektroniikkaan: CMOS-tekniikka ja siihen perustuvat logiikkapiiriperheet BL40A1711 Johdanto digitaalielektroniikkaan: CMOS-tekniikka ja siihen perustuvat logiikkapiiriperheet Bittioperaatioiden toteuttamisesta Tarvitaan kolmea asiaa: 1. Menetelmät esittää ja siirtää bittejä

Lisätiedot

= E m E n. ( = eu ). säteilyllä on hiukkasluonne. 2.2 Planckin laki ja fotoni f o - Planckin laki: E = hf = hc/λ -W o

= E m E n. ( = eu ). säteilyllä on hiukkasluonne. 2.2 Planckin laki ja fotoni f o - Planckin laki: E = hf = hc/λ -W o 8. KURSSI: ine ja säteily (FOTONI 8: PÄÄKOHDT) 1. SÄHKÖMGNEETTINEN SÄTEILY 1.1 Säkömagneettisen säteilyn spektri (MOL s. 87 (84)), c = λf, E = f = c/λ 1. Valonnopeus - Micelsonin ja Morleyn koe, 1.3 Mustan

Lisätiedot

KVANTTIFYSIIKAN ILMIÖMAAILMA...1

KVANTTIFYSIIKAN ILMIÖMAAILMA...1 KVANTTIFYSIIKAN ILMIÖMAAILMA...1 1.1 Historiaa... 1 1. Klassisen sähkömagnetismin perusideoita... 4 1.3 Mustan kappaleen säteily... 7 1.4 Valosähköinen ilmiö... 1 1.5 Sähkömagneettisen säteilyn sironta

Lisätiedot

Materiaalifysiikkaa antimaterialla. Filip Tuomisto Teknillisen fysiikan laitos Aalto-yliopisto

Materiaalifysiikkaa antimaterialla. Filip Tuomisto Teknillisen fysiikan laitos Aalto-yliopisto Materiaalifysiikkaa antimaterialla Filip Tuomisto Teknillisen fysiikan laitos Aalto-yliopisto Miksi aine on sellaista kuin se on? Materiaalien atomitason rakenne Kokeelliset tutkimusmenetelmät Positroniannihilaatiospektroskopia

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Aurinkosähkön tekninen potentiaali Jyväskylässä

Aurinkosähkön tekninen potentiaali Jyväskylässä Aurinkosähkön tekninen potentiaali Jyväskylässä Pro gradu -tutkielma, 11. joulukuuta 2014 Tekijä: Jasmin Luostarinen Ohjaaja: Jussi Maunuksela 2 Tiivistelmä Luostarinen, Jasmin Aurinkosähkön tekninen potentiaali

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I CCD kamera 6. CCD kamera Lauri Jetsu Fysiikan laitos Helsingin yliopisto CCD kamera CCD-kamera Yleistä (kuvat: @www.astro.virginia.edu) CCD-sirun valoherkät elementit: rivittäin pikseleitä + Kvanttitehokkuus:

Lisätiedot

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin? Luokka 3 Tehtävä 1 Pieni punnus on kiinnitetty venymättömän langan ja kevyen jousen välityksellä tukevaan kannattimeen. Alkutilanteessa punnusta kannatellaan käsin, ja lanka riippuu löysänä kuvan mukaisesti.

Lisätiedot

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2) SMG-4500 Tuulivoima Kuudennen luennon aihepiirit Tuulivoimalan energiantuotanto-odotukset Aiheeseen liittyvä termistö Pinta-alamenetelmä Tehokäyrämenetelmä Suomen tuulivoimatuotanto 1 AIHEESEEN LIITTYVÄ

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2009

MAOL-Pisteitysohjeet Fysiikka kevät 2009 MOL-Pstetysohjeet Fyskka kevät 9 Tyypllsten vrheden aheuttama pstemenetyksä (6 psteen skaalassa): - pen laskuvrhe -/3 p - laskuvrhe, epämelekäs tulos, vähntään - - vastauksessa yks merktsevä numero lkaa

Lisätiedot

Pisterajat 2006-2015 1. Vuosi 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Pisterajat 2006-2015 1. Vuosi 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Pisterajat 2006-2015 1 Äidinkieli, suomi L Kevät 92 90 88 86 87 87 86 87 87 87 87 Syksy 92 90 88 85 87 87 86 87 86 86. E Kevät 87 77 75 72 73 73 71 73 73 72 72 Syksy 87 77 75 73 73 73 72 71 71 70. M Kevät

Lisätiedot

Pisterajat 2006-2014 1. Vuosi 2006 2007 2008 2009 2010 2011 2012 2013 2014

Pisterajat 2006-2014 1. Vuosi 2006 2007 2008 2009 2010 2011 2012 2013 2014 Pisterajat 2006-2014 1 Äidinkieli, suomi L Kevät 92 90 88 86 87 87 86 87 87 Syksy 92 90 88 85 87 87 86 87 86 E Kevät 87 77 75 72 73 73 71 73 73 Syksy 87 77 75 73 73 73 72 71 71 M Kevät 80 62 60 60 61 62

Lisätiedot

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Kertausta IONIEN MUODOSTUMISESTA Jos atomi luovuttaa tai

Lisätiedot

Tekijä lehtori Zofia Bazia-Hietikko

Tekijä lehtori Zofia Bazia-Hietikko Tekijä lehtori Zofia Bazia-Hietikko Tarkoituksena on tuoda esiin, että kemia on osa arkipäiväämme, siksi opiskeltavat asiat kytketään tuttuihin käytännön tilanteisiin. Ympärillämme on erilaisia kemiallisia

Lisätiedot

MAOL ry on pedagoginen ainejärjestö, joka työskentelee matemaattisluonnontieteellisen. osaamisen puolesta suomalaisessa yhteiskunnassa.

MAOL ry on pedagoginen ainejärjestö, joka työskentelee matemaattisluonnontieteellisen. osaamisen puolesta suomalaisessa yhteiskunnassa. MAOL ry on pedagoginen ainejärjestö, joka työskentelee matemaattisluonnontieteellisen kulttuurin ja osaamisen puolesta suomalaisessa yhteiskunnassa. 2 Ennakkotehtävä Mitä yläluokalle tulevan oppilaan pitäisi

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Biopolttoaineiden ympäristövaikutuksista. Kaisa Manninen, Suomen ympäristökeskus Uusiutuvan energian ajankohtaispäivät 3.12.2013

Biopolttoaineiden ympäristövaikutuksista. Kaisa Manninen, Suomen ympäristökeskus Uusiutuvan energian ajankohtaispäivät 3.12.2013 Biopolttoaineiden ympäristövaikutuksista Kaisa Manninen, Suomen ympäristökeskus Uusiutuvan energian ajankohtaispäivät 3.12.2013 Eikö ilmastovaikutus kerrokaan kaikkea? 2 Mistä ympäristövaikutuksien arvioinnissa

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot