Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000"

Transkriptio

1 Deformaatio Kertaus

2 Deformaatio Kiteen teoreettinen lujuus: σ E/8 Todelliset lujuudet lähempänä σ E/1000 3

3 Dislokaatiot Mekanismi, jossa deformaatio mahdollista ilman että kaikki atomisidokset murtuvat yhtä aikaa Dislokaatiot Keksitty 1934 Burgers (ruuvidislokaatiot) Taylor, Orowan, Polany (särmädislokaatiot) 4

4 Metallien plastinen deformaatio on dislokaatioiden liikettä

5 Mistä lujuus syntyy Mikä vastustaa dislokaatioiden liikettä? 6

6 Dislokaatioiden liikevastus Kiteen sisäinen vastus Peiers jännitys Seosatomit (liuoslujittuminen) Vieraat faasit (erkautuslujittaminen) Raerajat Toiset dislokaatiot (muokkauslujittuminen)

7 Diffuusio

8 Vakanssit Pistemäisiä hilavirheitä Mahdollistavat diffuusion 9

9

10 Diffuusio Vakanssit liikkuvat metallihilassa satunnaisesti liike lämpötilan aktivoimaa mitä korkeampi lämpötila, sitä suurempi liikenopeus (ja sitä enemmän vakansseja) Huoneenlämpötilassa diffuusio erittäin hidasta 11

11 Diffuusio Atomit sekoittuvat metalleissa Koostumuserot tasoittuvat Analoginen lämmönsiirtymisen kanssa 12

12 Vakanssit ja jännitys Myös vakanssit aiheuttavat ympärilleen jännityskentän => jännitys vaikuttaa vakanssien liikkeeseen Vakanssit (diffuusio) voivat myös välittää atomien järjestäytymistä pienempienergiseen tilaan Korkeassa lämpötilassa kidevirheet korjaantuvat Korkeassa lämpötilassa dislokaatiot korjaantuvat Korkeassa lämpötilassa kiderakenne voi muodostua uudelleen rekristallisaatio Korkeassa lämpötilassa raekoko kasvaa 13

13 Mikrorakenne

14 Mikrorakenne - yhteenveto Seoksen faasit ja näiden jakaantuminen morfologia kaksifaasirakenne erkaumat sulkeumat raerajafaasit Raerakenne Raekoko Suuntautuneisuus Kideorientaatio tekstuuri Hilavirheet Raerajat Dislokaatiot Vakanssit

15 Faasit

16

17 Faasit sulkeumia 18

18 Faasit - sulkeumia 19

19

20

21 Raerakenne

22 Dislokaatiot

23 Vakanssit 24

24 Mikrorakenne Dynaamiset ilmiöt Atomisidosten venyminen => Elastinen deformaatio (jännitys) Jännityksen ajama Dislokaatioiden liike => plastinen deformaatio Jännityksen ajama Vakanssien liike =>diffuusio Lämpötilan ajama 25

25 Diffuusion vaikutus dislokaatioihin Korkeissa lämpötiloissa diffuusio voi auttaa dislokaatioiden liikettä dislokaatioiden kiipeäminen esteiden yli 26

26 Metallit ovat metastabiileja

27 Lujittamismekanismit

28 Lujittaminen tapahtuu vaikeuttamalla dislokaatioiden liikettä

29 Lujittaminen Raekoko Liuoslujittaminen Erkautuslujittaminen Muokkauslujittuminen 30

30 Raekoon vaikutus Raerajat toimivat tehokkaina esteinä dislokaatioiden liikkeelle Mitä pienempi raekoko (enemmän raerajoja) sitä lujempi materiaali Pieni raekoko myös sitkistää materiaalia

31 Raekoko - työkalut Raekokoa voidaan pienentää: kylmämuokkauksella Valssaus tai taonta venyttää ja pienentää rakeita haluttuun suuntaan Lämpökäsittelyllä Aiheuttamalla lämpötilaa säätelemällä kontrolloitu rekristallisaatio tai faasimuutoksia, voidaan pienentää raekokoa Seostuksella Erkaumat estävät raekoon kasvua korkeissa lämpötiloissa 32

32 Esimerkiksi ohutlevyn kylmävalssaus Metallilevy pakotetaan matalassa lämpötilassa esimerkiksi rullien välistä, jolloin se kokee voimakkaan deformaation. nousee voimakkaasti 2. Raerakenne (pienenee ja suuntautuu) muokkauksen mukaiseksi 3. Lujuus nousee muokkausasteen mukaan

33 Raekokoon hallinta: Kuumavalssaus Levy pakotetaan korkeassa lämpötilassa esimerkiksi rullien väliin. 1. Metalli deformoituu voimakkaasti, mutta korkean lämpötilan seurauksena välittömästi. 2. Seurauksena, lujuuden kasvu sekä sitkeyden nousu

34

35

36

37 Esim. normalisointi

38 Liuoslujittaminen Liuosatomit vääristävät hilaa Vääristyneessä hilassa dislokaatioiden on vaikeampi liikkua 39

39 Liuoslujittaminen Liuoslujittaminen toteutetaan Seostamalla välisija-atomeja Seostamalla korvausatomeja Esim: Rauta-hiili hiili välisija-atomina pienet pitoisuudet nostavat lujuutta voimakkaasti Kulta-hopea-kupari 40

40 Kuparin ja sinkin tasapainopiirros

41 Erkautuslujittaminen Erkaumat estävät tehokkaasti dislokaatioiden liikettä Kuten raerajat Jännitys erkaumien ympärillä 42

42 Erkaustuslujittaminen - työkalut Seostus + lämpökäsittely Seostuksella erkaumia muodostavia seosaineita Lämpökäsittelyllä saavutetaan erkaumarakenne, joka lisää lujuutta paljon pieniä erkaumia koherentteja erkaumia Erkautuskarkaisu 43

43 44

44 Muokkauslujittuminen Muokkaus generoi dislokaatioita Dislokaatiotiheys kasvaa Dislokaatiot takertuvat toisiinsa ja vaikeuttavat toistensa liikettä

45 Muokkauslujittaminen Valssatuissa levyissä Vedetyissä langoissa Taotuissa tuotteissa 46

46 Muokkauslujittuminen 47

47 Lämpökäsittely

48 Lämpökäsittely Metallit ovat metastabiileja Lämpötilan nosto siirtää rakennetta kohti tasapainotilaa Dislokaatiotiheys pienenee Rakeet kasvavat Liukoisuus kasvaa Kontrolloidulla jäähdytyksellä saadaan tila kauemmas tasapainotilasta 49

49 Lämpökäsittely - työkalut Diffuusionopeus kasvaa lämpötilan noustessa Eri faasit ovat stabiileja eri lämpötiloissa Lämpötilaa kontrolloidusti nostamalla ja laskemalla voidaan muuttaa mikrorakennetta ja siten mekaanisia ominaisuuksia 50

50 Pehmeäksi hehkutus Korkeassa lämpötilassa muokkauslujittumisen vaikutukset häipyvät Dislokaatiotiheys pienenee Materiaali pehmenee Sitkeys kasvaa

51 Normalisointi Teräksellä raekoon pienentämiseksi 52

52 Normalisointi 53

53 Erkautuskarkaisu Korkeassa lämpötilassa seosaineet liuotetaan Nopealla jäähdytyksellä seosaineet jäävät liuokseen Kontrolloitu hehkutus erkauttaa paljon pieniä erkaumia

54 Teräkset

55 Teräkset Tärkein konstruktiometalli Rauta-hiili -seoksia, joissa alle 2.14% hiiltä (tyypillisesti paljon vähemmän) 56

56 Polymorfia Ominaisuudet laajasti muokattavissa TKK -kiderakenne matalissa lämpötiloissa Suuri lujuus PKK -kiderakenne korkeissa lämpötiloissa voidaan saada stabiiliksi matalissa lämpötiloissa seostuksella 57

57 Rauta-hiili tasapaino 58

58 Teräksen rakennuspalikat Feriitti raudan stabiili kidemuoto huoneenlämpötilassa (BCC) liuottaa max 0.022% hiiltä Sementiitti Rauta-hiili yhdiste Fe3C Kova, hauras faasi Austeniitti raudan stabiili kidemuoto korkeissa lämpötioissa (FCC) liuottaa max 2.14% hiiltä pehmeä Eri mikrorakenteet kuvaavat ferriitin ja sementiitin erilaisia yhdistelmiä, joilla saavutetaan erilaisia ominaisuuksia 59

59 Lämpökäsittely Tavoitteena: vaikuttaa hiilen erkautumiseen kiderakenteeseen (martensiitti) Hiilen liukoisuus austeniittiin suuri Kontrolloidulla jäähdytyksellä voidaan vaikuttaa hiilen erkautumiseen 60

60 Liuotushehkutus Korkeassa lämpötilassa kaikki seostettu hiili liuenneena austeniittiin mikrorakenteena austeniittinen rakenne Austeniitin raekoko vaikuttaa loppurakenteen ominaisuuksiin 61

61 Hidas jäähdytys Diffuusiolla aikaa tapahtua Hiili siirtyy pois ferriitistä sementiittiin Tuloksena lamellimainen rakenne perliitti Mitä hitaampi jäähdytys sitä karkeampi on perliitin lamellirakenne 62

62 Perliitti 63

63 Perliitti 64

64 TTT-käyrä 65

65 Nopeampi jäähdytys Nopeampi jäähdytys antaa diffuusiolle vähemmän aikaa jakaa hiili eri faasien välille Tuloksena hienojakoisempi rakenne Bainiitti Neulasmainen rakenne Hyvin hienojakoinen suuri lujuus suuri sitkeys 66

66 67

67 Bainiitti 68

68 69

69 Martensiitti Vielä nopeampi jäähdytys => edes Bainiitti ei ehdi muodostua Hiili jää ylikyllästeisenä ferriittiin hila venyy tetragonaaliseksi Erittäin luja mutta hauras rakenne Martensiitti 70

70

71 Martensiitti 72

72 Karkaisu Liuotushehkutus (austenitointihehkutus) austeniittialueella Nopea jäähdytys => martensiitti Päästö eli hehkutus C lämpötilassa Hiili erkautuu Sitkeys kasvaa Lujuus pienenee Useat seosaineet hidastavat perliitti- ja bainiittimuutosta karkenevuus paranee 73

73 Päästömartensiitti Martensiittiä päästettäessä sementiitti erkautuu pieninä pallomaisina erkaumina Hyvin hienojakoinen rakenne Erinomainen lujuus-sitkeys -suhde 74

74 Seostus Seostuksella voidaan vaikuttaa Lämpökäsiteltävyyteen Lujuuteen (liuoslujittaminen, jne.) korroosiokestoon jne. 75

75 Ruostumattomat teräkset Kromi parantaa korroosionkestoa Muodostaa tiiviin oksidikalvon joka estää korroosion etenemisen yli 13% kromiseostus => kestää ilmaston korroosiota normaalioloissa => ruostumaton Ruostumattomatkin teräkset ruostuvat aggressiivisissa ympäristöissä 76

76 Austeniittialue ja seostus 77

77 Ruostumattomat teräslaadut Ferriittiset Martensiittiset Austeniittiset Duplex 78

78 Duplex ruostumaton teräs

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaation jännitystila Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta

Lisätiedot

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaatioiden ominaisuuksia Eivät ala/lopu tyhjästä, vaan: muodostavat ympyröitä alkavat/loppuvat raerajoille,

Lisätiedot

Faasimuutokset ja lämpökäsittelyt

Faasimuutokset ja lämpökäsittelyt Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja

Lisätiedot

Metallit jaksollisessa järjestelmässä

Metallit jaksollisessa järjestelmässä Metallit Metallit käytössä Metallit jaksollisessa järjestelmässä 4 Metallien rakenne Ominaisuudet Hyvin muokattavissa, muovattavissa ja työstettävissä haluttuun muotoon Lujia Verraten korkea lämpötilan

Lisätiedot

Binäärinen tasapaino, ei täyttä liukoisuutta

Binäärinen tasapaino, ei täyttä liukoisuutta Tasapainopiirrokset Binäärinen tasapaino, ei täyttä liukoisuutta Binäärinen tasapaino Kiinteässä tilassa koostumuksesta riippuen kahta faasia Eutektisella koostumuksella ei puuroaluetta Faasiosuudet muuttuvat

Lisätiedot

Dislokaatiot - pikauusinta

Dislokaatiot - pikauusinta Dislokaatiot - pikauusinta Ilman dislokaatioita Kiteen teoreettinen lujuus ~ E/8 Dislokaatiot mahdollistavat deformaation Kaikkien atomisidosten ei tarvitse murtua kerralla Dislokaatio etenee rakeen läpi

Lisätiedot

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Vapaa energia ja tasapainopiirros Allotropia - Metalli omaksuu eri lämpötiloissa eri kidemuotoja. - Faasien vapaat

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 2

KJR-C2004 materiaalitekniikka. Harjoituskierros 2 KJR-C2004 materiaalitekniikka Harjoituskierros 2 Pienryhmäharjoitusten aiheet 1. Materiaaliominaisuudet ja tutkimusmenetelmät 2. Metallien deformaatio ja lujittamismekanismit 3. Faasimuutokset 4. Luonnos:

Lisätiedot

Makroskooppinen approksimaatio

Makroskooppinen approksimaatio Deformaatio 3 Makroskooppinen approksimaatio 4 Makroskooppinen mikroskooppinen Homogeeninen Isotrooppinen Elastinen Epähomogeeninen Anisotrooppinen Inelastinen 5 Elastinen anisotropia Material 2(s 11

Lisätiedot

Keskinopea jäähtyminen: A => Bainiitti

Keskinopea jäähtyminen: A => Bainiitti Keskinopea jäähtyminen: A => Bainiitti Fe 3 C F = Bainiitti (B) C ehtii diffundoitua lyhyitä matkoja. A A A A Lämpötila laskee è Austeniitti Ferriitti Austeniitti => ferriitti muutos : atomit siirtyvät

Lisätiedot

Fe - Nb - C ja hienoraeteräkset

Fe - Nb - C ja hienoraeteräkset Fe - Nb - C ja hienoraeteräkset 0.10 %Nb 0.08 NbC:n liukoisuus austeniitissa γ + NbC 1200 C 0.06 0.04 1100 C 0.02 0 γ 0 0.05 0.1 0.15 0.2 %C Tyypillinen C - Nb -yhdistelmä NbC alkaa erkautua noin 1000

Lisätiedot

Hakemisto. C CCT-käyrä... ks. S-käyrä CVD-pinnoitus...ks. kaasufaasipinnoitus

Hakemisto. C CCT-käyrä... ks. S-käyrä CVD-pinnoitus...ks. kaasufaasipinnoitus A A 1-lämpötila... 17 A 3-lämpötila... 17 Abrasiivinen kuluminen... 110 A cm-lämpötila... 17 Adhesiivinen kitka... 112 Adhesiivinen kuluminen... 110 ADI... ks. ausferriittinen pallografiittivalurauta Adusointi...

Lisätiedot

Terästen lämpökäsittelyn perusteita

Terästen lämpökäsittelyn perusteita Terästen lämpökäsittelyn perusteita Austeniitin nopea jäähtyminen Tasapainopiirroksen mukaiset faasimuutokset edellyttävät hiilen diffuusiota Austeniitin hajaantuminen nopeasti = ei tasapainon mukaisesti

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 3

KJR-C2004 materiaalitekniikka. Harjoituskierros 3 KJR-C2004 materiaalitekniikka Harjoituskierros 3 Tänään ohjelmassa 1. Tasapainopiirros 1. Tulkinta 2. Laskut 2. Faasimuutokset 3. Ryhmätyöt 1. Esitehtävän yhteenveto (palautetaan harkassa) 2. Ryhmätehtävä

Lisätiedot

Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos

Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Kon-67.3110 Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri

Lisätiedot

Rauta-hiili tasapainopiirros

Rauta-hiili tasapainopiirros Rauta-hiili tasapainopiirros Teollisen ajan tärkein tasapainopiirros Tasapainon mukainen piirros on Fe-C - piirros, kuitenkin terästen kohdalla Fe- Fe 3 C -piirros on tärkeämpi Fe-Fe 3 C metastabiili tp-piirrosten

Lisätiedot

Luento 2. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Luento 2. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Luento 2 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Rauta-hiili -tasapainopiirros Honeycombe & Bhadeshia s. 30-41. Uudistettu Miekk oj s. 268-278. Rauta (Fe)

Lisätiedot

Luento 5 Hiiliteräkset

Luento 5 Hiiliteräkset Luento 5 Hiiliteräkset Hiiliteräkset Rauta (

Lisätiedot

Kon Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka

Kon Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Kon-67.3110 Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri ilmiöistä

Lisätiedot

RUOSTUMATTOMAT TERÄKSET

RUOSTUMATTOMAT TERÄKSET 1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja

Lisätiedot

Lujat termomekaanisesti valssatut teräkset

Lujat termomekaanisesti valssatut teräkset Lujat termomekaanisesti valssatut teräkset Sakari Tihinen Tuotekehitysinsinööri, IWE Ruukki Metals Oy, Raahen terästehdas 1 Miten teräslevyn ominaisuuksiin voidaan vaikuttaa terästehtaassa? Seostus (CEV,

Lisätiedot

Valurauta ja valuteräs

Valurauta ja valuteräs Valurauta ja valuteräs Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Valurauta ja valuteräs ovat raudan (Fe), hiilen (C), piin (Si) ja mangaanin (Mn) sekä muiden seosaineiden

Lisätiedot

Metallurgian perusteita

Metallurgian perusteita Metallurgian perusteita Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Korkean laadun saavuttaminen edellyttää sekä rauta että teräsvalujen tuotannossa tiukkaa prosessikuria

Lisätiedot

Ultralujien terästen hitsausmetallurgia

Ultralujien terästen hitsausmetallurgia 1 Ultralujien terästen hitsausmetallurgia CASR-Steelpolis -seminaari Oulun yliopisto 16.5.2012 Jouko Leinonen Nostureita. (Rautaruukki) 2 Puutavarapankko. (Rautaruukki) 3 4 Teräksen olomuodot (faasit),

Lisätiedot

Luento 4 Karkenevuus ja pääseminen. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Luento 4 Karkenevuus ja pääseminen. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Luento 4 Karkenevuus ja pääseminen Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Karkenevuus Honeycombe & Bhadeshia ch 8 s. 151-170 Uudistettu Miekk oja luku

Lisätiedot

Kon Harjoitus 8: Ruostumattomat teräkset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Kon Harjoitus 8: Ruostumattomat teräkset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Kon-67.3110 Harjoitus 8: Ruostumattomat teräkset Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto EN AISI/SAE Tyyppi 1.4021 1.4301 1.4401 1.4460 304L 201 316LN 321H EN vs AISI/SAE tunnukset

Lisätiedot

Teräslajit. Huom. FeP01-06 = DC01-06

Teräslajit. Huom. FeP01-06 = DC01-06 Teräslajit Huom. FeP01-06 = DC01-06 Pehmeät muovattavat DC01 - DC06 Pehmeät muovattavat DC06 = IF = Interstitial free = välisija-atomivapaa = ei C eikä N liuoksessa C ja N sidottuina Ti(CN) tai (TiNb)(CN)

Lisätiedot

Esipuhe. Helsingissä heinäkuussa 2004 Lämpökäsittelyn toimialaryhmä Teknologiateollisuus ry

Esipuhe. Helsingissä heinäkuussa 2004 Lämpökäsittelyn toimialaryhmä Teknologiateollisuus ry Lämpökäsittelyoppi Esipuhe Metallit ovat kiehtova materiaaliryhmä erityisesti siksi, että niiden ominaisuudet ovat muunneltavissa hyvin laajasti. Metalleja voidaan seostaa keskenään, mutta ennen kaikkea

Lisätiedot

Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot:

Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot: Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot: lassi.vuorela@aalto.fi Juottaminen Juottamisessa on tarkoitus liittää kaksi materiaalia tai osaa niin, että sähkövirta kykenee

Lisätiedot

Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015. Karkaisu ja päästö

Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015. Karkaisu ja päästö 1 Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015 Karkaisu ja päästö Teräs kuumennetaan austeniittialueelleen (A), josta se jäähdytetään nopeasti (sammutetaan) nesteeseen,

Lisätiedot

Mak Sovellettu materiaalitiede

Mak Sovellettu materiaalitiede .106 tentit Tentti 21.5.1997 1. Rekristallisaatio. 2. a) Mitkä ovat syyt metalliseosten jähmettymisen yhteydessä tapahtuvalle lakimääräiselle alijäähtymiselle? b) Miten lakimääräinen alijäähtyminen vaikuttaa

Lisätiedot

Luento 3. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Luento 3. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Luento 3 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Seosaineiden liuoslujittava vaikutus ferriittiin Seosaineiden vaikutus Fe-C tasapainopiirrokseen Honeycombe

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Lämpökäsittely Austenointi tehdään hyvin korkeassa lämpötilassa verrattuna muihin teräksiin Liian korkea lämpötila tai liian pitkä aika voivat aiheuttaa vetelyjä, rakeenkasvua,

Lisätiedot

Rauno Toppila. Kirjallisuusselvitys. Ferriittiset ruostumattomat teräkset

Rauno Toppila. Kirjallisuusselvitys. Ferriittiset ruostumattomat teräkset Rauno Toppila Kirjallisuusselvitys Ferriittiset ruostumattomat teräkset Kemi-Tornion ammattikorkeakoulun julkaisuja Sarja E. Työpapereita 1/2010 Rauno Toppila Kirjallisuusselvitys Ferriittiset ruostumattomat

Lisätiedot

Kon Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset

Kon Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset Kon-67.3401 Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset Säteilyhaurastuminen Reaktoripaineastia ja sisukset 12/3/2015 3

Lisätiedot

Mikä on ruostumaton teräs? Fe Cr > 10,5% C < 1,2%

Mikä on ruostumaton teräs? Fe Cr > 10,5% C < 1,2% Cr > 10,5% C < 1,2% Mikä on ruostumaton teräs? Rautaseos, johon on seostettu 10,5 % kromia ja 1,2 % hiiltä. Seostuksen ansiosta ruostumattomaan teräkseen muodostuu korroosiolta suojaava sekä itsekorjautuva

Lisätiedot

Luku 4: Hilaviat. Käsiteltäviä aiheita. Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on?

Luku 4: Hilaviat. Käsiteltäviä aiheita. Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on? Käsiteltäviä aiheita Luku 4: Hilaviat Mitkä ovat jähmettymismekanismit? Millaisia virheitä kiinteissä aineissa on? Voidaanko vikojen määrää ja tyyppiä kontrolloida? Miten viat vaikuttavat materiaaliominaisuuksiin?

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Kertaus Luento 2 Raudan valmistus Teräksen valmistus Standardit Teräksen mikrorakenteet (ferriitti, perliitti, bainiitti, martensiitti) 2 Karkaisu ja päästö Muutama vuosi

Lisätiedot

Luento 11 Lujien terästen kehitystrendit

Luento 11 Lujien terästen kehitystrendit Luento 11 Lujien terästen kehitystrendit Lujat teräkset standardeissa - Nuorrutusteräkset: seostamattomat teräkset (SFS-EN 10083-2: C60, R e min. 580 MPa ja R m 850 1000 MPa) - Nuorrutusteräkset: seostetut

Lisätiedot

Mekaaniset ominaisuudet

Mekaaniset ominaisuudet Mekaaniset ominaisuudet Yleisimmät mekaaniset ominaisuudet Kimmokerroin (E) jäykkyys Lujuus (σ) Kovuus 2 2 Jännitys σ = F/A ε = l/l σ = Eε 3 3 Kimmokerroin (E) Kuvaa materiaalin jäykkyyttä Syntyy atomien

Lisätiedot

Vaatimukset. Rakenne. Materiaalit ja niiden ominaisuudet

Vaatimukset. Rakenne. Materiaalit ja niiden ominaisuudet Vaurioituminen I Vaatimukset Rakenne Materiaalit ja niiden ominaisuudet 3 Vaurioituminen Miksi materiaalit murtuvat? Miten materiaalit murtuvat? Timo Kiesi 18.9.2013 4 Miksi insinöörin pitää tietää vauriomekanismeista?

Lisätiedot

Mak Materiaalitieteen perusteet

Mak Materiaalitieteen perusteet Mak-45.310 tentit Mak-45.310 Materiaalitieteen perusteet 1. välikoe 24.10.2000 1. Vertaile ionisidokseen ja metalliseen sidokseen perustuvien materiaalien a) sähkönjohtavuutta b) lämmönjohtavuutta c) diffuusiota

Lisätiedot

Ferriittiset ruostumattomat teräkset ja niiden hitsaus. May 12, 2011 www.outokumpu.com

Ferriittiset ruostumattomat teräkset ja niiden hitsaus. May 12, 2011 www.outokumpu.com Ferriittiset ruostumattomat teräkset ja niiden hitsaus May 12, 2011 www.outokumpu.com Ruostumattomat teräkset Ferriittisten ominaisuudet Ferriittisten hitsaus 2 12.5.2011 Hannu-Pekka Heikkinen Ruostumaton

Lisätiedot

Terästen lämpökäsittelyt

Terästen lämpökäsittelyt Terästen lämpökäsittelyt Teräkseen halutaan käyttötarkoituksen mukaan erilaisia ominaisuuksia. Jossain tapauksessa teräksestä tehdyn kappaleen tulee olla kovaa ja kulutusta kestävää, joskus taas sitkeää

Lisätiedot

Fysikaaliset ominaisuudet

Fysikaaliset ominaisuudet Fysikaaliset ominaisuudet Ominaisuuksien alkuperä Mistä materiaalien ominaisuudet syntyvät? Minkälainen on materiaalin rakenne? Onko rakenteellisesti samankaltaisilla materiaaleilla samankaltaiset ominaisuudet?

Lisätiedot

Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy. Teräsvalujen raaka-ainestandardit

Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy. Teräsvalujen raaka-ainestandardit Teräsvalut Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy Teräsvalujen raaka-ainestandardit - esitelmän sisältö Mitä valun ostaja haluaa? Millaisesta valikoimasta valuteräs

Lisätiedot

Tina-vismutti seos juotosmetallina

Tina-vismutti seos juotosmetallina Tina-vismutti seos juotosmetallina Miikka Martikainen Juottaminen Juottaminen on metallien liitosmenetelmä, jossa kappaleet liitetään toisiinsa sulattamalla niiden väliin juotosainetta, eli juotetta. Juotteena

Lisätiedot

Muottiin karkaisun metallurgia

Muottiin karkaisun metallurgia Muottiin karkaisun metallurgia Henri Järvinen Tampereen teknillinen yliopisto Materiaalitieteen laboratorio/metalliteknologian tutkimusryhmä Lämpökäsittely- ja takomopäivät 10.-11.10.2017 Tampere Metallurgia

Lisätiedot

Tina-vismutti -juotosmetallin binäärinen seos

Tina-vismutti -juotosmetallin binäärinen seos Tina-vismutti -juotosmetallin binäärinen seos Tekijä: Riku Varje Yhteystiedot: riku.varje@aalto.fi Metallien liittämiseen on olemassa useita erilaisia keinoja. Eräs keino on esimerkiksi erilaisten mekaanisten

Lisätiedot

Joitain materiaaleja Kriittinen lämpötila

Joitain materiaaleja Kriittinen lämpötila Suprajohteet Suprajohteet Joitain materiaaleja Kriittinen lämpötila Pb 7.3 Nb 9.3 Nb-Ti 8.9-9.3 Nb 3 Sn 18 Nb 3 Ge 23 NbN 16-18 PbMo 6 S 8 14-15 YBa 2 Cu 3 O 7 92 2 Suprajohteet Niobi-titaani seoksia Nb-46.5Ti

Lisätiedot

Kon Teräkset Harjoituskierros 6.

Kon Teräkset Harjoituskierros 6. Kon-67.3110 Teräkset Harjoituskierros 6. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Viikkoharjoitus #6 - kysymykset Mitä on karkaisu? Miten karkaisu suunnitellaan?

Lisätiedot

I. Lämpökäsittely. I.1 Miksi? Pekka Niemi - Tampereen ammattiopisto. Valukappaleita lämpökäsitellään seuraavista syistä:

I. Lämpökäsittely. I.1 Miksi? Pekka Niemi - Tampereen ammattiopisto. Valukappaleita lämpökäsitellään seuraavista syistä: I. Lämpökäsittely Pekka Niemi - Tampereen ammattiopisto Kuva 284. Lämpökäsittelyhehkutus tapahtunut, uunin ovi aukaistu I.1 Miksi? Valukappaleita lämpökäsitellään seuraavista syistä: poistetaan ei-toivottuja

Lisätiedot

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA.

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. 1 SAVONIA-AMK TEKNIIKKA/ KUOPIO HitSavonia- projekti Seppo Vartiainen Esitelmä paineastiat / hitsausseminaarissa 1.11.05 TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. Kylmät olosuhteet. Teräksen transitiokäyttäytyminen.

Lisätiedot

Esitiedot. Luento 6. Esitiedot

Esitiedot. Luento 6. Esitiedot Esitiedot Luento 6 Miten terästen karkenevuutta voidaan parantaa? Miten päästölämpötila ja aika vaikuttavat karkaistun rakenteen mekaanisiin ominaisuuksiin? Mitä tarkoittaa päästöhauraus? 2 Esitiedot Epäselviä

Lisätiedot

Kokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu

Kokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään

Lisätiedot

SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA.

SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1 HITSAVONIA PROJEKTI Teemapäivä 13.12.2005. DI Seppo Vartiainen Savonia-amk/tekniikka/Kuopio SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1. Hitsiaine

Lisätiedot

Tuomas Laakko FOSFATOIDUN TERÄSLANGAN VASTUSHITSAUS

Tuomas Laakko FOSFATOIDUN TERÄSLANGAN VASTUSHITSAUS Tuomas Laakko FOSFATOIDUN TERÄSLANGAN VASTUSHITSAUS FOSFATOIDUN TERÄSLANGAN VASTUSHITSAUS Tuomas Laakko Opinnäytetyö Kevät 2016 Kone- ja tuotantotekniikan koulutusohjelma Oulun ammattikorkeakoulu TIIVISTELMÄ

Lisätiedot

Alieutektoidisen teräksen normalisointi

Alieutektoidisen teräksen normalisointi Alieutektoidisen teräksen normalisointi Hiili (C) ja rauta (Fe) Hiili ja rauta voivat muodostaa yhdessä monia erilaisia mikrorakenteita, olipa kyseessä sitten teräs (hiiltä maksimissaan 2.1p.% C, eli hiiltä

Lisätiedot

Ruostumattomat teräkset luento SHY Oulun paikallisosaston 50 v. juhlaseminaarissa

Ruostumattomat teräkset luento SHY Oulun paikallisosaston 50 v. juhlaseminaarissa Ruostumattomat teräkset luento SHY Oulun paikallisosaston 50 v. juhlaseminaarissa Timo Kauppi 2015 1 STAINLESS STEEL EDELSTAHL RÅSTFRITT STÅL RUOSTUMATON TERÄS JALOTERÄS 2 Opintojakson oppimistavoite tunnetaan

Lisätiedot

Esitiedot. Esitiedot. Kromiseostuksen vaikutukset teräksissä

Esitiedot. Esitiedot. Kromiseostuksen vaikutukset teräksissä Esitiedot Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet? Milloin austeniittiset laadut ovat välttämättömiä? Mitä eri laadut maksavat? Miten kupari

Lisätiedot

Valujen lämpökäsittely

Valujen lämpökäsittely Valujen lämpökäsittely Lämpökäsittelyillä muutetaan materiaalin ominaisuuksia, lujuutta, sitkeyttä ja työstettävyyttä. Lämpökäsiteltävyyden ja lämpökäsittelyn käytön suhteen materiaalit voidaan jakaa ryhmiin

Lisätiedot

Valurautojen lämpökäsittelyt. SVY opintopäivät Kaisu Soivio

Valurautojen lämpökäsittelyt. SVY opintopäivät Kaisu Soivio Valurautojen lämpökäsittelyt SVY opintopäivät 3.2.2017 Kaisu Soivio Moventas lyhyesti Moventas on yksi johtavista tuulivoimavaihteiden valmistajista Ensimmäinen tuulivoimavaihde toimitettu 1980, asennuskanta

Lisätiedot

Teräs metalli. Teräksen kiteinen rakenne

Teräs metalli. Teräksen kiteinen rakenne Teräs metalli Teräs on raudan ja hiilen seos, jonka hiilipi toisuus on pienempi kuin 2 %. Tätä suurem man hiilipitoisuuden omaavat seokset luoki tellaan valuraudoiksi. Teräkset sisältävät ta vallisesti

Lisätiedot

B.1 Johdatus teräkseen

B.1 Johdatus teräkseen B.1 Johdatus teräkseen 1 B.1.1 Terästen valmistus B.1.1.1 Terästen valmistus raakaraudasta Masuunissa valmistettu raakarauta sisältää 4-5 % hiiltä. Teräksissä pitoisuus on tavallisimmin alle 1 % ja yleisissä

Lisätiedot

Yksikkökoppi Pienin toistuva rakenne materiaalin sisällä.

Yksikkökoppi Pienin toistuva rakenne materiaalin sisällä. Ashbyn kartat (Ashby diagrams) Kullakin materiaaliryhmällä on muutama ominaisuus, joka erottaa ne selvästi toisista materiaaliryhmistä. Ashbyn kartoissa materiaalit jaetaan ryhmiin. Niistä voidaan päätellä

Lisätiedot

FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi

FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi FERRIITTISET RUOSTUMATTOMAT TERÄKSET www.polarputki.fi Polarputken valikoimaan kuuluvat myös ruostumattomat ja haponkestävät tuotteet. Varastoimme saumattomia ja hitsattuja putkia, putkenosia sekä muototeräksiä.

Lisätiedot

Esitiedot. Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet?

Esitiedot. Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet? Esitiedot Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet? Milloin austeniittiset laadut ovat välttämättömiä? Mitä eri laadut maksavat? Miten kupari

Lisätiedot

Ferriittisten ruostumattomien terästen hitsattavuus ja hitsialueen muovattavuus

Ferriittisten ruostumattomien terästen hitsattavuus ja hitsialueen muovattavuus Ferriittisten ruostumattomien terästen hitsattavuus ja hitsialueen muovattavuus Severi Anttila Oulun yliopiston terästutkimuskeskus,konetekniikan osasto, Materiaalitekniikan laboratorio Johdanto Ferriittiset

Lisätiedot

Työ 3: STAATTISET ELPYMISMEKANISMIT JA METALLIEN ISKUSITKEYS

Työ 3: STAATTISET ELPYMISMEKANISMIT JA METALLIEN ISKUSITKEYS Työ 3: STAATTISET ELPYMISMEKANISMIT JA METALLIEN ISKUSITKEYS Muokkaus kasvattaa dislokaatioiden määrää moninkertaiseksi muokkaamattomaan metalliin verrattuna. Tällöin myös metallin lujuus on kohonnut huomattavasti,

Lisätiedot

3. Metallit. Metalleista, erityisesti : 9/14/2015

3. Metallit. Metalleista, erityisesti : 9/14/2015 3. Metallit Metalleista, erityisesti : Teräs, rakenneteräs, ruostumaton teräs ja ohutlevyt. Alumiini (ensi kerralla) Kupari (ensi kerralla) ja hieman muistakin metalleista. 1 Yleistä : Metallit ovat epäorgaanisia

Lisätiedot

Luento 1. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Luento 1. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Luento 1 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Miksi oma kurssi teräksille? Teräsintro Teräksen valmistus ja terästuotteita Mitä on teräs? Rauta Alkuaine

Lisätiedot

Suprajohteet. Suprajohteet. Suprajohteet. Suprajohteet. Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti

Suprajohteet. Suprajohteet. Suprajohteet. Suprajohteet. Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti Joitain materiaaleja Kriittinen lämpötila Pb 7.3 Nb 9.3 Nb-Ti 8.9-9.3 Nb 3 Sn 18 Nb 3 Ge 23 NbN 16-18 PbMo 6 S 8 14-15 YBa 2 Cu 3 O 7 92 2 Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti Sulatus kahteen

Lisätiedot

Jotain valimistusmenetelmiä

Jotain valimistusmenetelmiä Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään

Lisätiedot

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 A B B Piirroksen alue 1: Sularajan yläpuolella on seos aina täysin sula => yksifaasialue (L). Alueet 2 ja 5: Nämä ovat

Lisätiedot

Pehmeä magneettiset materiaalit

Pehmeä magneettiset materiaalit Pehmeä magneettiset materiaalit Timo Santa-Nokki Pehmeä magneettiset materiaalit Johdanto Mittaukset Materiaalit Rauta-pii seokset Rauta-nikkeli seokset Rauta-koboltti seokset Amorfiset materiaalit Nanomateriaalit

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Aikataulu Pe 2.9.2005 Pe 9.9.2005 Pe 16.9.2005 Pe 23.9.2005 Pe 10.9.2005 Pe 8.10.2005 Valurauta Valurauta ja teräs Teräs Teräs ja alumiini Magnesium ja titaani Kupari,

Lisätiedot

Luento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria

Luento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Kidesuunnat Kidesuuntien määrittäminen kuutiollisessa

Lisätiedot

Kryoventtiilit. Kaasualan neuvottelupäivät Matti Toikka Footer 1

Kryoventtiilit. Kaasualan neuvottelupäivät Matti Toikka Footer 1 Kryoventtiilit Kaasualan neuvottelupäivät 10.-11.5.2017 Matti Toikka 16.5.2017 Footer 1 Oy Konwell Ab lyhyesti Teollisuusventtiilit, prosessiautomaation kenttälaitteet, palvelut, tekninen tuki ja energiaratkaisut

Lisätiedot

Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1

Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1 Puukkoteräkset Juha Perttula www.terastieto.com Juha Perttula, Puukkoteräkset 1 Sisällysluettelo Esipuhe 3 1. Rauta ja teräs 4 Meteoriittirauta 4, Malmista takoraudaksi ja teräkseksi 6, Valurauta 6, Valuraudan

Lisätiedot

Corthal, Thaloy ja Stellite

Corthal, Thaloy ja Stellite Corthal, Thaloy ja Stellite KOVAHITSAUSTÄYTELANGAT KORJAUS JA KUNNOSSAPIDON AMMATTILAISILLE SOMOTEC Oy Tototie 2 70420 KUOPIO puh. 0207 969 240 fax. 0207 969 249 email: somotec@somotec.fi internet: www.somotec.fi

Lisätiedot

TYÖVÄLINEIDEN KARKAISU

TYÖVÄLINEIDEN KARKAISU TYÖVÄLINEIDEN KARKAISU 12 bar 10 bar 10 bar Pakkaskarkaisu Teräksen karkaisun yhteydessä tehtävää kylmäkäsittelyä on perinteisesti kutsuttu pakkaskarkaisuksi. Pakkaskarkaisu tarkoittaa sitä että karkaisuhehkutuksen

Lisätiedot

RUOSTUMATTOMIEN TERÄSTEN MEKAANISET OMINAISUUDET 3/11/13

RUOSTUMATTOMIEN TERÄSTEN MEKAANISET OMINAISUUDET 3/11/13 RUOSTUMATTOMIEN TERÄSTEN MEKAANISET OMINAISUUDET 1 2 σ (Stress) [MPa] STAATTINEN LUJUUS vetokoe R m R p0.2 kimmoinen alue R = Eε 0.2% A ε (strain) plastinen alue kuroumaalue AUST RST VRT. HIILITERÄKSEEN

Lisätiedot

LUJIEN TERÄSTEN HITSAUSMETALLURGIA

LUJIEN TERÄSTEN HITSAUSMETALLURGIA 1 LUJIEN TERÄSTEN HITSAUSMETALLURGIA Jouko Leinonen Oulun yliopisto Konetekniikan osasto Lujien terästen mahdollisuudet ja tekniikka -seminaari Raahe 29.3.2011 2 Lujien terästen sovelluskohteita Nosturit

Lisätiedot

Tärkeitä tasapainopisteitä

Tärkeitä tasapainopisteitä Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen

Lisätiedot

CCT -diagrammi. Austeniitti. Lämpötila. Martensiitti. Aika Hiiliekvivalentti kasvaa (CEV=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15) Hitsattavuus huononee

CCT -diagrammi. Austeniitti. Lämpötila. Martensiitti. Aika Hiiliekvivalentti kasvaa (CEV=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15) Hitsattavuus huononee CCT -diagrammi Lämpötila Austeniitti Martensiitti Enemmän seosaineita (C, Mn, Cr, Mo, B ) kriittinen jäähtymisnopeus pienempi Aika Hiiliekvivalentti kasvaa (CEV=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15) Hitsattavuus

Lisätiedot

Terästen lämpökäsittely

Terästen lämpökäsittely Teemu Häkkilä Terästen lämpökäsittely Esimerkkinä puukonterien lämpökäsittely Opinnäytetyö CENTRIA-AMMATTIKORKEAKOULU Tuotantotalouden koulutusohjelma Kesäkuu 2017 TIIVISTELMÄ OPINNÄYTETYÖSTÄ Centriaammattikorkeakoulu

Lisätiedot

Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1

Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1 Puukkoteräkset Juha Perttula www.terastieto.com Juha Perttula, Puukkoteräkset 1 Sisällysluettelo Esipuhe 3 1. Rauta ja teräs 4 Meteoriittirauta 4, Meteoriittiraudan testasus 5, Malmista takoraudaksi ja

Lisätiedot

Kiteiden plastisuus ja dislokaatiot

Kiteiden plastisuus ja dislokaatiot Kiteiden plastisuus ja dislokaatiot LuK-tutkielma Henrik Kurkela henrik.kurkela@gmail.com Marraskuu 2016 Oulun Yliopisto Luonnontieteellinen tiedekunta Fysiikan koulutusohjelma Sisällysluettelo 1. Johdanto...

Lisätiedot

Jussi Kalliokoski. Materiaalitietokanta terästen mikrorakennekuvien vertailuun. Case: Inspecta Oy

Jussi Kalliokoski. Materiaalitietokanta terästen mikrorakennekuvien vertailuun. Case: Inspecta Oy Jussi Kalliokoski Materiaalitietokanta terästen mikrorakennekuvien vertailuun. Case: Inspecta Oy Opinnäytetyö CENTRIA AMMATTIKORKEAKOULU Kone- ja tuotantotekniikan koulutusohjelma Lokakuu 2013 TIIVISTELMÄ

Lisätiedot

Korkeiden lämpötilojen teräkset

Korkeiden lämpötilojen teräkset Timo Kauppi Korkeiden lämpötilojen teräkset Kirjallisuustutkimus Kemi-Tornion ammattikorkeakoulun julkaisuja Sarja B. Raportit ja selvitykset 12/2013 Korkeiden lämpötilojen teräkset Timo Kauppi Korkeiden

Lisätiedot

HITSAUSVIRTALÄHTEEN OHJAUS LÄMMÖNTUONNIN JA JATKUVAN JÄÄHTYMISEN S-KÄYRÄN PERUSTEELLA

HITSAUSVIRTALÄHTEEN OHJAUS LÄMMÖNTUONNIN JA JATKUVAN JÄÄHTYMISEN S-KÄYRÄN PERUSTEELLA LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma Severi Iso-Markku HITSAUSVIRTALÄHTEEN OHJAUS LÄMMÖNTUONNIN JA JATKUVAN JÄÄHTYMISEN S-KÄYRÄN PERUSTEELLA Työn tarkastajat:

Lisätiedot

PL OULUN YLIOPISTO PUH. (08) TELEKOPIO (08) pentti.karjalainen oulu.fi

PL OULUN YLIOPISTO PUH. (08) TELEKOPIO (08) pentti.karjalainen oulu.fi PL 4200 90014 OULUN YLIOPISTO PUH. (08) 553 2020 TELEKOPIO (08) 553 2165 pentti.karjalainen oulu.fi Sähköiseen muotoon 2004 saatetun painoksen stilisoitu versio 2006. 2 3 4 5 6 7 Kuva 1.2. Teräksen tuotanto

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Käsitetesti 2 Suomugrafiittivalurauta (EN-GJL) Mikrorakenne vaihtoehdot jäähtymisnopeuden mukaan Grafiitti + ferriitti Grafittii + sementiitti + perliitti Grafiitti +

Lisätiedot

ERIKOISTERÄSTEN AIHIOKÄSITTELYT JA NIIDEN VAIKUTUS LOPPUTUOTTEEN OMINAISUUKSIIN

ERIKOISTERÄSTEN AIHIOKÄSITTELYT JA NIIDEN VAIKUTUS LOPPUTUOTTEEN OMINAISUUKSIIN KONETEKNIIKAN KOULUTUSOHJELMA ERIKOISTERÄSTEN AIHIOKÄSITTELYT JA NIIDEN VAIKUTUS LOPPUTUOTTEEN OMINAISUUKSIIN Ville Ritola Diplomityö, jonka aihe on hyväksytty Oulun yliopiston Konetekniikan koulutusohjelmassa

Lisätiedot

Kupari ja kuparimetallit. juha.nykanen@tut.fi

Kupari ja kuparimetallit. juha.nykanen@tut.fi Kupari ja kuparimetallit juha.nykanen@tut.fi Esitiedot Miten sähköjohteisiin käytetyt kuparilaadut poikkevat muista kupariseoksista? Miksi puhdas kupari johtaa hyvin sähköä? Mitä tarkoittaa puhdas kupari?

Lisätiedot

Kuparimetallit. Kupari

Kuparimetallit. Kupari Kuparimetallit Kupari Ensimmäinen ihmiskunnan hyötykäyttöön ottama metalli, käytetty ~ 11,000 vuotta Yli puolet käytetään sähkö- ja elektroniikkateollisuudessa => kuparien jaottelu Sähkötekniset ja ei-sähkötekniset

Lisätiedot

Esitiedot. Valuraudat. Esitiedot. Esitiedot

Esitiedot. Valuraudat. Esitiedot. Esitiedot Esitiedot Valuraudat juha.nykanen@tut.fi Mistä tulevat nimitykset valkoinen valurauta ja harmaa valurauta? Miten ja miksi niiden ominaisuudet eroavat toisistaan? Miksi sementiitti on kovaa ja haurasta?

Lisätiedot

UDDEHOLM DIEVAR 1 (7) Yleistä. Ominaisuudet. Suulakepuristustyövälineet. Kuumataontatyövälineet. Työvälineensuorituskykyä parantavat ominaisuudet

UDDEHOLM DIEVAR 1 (7) Yleistä. Ominaisuudet. Suulakepuristustyövälineet. Kuumataontatyövälineet. Työvälineensuorituskykyä parantavat ominaisuudet 1 (7) Yleistä Uddeholm Dievar on suorituskykyinen kromi/molybdeeni/ vanadiini- seosteinen kuumatyöteräs, jolla on erittäin hyvä kestävyys kuumahalkeilua, yksittäisiä suuria halkeamia, kuumakulumista ja

Lisätiedot

Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit.

Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit. Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit www.outokumpu.com Johdanto Tuotantokaavio AOD-konvertteri AOD Senkka-asema SA Yhteenveto Ruostumaton teräs Ruostumaton teräs koostuu

Lisätiedot

Luento 5. Pelkistys. Rikastus

Luento 5. Pelkistys. Rikastus Raudan valmistus Luento 5 Rauta esiintyy maankuoressa tyypillisesti oksideina ja useimmiten rautaa halutaan käyttää metallisessa muodossa. Tyypilliset rautamalmit ovat magnetiitti (Fe 3 O 4 ) hematiitti

Lisätiedot