Makroskooppinen approksimaatio

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Makroskooppinen approksimaatio"

Transkriptio

1 Deformaatio

2

3 3

4 Makroskooppinen approksimaatio 4

5 Makroskooppinen mikroskooppinen Homogeeninen Isotrooppinen Elastinen Epähomogeeninen Anisotrooppinen Inelastinen 5

6 Elastinen anisotropia Material 2(s 11 s 12 ) / s 44 E 111 (Gpa) E 100 (Gpa) ratio Al Cu Au Fe MgO spinel TiC W

7 Mikrotasolla... kideorientaatio vaikuttaa efektiiviseen jännitykseen... kiteiden geometria aiheuttaa kiteiden sisäisiä jännityshuippuja 7

8 Epähomogeeninen materiaali Materiaalissa on sulkeumia, erkaumia, epäpuhtauksia, hilavirheitä. Nämä aiheuttavat mikroskooppisia jännityskeskittymiä 8

9 Epäpuhtaudet aiheuttavat jännityshuippuja 9

10 10

11 Siis: Lineaaris-elastisella alueella käytös on makroskooppisesti palautuvaa ja tasaista Mikrotasolla jännitys vaihtelee mikrorakenteen mukana ja paikallista myötämistä voi tapahtua jännityskeskittymissä Paikallinen myötäminen tasaa jännityshuippuja 11

12 12

13 13

14 Myötää käytännössä muttei teoriassa Kimmokertoimen perusteella voidaan laskea teoreettinen lujuus: ττ=g/2π Todellinen lujuus tämä / Kaikki sidokset eivät murru kerralla 14

15 Plastinen (pysyvä) muodonmuutos Suurin leikkausjännitys 45 kulmassa 15

16 Leikkausjännitys käynnistää liukumisen "Riittävän korkea" jännitys mahdollistaa dislokaatioiden liikkeen ja muodostumisen. Liukuminen alkaa kun leikkausjännitys liukusysteemissä on riittävän suuri 16

17 Dislokaatiot Viivamainen hilavirhe Särmä- tai ruuvidislokaatio Dislokaation liike aiheuttaa siirtymän 17

18 Särmädislokaatio 18

19 Ruuvidislokaatio 19

20 20

21 21

22 Dislokaatiot erilliskiteessä 22

23 Peiers-Nabarro jännitys Tiivispakkauksellisilla tasoilla Peiersjännitys on mitättömän pieni Liukuminen keskittyy (mahdollisimman) tiivispakkauksellisiin tasoihin ja burgers vektorien suuntaan Liukutaso + liukusuunta = liukusysteemi TKK-hilassa Peiers-jännitys merkittävä 23

24 Schmidintekijä:cosΦcos λ ττ = P/A cosφcos λ 24

25 Dislokaatioiden energia Dislokaatiot vääristävät hilaa ja siten sitovat energiaa. E=αGb 2 (α ) 25

26 Plastisen deformaation energia Energia sitoutuu dislokaatioiden energiaksi ja dislokaatioiden liikuttamisee tehtyyn työhön Tämä ei palaudu jännityksen poistuessa 26

27 Dislokaatioiden syntyminen Frank-Read dislokaatiogeneraattori Orowan jännitys ττ=gb/l 27

28 Dislokaatioiden vuorovaikutus Ohittaessaan toisensa särmädislokaatioiden jännityskentät kohtaavat ja ohittamiseen tarvitaan jännitys ττ~gb/ N Ristikkäiset dislokaatiot joutuvat "leikkaamaan" toisensa ja synnyttävät toisiinsa mutkia, jotka vaikeuttavat liikkumista. Maksimi leikkausjännitys ττ~gb N Samalla liukutasolla olevat dislokaatiot pakkautuvat kohdatessaan esteen (kuten raerajan) Tarvittava jännitys nousee dislokaatiotiheyden kasvaessa => muokkauslujittuminen 28

29 29

30 30

31 Pinousviat PKK hilassa dislokaatio voi hajaantua Shockleyn osittaindislokaatioiksi ja pinousviaksi 31

32 32

33 Monikiteisessä materiaalissa Mielivaltaisen deformaation välittämiseen vaaditaan 5 itsenäistä liukusysteemiä PKK: {111}/<110>; 12 liukusysteemiä, 5 itsenäistä TKK: {110}/<111> (<112>,<123>), 48 liukusysteemiä, 5 itsenäistä TPH: {1010} / <1120> tai {0001}/<1120> ; ei riittävästi itsenäisiä liukusysteemejä 33

34 34

35 Kaksostuminen 35

36 Yhteenveto PKK-hilassa Peiers jännitys mitätön Dislokaatioita syntyy ja ne liikkuvat helposti Dislokaatiot takertuvat toisiinsa ja pakkautuvat raerajoille TKK-hilassa Dislokaatioiden syntyminen ja liikkuminen vaikeampaa Dislokaatioita vähemmän TPH-hilassa Deformaatio edellyttää dislokaatioiden liikettä heikommilla liukusysteemeillä tai kaksostumista 36

37 ... näistä seuraa (yleensä) PKK materiaaleilla matala myötölujuus, runsas muokkauslujittuminen TKK materiaaleilla korkea myötölujuus, vähäisempi muokkauslujittuminen 37

38 Muokkauslujittuminen Siis: Plastinen deformaatio lisää dislokaatiotiheyttä Lisääntynyt dislokaatiotiheys vaikeuttaa dislokaatioiden liikettä => Lujittuminen Mutta: Kinemaattinen, isotrooppinen vai jotain muuta 38

39 Raerajat Dislokaatiot välittävät raerajojen epäjatkuvuutta Dislokaatiot muodostavat pienen kulman rajoja ja kaksosia 39

40 Raerajojen vaikutus dislokaatioihin Dislokaatiot eivät voi ylittää raerajoja Dislokaatiot pakkautuvat raerajoille Dislokaatiopakkauma (pile-up) herättää jännityksen seuraavassa rakeessa 40

41 41

42 Liuosatomit ja dislokaatiot Dislokaatioiden jännityskenttä ja liuosatomien jännityskenttä aiheuttavat vuorovaikutuksen Ylikokoiset liuosatomit pyrkivät vetojännitysalueelle (välisija-atomit) Alikokoiset pyrkivät puristusjännitysalueelle Dislokaatioiden ympärille syntyy Cottrellin pilvi seosatomeista Nämä "lukitsevat" dislokaation 42

43 Koherentit erkaumat vaikeuttavat liikettä Dislokaatiot voivat joskus lävistää koherentit erkaumat ja jopa vähentää erkaumia Erkaumat vaikeuttavat dislokaatioiden liikettä 43

44 Epäkoherentit erkaumat ja dispersiot Dislokaatiot joutuvat kiertämään erkaumat 44

45 Kuroutuminen Suppeuma vähentää pinta-alaa ~ muokkauslujittuminen Kuroutumisen alkaessa n=ε 45

46 46

47 Tyypillinen loppumurtuma 47

48 Lämpötilan ja muodonmuutosnopeuden vaikutus 48

49 49

Metallit jaksollisessa järjestelmässä

Metallit jaksollisessa järjestelmässä Metallit Metallit käytössä Metallit jaksollisessa järjestelmässä 4 Metallien rakenne Ominaisuudet Hyvin muokattavissa, muovattavissa ja työstettävissä haluttuun muotoon Lujia Verraten korkea lämpötilan

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 2

KJR-C2004 materiaalitekniikka. Harjoituskierros 2 KJR-C2004 materiaalitekniikka Harjoituskierros 2 Pienryhmäharjoitusten aiheet 1. Materiaaliominaisuudet ja tutkimusmenetelmät 2. Metallien deformaatio ja lujittamismekanismit 3. Faasimuutokset 4. Luonnos:

Lisätiedot

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaatioiden ominaisuuksia Eivät ala/lopu tyhjästä, vaan: muodostavat ympyröitä alkavat/loppuvat raerajoille,

Lisätiedot

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaation jännitystila Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta

Lisätiedot

Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000

Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000 Deformaatio Kertaus Deformaatio Kiteen teoreettinen lujuus: σ E/8 Todelliset lujuudet lähempänä σ E/1000 3 Dislokaatiot Mekanismi, jossa deformaatio mahdollista ilman että kaikki atomisidokset murtuvat

Lisätiedot

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Vapaa energia ja tasapainopiirros Allotropia - Metalli omaksuu eri lämpötiloissa eri kidemuotoja. - Faasien vapaat

Lisätiedot

Luku 4: Hilaviat. Käsiteltäviä aiheita. Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on?

Luku 4: Hilaviat. Käsiteltäviä aiheita. Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on? Käsiteltäviä aiheita Luku 4: Hilaviat Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on? Voidaanko vikojen määrää ja tyyppiä kontrolloida? Miten viat vaikuttavat materiaaliominaisuuksiin?

Lisätiedot

Luento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria

Luento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Kidesuunnat Kidesuuntien määrittäminen kuutiollisessa

Lisätiedot

Kon Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset

Kon Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset Kon-67.3401 Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset Säteilyhaurastuminen Reaktoripaineastia ja sisukset 12/3/2015 3

Lisätiedot

PETRI KOSKELA KUPARISEN VIRRANKERÄYSNAUHAN VÄSYMISKESTÄVYYS. Diplomityö

PETRI KOSKELA KUPARISEN VIRRANKERÄYSNAUHAN VÄSYMISKESTÄVYYS. Diplomityö PETRI KOSKELA KUPARISEN VIRRANKERÄYSNAUHAN VÄSYMISKESTÄVYYS Diplomityö Tarkastajat: professori Pekka Ruuskanen ja TkT Terhi Glas. Tarkastajat ja aihe hyväksytty Tieto- ja sähkötekniikan tiedekuntaneuvoston

Lisätiedot

Dislokaatiot - pikauusinta

Dislokaatiot - pikauusinta Dislokaatiot - pikauusinta Ilman dislokaatioita Kiteen teoreettinen lujuus ~ E/8 Dislokaatiot mahdollistavat deformaation Kaikkien atomisidosten ei tarvitse murtua kerralla Dislokaatio etenee rakeen läpi

Lisätiedot

Fe - Nb - C ja hienoraeteräkset

Fe - Nb - C ja hienoraeteräkset Fe - Nb - C ja hienoraeteräkset 0.10 %Nb 0.08 NbC:n liukoisuus austeniitissa γ + NbC 1200 C 0.06 0.04 1100 C 0.02 0 γ 0 0.05 0.1 0.15 0.2 %C Tyypillinen C - Nb -yhdistelmä NbC alkaa erkautua noin 1000

Lisätiedot

Kiteiden plastisuus ja dislokaatiot

Kiteiden plastisuus ja dislokaatiot Kiteiden plastisuus ja dislokaatiot LuK-tutkielma Henrik Kurkela henrik.kurkela@gmail.com Marraskuu 2016 Oulun Yliopisto Luonnontieteellinen tiedekunta Fysiikan koulutusohjelma Sisällysluettelo 1. Johdanto...

Lisätiedot

Keskinopea jäähtyminen: A => Bainiitti

Keskinopea jäähtyminen: A => Bainiitti Keskinopea jäähtyminen: A => Bainiitti Fe 3 C F = Bainiitti (B) C ehtii diffundoitua lyhyitä matkoja. A A A A Lämpötila laskee è Austeniitti Ferriitti Austeniitti => ferriitti muutos : atomit siirtyvät

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 3

KJR-C2004 materiaalitekniikka. Harjoituskierros 3 KJR-C2004 materiaalitekniikka Harjoituskierros 3 Tänään ohjelmassa 1. Tasapainopiirros 1. Tulkinta 2. Laskut 2. Faasimuutokset 3. Ryhmätyöt 1. Esitehtävän yhteenveto (palautetaan harkassa) 2. Ryhmätehtävä

Lisätiedot

Vaatimukset. Rakenne. Materiaalit ja niiden ominaisuudet

Vaatimukset. Rakenne. Materiaalit ja niiden ominaisuudet Vaurioituminen I Vaatimukset Rakenne Materiaalit ja niiden ominaisuudet 3 Vaurioituminen Miksi materiaalit murtuvat? Miten materiaalit murtuvat? Timo Kiesi 18.9.2013 4 Miksi insinöörin pitää tietää vauriomekanismeista?

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

Murtumismekanismit: Väsyminen

Murtumismekanismit: Väsyminen KJR-C2004 Materiaalitekniikka Murtumismekanismit: Väsyminen 11.2.2016 Väsyminen Väsyminen on dynaamisen eli ajan suhteen aiheuttamaa vähittäistä vaurioitumista. Väsymisvaurio ilmenee särön, joka johtaa

Lisätiedot

Yksikkökoppi Pienin toistuva rakenne materiaalin sisällä.

Yksikkökoppi Pienin toistuva rakenne materiaalin sisällä. Ashbyn kartat (Ashby diagrams) Kullakin materiaaliryhmällä on muutama ominaisuus, joka erottaa ne selvästi toisista materiaaliryhmistä. Ashbyn kartoissa materiaalit jaetaan ryhmiin. Niistä voidaan päätellä

Lisätiedot

Faasimuutokset ja lämpökäsittelyt

Faasimuutokset ja lämpökäsittelyt Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja

Lisätiedot

Ydinjätekapselin deformaatiomekanismit Projektin johtaja: Hannu Hänninen Tutkijat: Kati Savolainen ja Tapio Saukkonen

Ydinjätekapselin deformaatiomekanismit Projektin johtaja: Hannu Hänninen Tutkijat: Kati Savolainen ja Tapio Saukkonen Ydinjätekapselin deformaatiomekanismit Projektin johtaja: Hannu Hänninen Tutkijat: Kati Savolainen ja Tapio Saukkonen Projektin tavoite Selvittää mikroskooppinen ja makroskooppinen plastinen deformaatio

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34 SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillisen suunnitteluprosessin kulku

Lisätiedot

Luku 3: Kiinteiden aineiden rakenne

Luku 3: Kiinteiden aineiden rakenne Luku 3: Kiinteiden aineiden rakenne Käsiteltäviä aiheita Kuinka atomit järjestyvät kiinteiksi aineiksi? (tällä erää keskitymme metalleihin) Kuinka materiaalin tiheys riippuu sen rakenteesta? Milloin materiaaliominaisuudet

Lisätiedot

Murtumismekaniikka III LEFM => EPFM

Murtumismekaniikka III LEFM => EPFM Murtumismekaniikka III LEFM => EPFM LEFM Rajoituksia K on validi, kun plastisuus rajoittuu pienelle alueelle särön kärkeen mitattavat TMMT-tilassa Hauraille materiaaleille Validiteetti Standardin kokeellinen

Lisätiedot

Fysikaaliset ominaisuudet

Fysikaaliset ominaisuudet Fysikaaliset ominaisuudet Ominaisuuksien alkuperä Mistä materiaalien ominaisuudet syntyvät? Minkälainen on materiaalin rakenne? Onko rakenteellisesti samankaltaisilla materiaaleilla samankaltaiset ominaisuudet?

Lisätiedot

Binäärinen tasapaino, ei täyttä liukoisuutta

Binäärinen tasapaino, ei täyttä liukoisuutta Tasapainopiirrokset Binäärinen tasapaino, ei täyttä liukoisuutta Binäärinen tasapaino Kiinteässä tilassa koostumuksesta riippuen kahta faasia Eutektisella koostumuksella ei puuroaluetta Faasiosuudet muuttuvat

Lisätiedot

Vauriomekanismi: Väsyminen

Vauriomekanismi: Väsyminen Vauriomekanismi: Väsyminen Väsyminen Väsyminen on vaihtelevan kuormituksen aiheuttamaa vähittäistä vaurioitumista. Erään arvion mukaan 90% vaurioista on väsymisen aiheuttamaa. Väsymisikää voidaan kuvata

Lisätiedot

SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen

SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen TAVOITTEET Jännitysten ja venymien yhteys kokeellisin menetelmin: jännitysvenymäpiirros Teknisten materiaalien jännitys-venymäpiirros 1 SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten

Lisätiedot

Luku 3: Virheetön kide

Luku 3: Virheetön kide Luku 3: Virheetön kide Suurin osa teknisistä materiaaleista ovat kiteisiä. Materiaalit voidaan kiderakenteensa puolesta jakaa 7:ään kidesysteemiin ja 14:sta piste- eli Bravais-hilaan. Metallien kiderakenne

Lisätiedot

Mekaaniset ominaisuudet

Mekaaniset ominaisuudet Mekaaniset ominaisuudet Yleisimmät mekaaniset ominaisuudet Kimmokerroin (E) jäykkyys Lujuus (σ) Kovuus 2 2 Jännitys σ = F/A ε = l/l σ = Eε 3 3 Kimmokerroin (E) Kuvaa materiaalin jäykkyyttä Syntyy atomien

Lisätiedot

Tuukka Yrttimaa. Vaurioituminen. Sitkeä- ja haurasmurtuma. Brittle and Ductile Fracture

Tuukka Yrttimaa. Vaurioituminen. Sitkeä- ja haurasmurtuma. Brittle and Ductile Fracture Tuukka Yrttimaa Vaurioituminen Sitkeä- ja haurasmurtuma Brittle and Ductile Fracture Sitkeä- ja haurasmurtuma Metallin kyky plastiseen deformaatioon ratkaisee murtuman luonteen (kuva 1) [3] Murtumaan johtaa

Lisätiedot

Lämpötila Lämpölaajeneminen Ideaalikaasu. Luku 17

Lämpötila Lämpölaajeneminen Ideaalikaasu. Luku 17 Lämpötila Lämpölaajeneminen Ideaalikaasu Luku 17 Ch 17-1 3 Termodynaaminen tasapaino Termodynaaminen tasapaino: Tuotaessa kaksi systeemiä lämpökontaktiin niiden termodynaaminen tasapaino on saavutettu,

Lisätiedot

Väsymissärön ydintyminen

Väsymissärön ydintyminen Väsymissärön ydintyminen 20.11.2015 1 Vaurio alkaa särön muodostumisella Extruusio Intruusio Deformoitumaton matriisi S-N käyrät Testattu sauvan katkeamiseen Kuvaavat aikaa "engineering särön muodostumiseen"

Lisätiedot

Ch 12-4&5 Elastisuudesta ja lujuudesta

Ch 12-4&5 Elastisuudesta ja lujuudesta Ch 12-4&5 Elastisuudesta ja lujuudesta Jännitys ja venymä Hooken laki F = k l Δl = 1 k F Jousivakio k riippuu langan dimensioista Saadaan malli Δl = l o EA F k = E A l o Lisäksi tarvitaan materiaalia kuvaava

Lisätiedot

Valetun valukappaleelle on asetettu usein erilaisia mekaanisia ominaisuuksia, joita mitataan aineenkoestuksella.

Valetun valukappaleelle on asetettu usein erilaisia mekaanisia ominaisuuksia, joita mitataan aineenkoestuksella. K. Aineen koestus Pekka Niemi Tampereen ammattiopisto Valetun valukappaleelle on asetettu usein erilaisia mekaanisia ominaisuuksia, joita mitataan aineenkoestuksella. K. 1 Väsyminen Väsytyskokeella on

Lisätiedot

SÄHKÖLEVYN MEISTON LASKENNALLINEN TARKASTELU

SÄHKÖLEVYN MEISTON LASKENNALLINEN TARKASTELU Kemian tekniikan korkeakoulu Materiaalitekniikan koulutusohjelma Arijussi Väänänen SÄHKÖLEVYN MEISTON LASKENNALLINEN TARKASTELU Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA.

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. 1 SAVONIA-AMK TEKNIIKKA/ KUOPIO HitSavonia- projekti Seppo Vartiainen Esitelmä paineastiat / hitsausseminaarissa 1.11.05 TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. Kylmät olosuhteet. Teräksen transitiokäyttäytyminen.

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

CHEM-A1410 Tulevaisuuden materiaalit, 2. luento, ominaisuuksista

CHEM-A1410 Tulevaisuuden materiaalit, 2. luento, ominaisuuksista CHEM-A1410, luento 2 CHEM-A1410 Tulevaisuuden materiaalit, 2. luento, ominaisuuksista Jari Aromaa, Kemian tekniikan ja metallurgian laitos 2. luento, sisällys Mitä tarkoitetaan materiaalin ominaisuuksilla

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

1.Growth of semiconductor crystals

1.Growth of semiconductor crystals BST, fall 2012 1 1.Growth of semiconductor crystals Origin of the properties of matter is in the atomic structure, or in more details, both in how electrons bind the atoms and in quantum dynamics of the

Lisätiedot

Metallurgian perusteita

Metallurgian perusteita Metallurgian perusteita Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Korkean laadun saavuttaminen edellyttää sekä rauta että teräsvalujen tuotannossa tiukkaa prosessikuria

Lisätiedot

Moldex3D-FEA Interface to Abaqus Case: Suunto Ambit

Moldex3D-FEA Interface to Abaqus Case: Suunto Ambit Moldex3D-FEA Interface to Abaqus Case: Suunto Ambit Moldex3D seminaari, Vantaa 24.4.2013 Dr.(Tech.) Kilwa Ärölä Simulation Manager, Rand Simulation Oy Äyritie 20, 01510 VANTAA E-mail kilwa.arola@rand.fi

Lisätiedot

CHEM-A1410 Materiaalitieteen perusteet

CHEM-A1410 Materiaalitieteen perusteet CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.

Lisätiedot

12. Eristeet Vapaa atomi

12. Eristeet Vapaa atomi 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Murtumismekaniikka II. Transitiokäyttäytyminen ja haurasmurtuma

Murtumismekaniikka II. Transitiokäyttäytyminen ja haurasmurtuma Murtumismekaniikka II Transitiokäyttäytyminen ja haurasmurtuma Kertauskysymyksiä: Miksi säröt ovat vaarallisia? Miksi säröllinen kappale ei murru pienellä jännityksellä? Mikä on G? Yksikkö? Mikä on K?

Lisätiedot

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =!  0 E loc (12.4) 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

Kokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu

Kokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään

Lisätiedot

RUOSTUMATTOMAT TERÄKSET

RUOSTUMATTOMAT TERÄKSET 1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja

Lisätiedot

Jotain valimistusmenetelmiä

Jotain valimistusmenetelmiä Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään

Lisätiedot

Kupari ja kuparimetallit. juha.nykanen@tut.fi

Kupari ja kuparimetallit. juha.nykanen@tut.fi Kupari ja kuparimetallit juha.nykanen@tut.fi Esitiedot Miten sähköjohteisiin käytetyt kuparilaadut poikkevat muista kupariseoksista? Miksi puhdas kupari johtaa hyvin sähköä? Mitä tarkoittaa puhdas kupari?

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Myötölujuuden ja vetomurtolujuuden arvot f R ja f R y eh u m tuotestandardista tai taulukosta 3.1 Sitkeysvaatimukset: - vetomurtolujuuden ja myötörajan f y minimiarvojen

Lisätiedot

Murtumismekaniikka. Jussi Tamminen

Murtumismekaniikka. Jussi Tamminen Murtumismekaniikka Jussi Tamminen Taustaa Murtumismekaanisia kokeita kehitetty 1950-luvun lopusta asti Materiaali murtuu yleensä nimellysjännitystä pienemmällä jännityksellä Kriittisen vikakoon määrittäminen

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r

Lisätiedot

Teräslajit. Huom. FeP01-06 = DC01-06

Teräslajit. Huom. FeP01-06 = DC01-06 Teräslajit Huom. FeP01-06 = DC01-06 Pehmeät muovattavat DC01 - DC06 Pehmeät muovattavat DC06 = IF = Interstitial free = välisija-atomivapaa = ei C eikä N liuoksessa C ja N sidottuina Ti(CN) tai (TiNb)(CN)

Lisätiedot

MEKAANINEN AINEENKOETUS

MEKAANINEN AINEENKOETUS MEKAANINEN AINEENKOETUS KOVUUSMITTAUS VETOKOE ISKUSITKEYSKOE 1 Kovuus Kovuus on kovuuskokeen antama tulos! Kovuus ei ole materiaaliominaisuus samalla tavalla kuin esimerkiksi lujuus tai sitkeys Kovuuskokeen

Lisätiedot

PHYS-C0240 Materiaalifysiikka kevät 2017

PHYS-C0240 Materiaalifysiikka kevät 2017 PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto

Lisätiedot

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen 34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla

Lisätiedot

Elastisuus: Siirtymä

Elastisuus: Siirtymä Elastisuus: Siirtymä x Elastisuus: Siirtymä ja jännitys x σ(x) σ(x) u(x) ℓ0 u(x) x ℓ0 x Elastisuus: Lämpövenymä ja -jännitys Jos päät kiinnitetty eli ε = 0 Jos pää vapaa eli σ = 0 Elastisuus: Venymätyypit

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

KUUMAVALSSATUT TERÄSLEVYT JA -KELAT Mekaaninen leikkaus

KUUMAVALSSATUT TERÄSLEVYT JA -KELAT Mekaaninen leikkaus KUUMAVALSSATUT TERÄSLEVYT JA -KELAT Mekaaninen leikkaus www.ruukki.fi Lujien terästen leikkaamiseen suositellaan suorateräistä leikkaamista, joka yleensä on saksimainen leikkausmenetelmä. Erityisesti teräslajien

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Johdatusta moniskaalamallinnukseen. malleissa on usein pieniä/suuria parametreja. rajaprosessi voi johtaa laadullisesti erilaiseen rajayhtälöön

Johdatusta moniskaalamallinnukseen. malleissa on usein pieniä/suuria parametreja. rajaprosessi voi johtaa laadullisesti erilaiseen rajayhtälöön Johdatusta moniskaalamallinnukseen malleissa on usein pieniä/suuria parametreja rajaprosessi voi johtaa laadullisesti erilaiseen rajayhtälöön ratkaisussa useampi pituusskaala epäsäännölliset häiriöt monen

Lisätiedot

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2 infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Kon Rakenneaineet jännitysten ja ympäristön vaikutusten alaisina 5 op Periodit I II. Luennoitsija: Iikka Virkkunen Harjoitukset: Timo Kiesi

Kon Rakenneaineet jännitysten ja ympäristön vaikutusten alaisina 5 op Periodit I II. Luennoitsija: Iikka Virkkunen Harjoitukset: Timo Kiesi Kon-67.3401 Rakenneaineet jännitysten ja ympäristön vaikutusten alaisina 5 op Periodit I II Luennoitsija: Iikka Virkkunen Harjoitukset: Timo Kiesi Työtavat 12 luentoa Viikolla 43 ei luentoa Luennot jatkuvat

Lisätiedot

4 ev OY/MFP R Materiaalifysiikan perusteet P Ratkaisut 6, Kevät 2017

4 ev OY/MFP R Materiaalifysiikan perusteet P Ratkaisut 6, Kevät 2017 OY/MFP R6 017 Materiaalifysiikan perusteet 514P Ratkaisut 6, Kevät 017 1. Koska kuvitteellisten materiaalien hila on pkk-hila, niiden käänteishila on tkk-hila ja Brillouin-koppi on Kuvan 1.1 mukainen.

Lisätiedot

Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot:

Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot: Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot: lassi.vuorela@aalto.fi Juottaminen Juottamisessa on tarkoitus liittää kaksi materiaalia tai osaa niin, että sähkövirta kykenee

Lisätiedot

Ympäristövaikutteinen murtuminen EAC

Ympäristövaikutteinen murtuminen EAC Ympäristövaikutteinen murtuminen EAC Ympäristövaikutteinen murtuminen Yleisnimitys vaurioille, joissa ympäristö altistaa ennenaikaiselle vauriolle Lukuisia eri mekanismeja ja tyyppejä Tässä: Jännistyskorroosio

Lisätiedot

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 A B B Piirroksen alue 1: Sularajan yläpuolella on seos aina täysin sula => yksifaasialue (L). Alueet 2 ja 5: Nämä ovat

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Lämpökäsittely Austenointi tehdään hyvin korkeassa lämpötilassa verrattuna muihin teräksiin Liian korkea lämpötila tai liian pitkä aika voivat aiheuttaa vetelyjä, rakeenkasvua,

Lisätiedot

781611S KIINTEÄN OLOMUODON KEMIA (4 op)

781611S KIINTEÄN OLOMUODON KEMIA (4 op) 781611S KIINTEÄN OLOMUODON KEMIA (4 op) ma ti ke to pe 12.9. klo 12-14 19.9. klo 12-14 26.9. klo 12-14 3.10. klo 12-14 KE351 10.10. klo 12-14 17.10. klo 12-14 24.10. klo 12-14 31.10. klo 12-14 KE351 14.9.

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Rakenneterästen myötörajan f y ja vetomurtolujuuden f u arvot valitaan seuraavasti: a) käytetään suoraan tuotestandardin arvoja f y = R eh ja f u = R m b) tai käytetään

Lisätiedot

TIMO YRJÄNÄ MURTUMISPARAMETRIEN LASKEMINEN ELEMENTTIMENETELMÄLLÄ

TIMO YRJÄNÄ MURTUMISPARAMETRIEN LASKEMINEN ELEMENTTIMENETELMÄLLÄ TIMO YRJÄNÄ MURTUMISPARAMETRIEN LASKEMINEN ELEMENTTIMENETELMÄLLÄ Diplomityö Tarkastaja: professori Reijo Kouhia Tarkastaja ja aihe hyväksytty Teknisten tieteiden tiedekunnan tiedekuntaneuvoston kokouksessa

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.

Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden. . Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet

Lisätiedot

Katso lasiseinän rungon päämitat kuvista 01 ja Jäykistys ja staattinen tasapaino

Katso lasiseinän rungon päämitat kuvista 01 ja Jäykistys ja staattinen tasapaino YLEISTÄ itoitetaan oheisen toimistotalo A-kulman sisääntuloaulan alumiinirunkoisen lasiseinän kantavat rakenteet. Rakennus sijaitsee Tampereen keskustaalueella. KOKOAISUUS Rakennemalli Lasiseinän kantava

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

L Grundströmilta saatu kairausnayte Vs-144/ m (pintahie no. T 606) on tarkastettu malmimikroskooppisesti.

L Grundströmilta saatu kairausnayte Vs-144/ m (pintahie no. T 606) on tarkastettu malmimikroskooppisesti. NAYTE VRS-144/107.30 m. MALMIMIKROSKOOPPISET HAVAINNOT. L Grundströmilta 18.1.1980 saatu kairausnayte Vs-144/ 107.30 m (pintahie no. T 606) on tarkastettu malmimikroskooppisesti. Näyte on peräisin Karankalahden

Lisätiedot

Esitiedot. Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet?

Esitiedot. Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet? Esitiedot Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet? Milloin austeniittiset laadut ovat välttämättömiä? Mitä eri laadut maksavat? Miten kupari

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin

Lisätiedot

Kallioperän ruhjevyöhykkeet Nuuksiossa ja. ja lähiympäristössä

Kallioperän ruhjevyöhykkeet Nuuksiossa ja. ja lähiympäristössä Geologian Päivä Nuuksio 14.9.2013 Kallioperän ruhjevyöhykkeet Nuuksiossa ja lähiympäristössä Teemu Lindqvist Pietari Skyttä HY Geologia Taustakuva: Copyright Pietari Skyttä 1 Kallioperä koostuu mekaanisilta

Lisätiedot

Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA

Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TYÖN TAVOITE Tavoitteena on ymmärtää aineen kimmoisuuteen liittyviä käsitteitä sekä aineen lämpölaajenemista. Sovelluksena

Lisätiedot