3. Tietokoneharjoitukset

Koko: px
Aloita esitys sivulta:

Download "3. Tietokoneharjoitukset"

Transkriptio

1 3. Tietokoneharjoitukset Aikasarjan logaritmointi Aikasarjoja analysoidaan usein logaritmisessa muodossa. Asialooginen perustelu logaritmoinnille: Muuttujan arvojen suhteelliset muutokset ovat usein tärkeämpiä kuin niiden absoluuttiset muutokset. Tekniset perustelut logaritmoinnille: Jos aikasarjassa on eksponentiaalinen trendi, trendi voidaan linearisoida logaritmoimalla aikasarja. Jos aikasarjan varianssi (tai syklinen vaihtelu) kasvaa aikasarjan tason mukana, varianssi voidaan riippuen tapauksesta vakioida logaritmoimalla aikasarja. Logaritmointi ja suhteelliset muutokset Jos muuttujan x arvo x 0 muuttuu p%, niin uusi arvo x 1 on ( x 1 = 1 + p ) x Logaritmoimalla saadaan: log(x 1 ) = log(x 0 ) + log ( 1 + p ) log(x 0 ) + p Siten suhteellinen muutos aikasarjan tasossa on logaritmoituna (lähes) riippumaton tasosta ja riippuu (lähes) pelkästään muutosprosentista p. 1 / 13

2 Demotehtävät 3.1 Tarkastele alla olevan taulukon aikasarjoja. Mitkä aikasarjat näyttävät stationaariselta? Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume Intelin osakkeiden myynti SUNSPOT Spots Auringonpilkkujen 1v n = 215 määrä MILCO2 MILCO2 Mauna Loa-tulivuorella 1kk n = 216 tehtyjen hiilidioksidimittausten tulokset SALES Sales Erään tukkukaupan 1kk n = 144 myynnin volyymi PASSENGERS Passengers Lentomatkustajien lkm. 1kk n = 144 kansainvälisillä linjoilla USA:ssa Ratkaisu. Yllä olevan taulukon aikasarjoja kuvaavat aikasarjadiagrammit on esitetty seuraavilla sivuilla. INTEL <- read.table("intel.txt",header=t) SUNSPOT <- read.table("sunspot.txt",header=t,row.names=1) MLCO2 <- read.table("mlco2.txt",header=t,row.names=1) SALES <- read.table("sales.txt",header=t) PASSENGERS <- read.table("passengers.txt",header=t,row.names=4) Intel_Close <- ts(intel$intel_close) Intel_Volume <- ts(intel$intel_volume) Spots <- ts(sunspot,start=1749) Mlco2 <- ts(mlco2$mlco2,frequency=12) Sales <- ts(sales$sales,frequency=12) Passengers <- ts(passengers$passengers) 2 / 13

3 INTEL: Intel_Close Intelin osakekurssi New Yorkin pörssipäivän lopussa neljän viikon ajalta. plot(intel_close) Intel_Close Time Kuva 1: Aikasarja Intel_Close aineistosta. Trendi: Ei selvää trendiä ja aikasarjan taso vaihtelee. Kausivaihtelu: Ei kausivaihtelua. Stationaarisuus: Pienen havaintomäärän seurauksena on vaikea ottaa kantaa stationaarisuuteen. Aikasarjan tason vaihtelu viittaa stationaarisuutta vastaan. Kyseistä aikasarjaa tutkitaan lisää tehtävässä / 13

4 INTEL: Intel_Volume Intelin osakkeen päivämyynti (kpl) New Yorkin pörssissä neljän viikon ajalta. plot(intel_volume) Intel_Volume Time Kuva 2: Aikasarja Intel_Volume aineistosta. Trendi: Ei selvää trendiä ja aikasarjan taso vaihtelee. Kausivaihtelu: Ei kausivaihtelua. Stationaarisuus: Pienen havaintomäärän seurauksena on vaikea ottaa kantaa stationaarisuuteen. Aikasarjan tason vaihtelu viittaa stationaarisuutta vastaan. 4 / 13

5 SUNSPOT: Spots Auringonpilkkujen vuotuista määrää kuvaava muuttuja. plot(spots) Spots Time Kuva 3: Aikasarja Spots aineistosta. Trendi: Ei trendiä. Kausivaihtelu: Selvää kausivaihtelua, kauden pituus on 11 vuotta. Aikasarjan amplitudi (aallon korkeus) vaihtelee. Stationaarisuus: Aikasarja ei näytä stationaariselta, koska selvää kausivaihtelua. 5 / 13

6 MLCO2: MLCO2 Mauna Loa -tulivuorella (Havaiji) tehtyjen hiilidioksidimittausten tulokset. plot(mlco2) Mlco Time Kuva 4: Aikasarja MLCO2 aineistosta. Trendi: Selvä nouseva lineaarinen trendi. Kausivaihtelu:Melko säännöllistä kausivaihtelua; kauden pituus 12 kk; kausivaihtelukomponentin amplitudi (aallon korkeus) pysyy vakiona Stationaarisuus: Aikasarja ei näytä stationaariselta, koska lineaarinen nouseva trendi ja kausivaihtelua. 6 / 13

7 SALES: Sales Erään tukkukaupan kuukausimyynnin arvo plot(sales) Sales Time Kuva 5: Aikasarja Sales aineistosta. Trendi: Nouseva trendi. Aikasarjan yleistaso vaihtelee jonkin verran trendin ympärillä Kausivaihtelu: Melko säännöllistä kausivaihtelua; kauden pituus 12kk. Kausivaihtelukomponentin amplitudi (aallon korkeus) kasvaa aikasarjan tason mukana. Stationaarisuus: Aikasarja ei näytä stationaariselta, koska lineaarinen nouseva trendi ja kausivaihtelua. 7 / 13

8 PASSENGERS: Passengers Kansainvälisten lentolinjojen vuotuiset markustajamäärät USA:ssa. plot(passengers) Passengers Time Kuva 6: Aikasarja Passengers aineistosta. Trendi: Nouseva lievästi käyräviivainen trendi Kausivaihtelu: Melko säännöllistä kausivaihtelua; kauden pituus 12 kk; kausivaihtelukomponentin amplitudi (aallon korkeus) kasvaa aikasarjan tason mukana Stationaarisuus: Aikasarja ei näytä stationaariselta, koska lineaarinen nouseva trendi ja kausivaihtelua. 8 / 13

9 3.2 Tiedostossa PASSENGERS2.txt on aikasarja Passengers. Piirrä aikasarja käyttäen y- akselilla sekä lineaarista että logaritmista asteikkoa ja vertaa kuvioita toisiinsa. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus PASSENGERS2 Passengers Lentomatkustajien lkm. 1kk n = 144 kansainvälisillä linjoilla USA:ssa Ratkaisu. PASSENGERS2 <- read.table("passengers2.txt",header=t,sep="\t") # Huomaa että aineisto on eroteltu tabulaattorilla names(passengers2) Vuosiluvut saadaan kohdalleen seuraavasti: PASS2 <- ts(passengers2$passengers,start=1949,frequency=12) par(mfrow=c(1,2),mar=c(2.5,2.5,1.5,1.5)) # Komennon par avulla saadaan molemmat aikasarjat näkyviin samaan aikaan plot(pass2,main="passengers") plot(log(pass2),main="log(passengers)") dev.off() # dev.off() palauttaa oletusasetukset funktiolle par() 9 / 13

10 Passengers Log(Passengers) Kuva 7: Aikasarja Passengers sekä lineaarisella että logaritmisella asteikolla. Kuvasta 7 nähdään että alkuperäisen aikasarjan kausivaihtelun amplitudi (aallonkorkeus) kasvaa aikasarjan tason mukana (vasen kuva). Logaritmointi vakioi amplitudin (oikea kuva). Toisaalta alkuperäisen aikasarjan trendin (lievä) käyryys ylikorjautuu (lievästi) logaritmoinnissa. 3.3 Tutki seuraavien aikasarjojen stokastisia ominaisuuksia estimoimalla niiden autokorrelaatioja osittaisautokorrelaatiofunktiot. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 SUNSPOT Spots Auringonpilkkujen 1v n = 215 määrä Ratkaisu. Intel_Close Tehtävän 3.1 kuvaajan perusteella ei pystytty suoraan päättelemään, onko aikasarja stationaarinen vai ei. Lasketaan autokorrelaatiot ja osittaisautokorrelaatiot. par(mfrow=c(1,2)) acf(intel_close) pacf(intel_close) 10 / 13

11 Series Intel_Close Series Intel_Close ACF Partial ACF Lag Lag Kuva 8: Auto- ja osittaisautokorrelaatiofunktio Intel_Close aikasarjasta. Tässä siniset viivat kertovat tilastollisen merkitsevyyden 5% merkitsevyystasolla (onko korrelaatio jollakin viiveellä merkitsevä). Sinisten viivojen sisäpuolella olevia havaintoja voidaan pitää kohinana 5% merkitsevyystasolla. Sinisten viivojen tarkat arvot saadaan komennoilla qnorm(( )/2)/sqrt(length(Intel_Close)) -qnorm(( )/2)/sqrt(length(Intel_Close)) Kommentteja: (1) Aikasarja Intel-Close voi kuvaajien perusteella hyvin olla stationaarinen ja se ei siten vaadi differensointia. Aikasarjan taso vaihtelee kyllä melko voimakkaasti, mutta sen käyttäytyminen on lokaalisti rauhallista. Aikasarjassa ei ole monotonista trendiä eikä näkyvää kausivaihtelua. 11 / 13

12 Spots Tehtävän 3.1 perusteella Spots ei ole stationaarinen. Katsotaan miltä auto- ja osittaisautokorrelaatiofunktiot näyttävät epästationaariselle aikasarjalle. par(mfrow=c(1,2)) acf(spots,lag.max=50) pacf(spots,lag.max=50) Spots Series Spots ACF Partial ACF Lag Lag Kuva 9: Auto- ja osittaisautokorrelaatiofunktio Spots aikasarjasta. Kommenntteja: (1) Huomaa että autokorrelaatiofunktiossa nähdään aikasarjan kausivaihtelu selvästi. Kuvaa suurentamalla nähdään että kauden pituus näyttäisi olevan 11 vuotta. 12 / 13

13 Kotitehtävät 3.4 Määrää differenssit D, D 12 ja D 12 D tiedoston SALES.txt aikasarjasta Sales ja vertaa differenssejä alkuperäiseen aikasarjaan ja toisiinsa. Mitkä edellä mainituista operaatioista tuottavat stationaariselta näyttävän aikasarjan? Perustele stationaarisuus visualisoimalla alkuperäinen aikasarja, pyydetyt differenssit sekä niitä vastaavat auto- ja osittaisautokorrelaatiofunktiot. Vihje: komennolla diff(ts,lag=2) saat aikasarjan ts toisen differenssin. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus SALES Sales Erään tukkukaupan 1 kk n = 144 myynnin volyymi 13 / 13

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä MS-C2128 Ennustaminen ja aikasarja-analyysi 4. harjoitukset / Tehtävät Kotitehtävät: 3, 5 Aihe: ARMA-mallit Tehtävä 4.1. Tutustu seuraaviin aikasarjoihin: Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan

Lisätiedot

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

Harjoitus 7 : Aikasarja-analyysi (Palautus )

Harjoitus 7 : Aikasarja-analyysi (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalle

ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalle ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalleihin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Ilkka Mellin Aikasarja-analyysi Aikasarjat

Ilkka Mellin Aikasarja-analyysi Aikasarjat Ilkka Mellin Aikasarja-analyysi Aikasarjat TKK (c) Ilkka Mellin (2007) 1 Aikasarjat >> Aikasarjat: Johdanto Aikasarjojen esikäsittely Aikasarjojen dekomponointi TKK (c) Ilkka Mellin (2007) 2 Aikasarjat:

Lisätiedot

Stationaariset stokastiset prosessit ja ARMA-mallit

Stationaariset stokastiset prosessit ja ARMA-mallit Stationaariset stokastiset prosessit ja ARMA-mallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

Aikasarjamallit. Pekka Hjelt

Aikasarjamallit. Pekka Hjelt Pekka Hjelt Aikasarjamallit Aikasarja koostuu järjestyksessä olevista havainnoista, ja yleensä se on tasavälinen ja diskreetti eli havaintopisteet ovat erillisiä. Lisäksi aikasarjassa on yleensä autokorrelaatiota

Lisätiedot

Auringonpilkkujen jaksollisuus

Auringonpilkkujen jaksollisuus Mat-2.108 Sovelletun matematiikan erikoistyöt 16.1.2004 Auringonpilkkujen jaksollisuus Teknillinen korkeakoulu Systeemianalyysin laboratorio Keijo Jaakola 51624B 1 1. Johdanto...3 2. Aikasarjamalleja...3

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon

ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon TAMPEREEN YLIOPISTO Pro gradu -tutkielma Laura Lizana Bister ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon Informaatiotieteiden laitos Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit

Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit TKK (c) Ilkka Mellin (2007) 1 Stationaariset stokastiset prosessit >> Stationaariset stokastiset prosessit Integroituvuus Korrelaatiofunktioiden

Lisätiedot

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama.

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarjat Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarja on laajassa mielessä stationäärinen (wide sense stationary, WSS), jos odotusarvo

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Aki Taanila AIKASARJOJEN ESITTÄMINEN

Aki Taanila AIKASARJOJEN ESITTÄMINEN Aki Taanila AIKASARJOJEN ESITTÄMINEN 4.12.2012 Viivakaavio Excelissä voit toteuttaa viivakaavion kaaviolajilla Line (Viiva). Viivakaavio onnistuu varmimmin, jos taulukon ensimmäisessä sarakkeessa ovat

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi

Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi PRO GRADU -TUTKIELMA Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Tilastotiede Joulukuu 2012 2 Tampereen yliopisto Informaatiotieteiden yksikkö

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit. Autokovarianssi: (kun τ 0) Γ t (τ) = E[(X t µ t )(X t τ µ t τ )] ( ) ( = E[ φ k ε t k φ j ε t τ j )] = = j=0 φ j+k E[ε t k ε t τ j ] k,j=0 φ j+k σ 2 δ k,τ+j k,j=0 = σ 2 φ j+k δ k,τ+j = = k,j=0 φ τ+2j I

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Signaalimallit: sisältö

Signaalimallit: sisältö Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Ilkka Mellin Aikasarja-analyysi ARMA-mallit

Ilkka Mellin Aikasarja-analyysi ARMA-mallit Ilkka Mellin Aikasarja-analyysi ARMA-mallit TKK (c) Ilkka Mellin (007) 1 ARMA-mallit >> ARMA-mallit ja niiden ominaisuudet ARMA-mallien auto- ja osittaisautokorrelaatiofunktiot ARMA-mallien spektri ARMA-mallien

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Matematiikan ilmiöiden tutkiminen GeoGebran avulla

Matematiikan ilmiöiden tutkiminen GeoGebran avulla Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot

Aki Taanila AIKASARJAENNUSTAMINEN

Aki Taanila AIKASARJAENNUSTAMINEN Aki Taanila AIKASARJAENNUSTAMINEN 26.4.2011 SISÄLLYS JOHDANTO... 1 1 AIKASARJA ILMAN SYSTEMAATTISTA VAIHTELUA... 2 1.1 Liukuvan keskiarvon menetelmä... 2 1.2 Eksponentiaalinen tasoitus... 3 2 AIKASARJASSA

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan Mitä pitäisi vähintään osata Tässäkäydään läpi asiat jotka olisi hyvä osata Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan osattavan 333 Kurssin sisältö Todennäköisyyden, satunnaismuuttujien

Lisätiedot

2. Tietokoneharjoitukset

2. Tietokoneharjoitukset 2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

Runsauden vuotuiset indeksit. A) ln(r) B) Ln(residual of SB-R model) C) ln(larvae) D) Ln(SB) where R= recruitment SB=spawning biomass.

Runsauden vuotuiset indeksit. A) ln(r) B) Ln(residual of SB-R model) C) ln(larvae) D) Ln(SB) where R= recruitment SB=spawning biomass. WETA907 Johdantoa aikasarja-analyysiinanalyysiin Introduction to Time Series Analysis Timo J. Marjomäki Jyväskylän yliopisto Reading: : Chatfield, C. 1989: The analysis of time series: An introduction.

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä 7 Osa 7: Pidempiä esimerkkejä R:n käytöstä R:n pääasiallinen käyttö monelle on tilastollisten menetelmien suorittaminen. Käydään nyt läpi joitain esimerkkitilanteita, alkaen aineiston luvusta ja päättyen

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP Luennoi: yliopisto-opettaja Pekka Pere. Logaritmin muutos ja suhteellinen muutos

TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP Luennoi: yliopisto-opettaja Pekka Pere. Logaritmin muutos ja suhteellinen muutos TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP. 22.9.-11.12.2009. Luennoi: yliopisto-opettaja Pekka Pere. Aputuloksia Logaritmin muutos ja suhteellinen muutos Lähtökohta on approksimaatio log(1 + δ) δ,

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:

Lisätiedot

Regressiodiagnostiikka ja regressiomallin valinta

Regressiodiagnostiikka ja regressiomallin valinta Regressiodiagnostiikka ja regressiomallin valinta MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

ASIAKASKOHTAINEN SUHDANNEPALVELU. Lappeenranta 1.10.2008. - Nopeat alueelliset ja toimialoittaiset suhdannetiedot

ASIAKASKOHTAINEN SUHDANNEPALVELU. Lappeenranta 1.10.2008. - Nopeat alueelliset ja toimialoittaiset suhdannetiedot ASIAKASKOHTAINEN SUHDANNEPALVELU - Nopeat alueelliset ja toimialoittaiset suhdannetiedot Tiina Karppanen (09) 1734 2656 palvelut.suhdanne@tilastokeskus.fi Lappeenranta 1.10.2008 1.10.2008 A 1 Mihin suhdannetietoja

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

Cantorin joukko LUKU 8

Cantorin joukko LUKU 8 LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

Osa 15 Talouskasvu ja tuottavuus

Osa 15 Talouskasvu ja tuottavuus Osa 15 Talouskasvu ja tuottavuus 1. Elintason kasvu 2. Kasvun mittaamisesta 3. Elintason osatekijät Suomessa 4. Elintason osatekijät OECD-maissa 5. Työn tuottavuuden kasvutekijät Tämä on pääosin Mankiw

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

Stationaariset aikasarjat

Stationaariset aikasarjat Stationaariset aikasarjat Pentti Saikkonen sl 2010 - kl 2011 Korjattu versio: 2.3.2011 Sisältö 1. Johdanto 1 2. Stationaariset prosessit 5 2.1 Peruskäsitteitä 5 2.2. Lineaarinen prosessi 10 2.2.1. Yksinkertainen

Lisätiedot

Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla

Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla Kandidaatintyö 27.5.2015 Touko Väänänen Työn saa

Lisätiedot

Erikoistyö: Alkoholin kulutusmenojen ennustaminen

Erikoistyö: Alkoholin kulutusmenojen ennustaminen Erikoistyö: Alkoholin kulutusmenojen ennustaminen Tekijä: Mikko Nordlund 49857B mikko.nordlund@hut.fi Ohjaaja: Ilkka Mellin Jätetty: 11.12.2003 Sisällysluettelo 1. JOHDANTO... 3 2. MALLIEN TUTKIMINEN...

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Eksponentti- ja logaritmifunktiot

Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot Eksponentti- ja logaritmifunktiot liittyvät läheisesti toisiinsa. Eksponenttifunktio tulee vastaan ilmiöissä, joissa tarkasteltava suure kasvaa tai vähenee suhteessa senhetkiseen

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

NOPEAT TOIMIALOITTAISET SUHDANNETIEDOT - yritysten toimintaympäristön seurannassa. Turku 13.03.2008

NOPEAT TOIMIALOITTAISET SUHDANNETIEDOT - yritysten toimintaympäristön seurannassa. Turku 13.03.2008 NOPEAT TOIMIALOITTAISET SUHDANNETIEDOT - yritysten toimintaympäristön seurannassa Tiina Herttuainen (09) 1734 3619 palvelut.suhdanne@tilastokeskus.fi Turku 13.03.2008 13.03.2008 A 1 A) Budjettirahoitteinen

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

Harjoitukset 4 : Paneelidata (Palautus )

Harjoitukset 4 : Paneelidata (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

LOKAN JA PORTTIPAHDAN TEKOJÄRVIEN KALOJEN ELOHOPEAPITOISUUDEN TARKKAILU VUONNA 2012

LOKAN JA PORTTIPAHDAN TEKOJÄRVIEN KALOJEN ELOHOPEAPITOISUUDEN TARKKAILU VUONNA 2012 LOKAN JA PORTTIPAHDAN TEKOJÄRVIEN KALOJEN ELOHOPEAPITOISUUDEN TARKKAILU VUONNA 2012 JOHANNA MEHTÄLÄ 2014 TARKKAILUN PERUSTA Lokan ja Porttipahdan tekojärvien kalaston elohopeapitoisuuksien tarkkailu perustuu

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Kalle Suominen. Leen-Carterin malli

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Kalle Suominen. Leen-Carterin malli TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kalle Suominen Leen-Carterin malli Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2006 Tampereen yliopisto Matematiikan, tilastotieteen

Lisätiedot

Harjoitukset 5 : Differences-in-Differences - mallit (Palautus )

Harjoitukset 5 : Differences-in-Differences - mallit (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 5 : Differences-in-Differences - mallit (Palautus 14.3.2017) Tämän harjoituskerran

Lisätiedot

Eksponenttifunktio ja Logaritmit, L3b

Eksponenttifunktio ja Logaritmit, L3b ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora

Lisätiedot

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

6.1 Autokovarianssifunktion karakterisaatio aikatasossa 6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio

Lisätiedot

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012 Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170

Lisätiedot

Kallista vai halpaa? Myynkö vielä - vai joko ostan? Sijoitusristeily 1.-2.10.2008 Tomi Salo Toiminnanjohtaja, Osakesäästäjien Keskusliitto

Kallista vai halpaa? Myynkö vielä - vai joko ostan? Sijoitusristeily 1.-2.10.2008 Tomi Salo Toiminnanjohtaja, Osakesäästäjien Keskusliitto Kallista vai halpaa? Myynkö vielä - vai joko ostan? Sijoitusristeily 1.-2.10.2008 Tomi Salo Toiminnanjohtaja, Osakesäästäjien Keskusliitto Sisältö markkinat nyt talouskasvu yritysten tulosodotukset kasvun

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi

Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi Ma-2.3132 Syseemianalyysilaboraorio I Työ 2: 1) Sähkönkuluuksen ennusaminen SARIMAX-mallin avulla 2) Sähkön hankinnan opimoini 1 yö 2 Aikasarjamalli erään yriyksen sähkönkuluukselle SARIMAX-malli: kausivaihelu,

Lisätiedot

14 Talouskasvu ja tuottavuus

14 Talouskasvu ja tuottavuus 14 Talouskasvu ja tuottavuus 1. Elintason kasvu 2. Kasvun mittaamisesta 3. Elintason osatekijät Suomessa 4. Elintason osatekijät OECD-maissa 5. Työn tuottavuuden kasvutekijät Tämä on pääosin Mankiw n ja

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Alkoholijuomien hinnat ja kulutus

Alkoholijuomien hinnat ja kulutus Alkoholijuomien hinnat ja kulutus VILLE VEHKASALO Virosta tulee näillä näkymin EU:n jäsen vuoden 2004 vappuna. Tämän jälkeen kuka tahansa voi tuoda omaan käyttöönsä edullista alkoholia Virosta vaikka pakettiautolla.

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot