2. Tietokoneharjoitukset

Koko: px
Aloita esitys sivulta:

Download "2. Tietokoneharjoitukset"

Transkriptio

1 2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta mallista sovitteet ŷ ja residuaalit e ja tallenna ne muuttujiksi FIT (=sovite) ja RES (=residuaali). c) Piirrä pistediagrammit (SAIRAST, FIT) ja (FIT, RES). d) Tutki havainnon 7=USA:n poikkeavuutta kohdassa (c) piirretyssä kuviossa. e) Tutki havainnon 7=USA poikkeavuutta Cookien etäisyyksien avulla. Voisiko USA olla poikkeava havainto? f) Estimoi malli ilman havaintoa USA ja vertaa tuloksia kotitehtävään. Ratkaisu. tupakka <- read.table("tupakka.txt",header=t,sep="\t") malli <- lm(sairast~kulutus,data=tupakka) maat <- c("islanti","norja","ruotsi","kanada","tanska", "Itävalta","USA","Hollanti","Sveitsi","Suomi","Englanti") a) Pistediagrammi (Kuva 1): plot(tupakka$kulutus,tupakka$sairast, ylab="sairastuneet vuonna 1950", xlab="kulutus vuonna 1930", pch=16, main="kulutus/sairastuneet per henkilöä") abline(malli,col="red") text(tupakka$kulutus, tupakka$sairast, labels=maat, cex= 0.8,pos=3) Havaintojen merkitsemiseen voidaan vaihtoehtoisesti käyttää identify komentoa (komento käydään läpi harjoituksissa). 1 / 13

2 Kulutus/Sairastuneet per henkilöä Englanti Sairastuneet vuonna Ruotsi Norja Hollanti Sveitsi Tanska Itävalta Kanada Suomi USA Islanti Kulutus vuonna 1930 Kuva 1: Pistediagrammi muuttujista KULUTUS ja SAIRAST. b) Sovitteet ja residuaalit löytyvät mallista nimillä fitted.values ja residuals, näihin voidaan viitata seuraavasti: FIT <- malli$fit RES <- malli$res c) Pistediagrammi (Selitettävä, Sovite) (Kuva 2). Piirretään sovitteet ŷ i selitettävän muuttujan SAIRAST arvoja vastaan. plot(tupakka$sairast,fit, ylab="sovitteet",xlab="sairastuneet",pch=16) text(tupakka$sairast,fit, labels = ifelse(rownames(tupakka)=="7", maat, NA),pos=2) 2 / 13

3 Sovitteet USA Sairastuneet Kuva 2: Pistediagrammi mallin selitettävästä muuttujasta ja sovitteesta. Diagrammi kuvaa mallin hyvyyttä: Malli on sitä parempi, mitä lähempänä pisteet (y i, ŷ i ), i = 1, 2,..., n ovat suoraa, jonka kulmakerroin on 1. Myös poikkeavat havainnot erottautuvat usein selvästi. Huomaa, että pisteistä (y i, ŷ i ), i = 1, 2,..., n määrätty Pearsonin korrelaatiokertoimen neliö on sama kuin selitysaste: [Cor(y, ŷ)] 2 = R 2. Pistediagrammi (Sovite, Residuaali)(kuva 3). Piirretään residuaalit e i sovitteita ŷ i vastaan. plot(fit,res, xlab="sovitteet",ylab="residuaalit",pch=16) text(fit,res, labels = ifelse(rownames(tupakka)=="7", maat, NA),pos=3) 3 / 13

4 Residuaalit USA Sovitteet Kuva 3: Pistediagrammi mallin sovitteista ja residuaalesta. Diagrammi kuvaa mallin hyvyyttä: Malli on sitä parempi, mitä lähempänä pisteet (ŷ i, e i ), i = 1, 2,..., n ovat suoraa e = 0. Myös poikkeavat havainnot erottautuvat usein selvästi. d) Havainnon 7=USA poikkeavuus näkyy varisinkin pistediagrammissa (FIT,RES). e) Talletetaan Cookin etäisyydet muuttujaan cooksd ja piirretään kuvaaja. Katso Kuva 4. cooksd <- cooks.distance(malli) x <-plot(cooksd,xaxt="n",xlab=" ",ylab="cookin etäisyys") axis(side=1,at=1:11, labels=maat,las=2 ) 4 / 13

5 Cookin etäisyys Islanti Norja Ruotsi Kanada Tanska Itävalta USA Hollanti Sveitsi Suomi Englanti Kuva 4: Cookin etäisyydet mallille. f) Estimoidaan malli ilman havaintoa 7=USA. tupakka2 <- tupakka[-7,] malli2 <- lm(sairast~kulutus,data=tupakka2) summary(malli2) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) KULUTUS[-7] e-05 *** --- Signif. codes: 0?***? 0.001?**? 0.01?*? 0.05?.? 0.1?? 1 Residual standard error: on 8 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 1 and 8 DF, p-value: 4.928e-05 5 / 13

6 Kulmakertoimen estimaatti on kasvattanut arvosta 0.23 arvoon Tämä viittaa voimakkaampaan lineaariseen riippuvuuteen keuhkosyöpään sairastuneiden ja tupakan kulutuksen välillä, jäljellä olevien maiden joukossa. Kysymys: Saako havainnon 7=USA poistaa? Vastaus: USA:n pienempi keuhkosyöpätapausten suhteellinen lukumäärä saattoi johtua siitä, että siellä savukkeet olivat erilaisia (tupakan laatu oli miedompaa ja savukkeissa oli ltteri) verrattuna tutkimuksen muihin maihin. Jos näin oli, havaintoa USA voidaan pitää poikkeavana havaintona ja poisjättäminen on luvallista. Muista, että havaintoja ei voida sivuuttaa ilman päteviä perusteluja! 2.2 Sementin kovettuessa kehittyy lämpöä, jonka määrä riippuu sementin koostumuksesta. Tiedostossa hald.txt on seuraavat tiedot 13 erilaisesta sementtierästä: HEAT CHEM1, CHEM2, CHEM3, CHEM4 =lämpömäärä cal/g =sementin ainesosia (% kuiva-aineesta) a) Estimoi regressiomalli, jossa ovat mukana kaikki selittäjät. Vertaile kertoimien tilastollista merkitsevyyttä ja tarkastele vastaavien selittäjien varianssin inaatiotekijöitä. b) Etsi paras selittäjien yhdistelmä käyttämällä Akaiken informatiokriteeriä (AIC). Ratkaisu. Tavoitteena tehtävässä on selvittää, mitkä selittävistä tekijöistä CHEM1, CHEM2, CHEM3, CHEM4 vaikuttavat selittävän muuttujan HEAT käyttäytymiseen. Ladataan aluksi data ja asennetaan paketti car myöhempää käyttöä varten. install.packages("car") library(car) hald=read.table("hald.txt",header=t) a) Täyden mallin estimointi Tilanteessa, jossa ei olla selvillä, mitkä selittäjistä vaikuttavat selitettävän muuttujan käyttäytymiseen, on usein järkevää estimoida ensin ns. täysi malli eli malli, jossa käytetään selittäjinä kaikkia selittäjäkandidaatteja. Ennen parhaan selitysmallin etsimistä on syytä tarkastella muuttujien välisiä korrelaatiota. 6 / 13

7 cor(hald) CHEM1 CHEM2 CHEM3 CHEM4 HEAT SUM CHEM CHEM CHEM CHEM HEAT SUM Muuttuja HEAT korreloi melko voimakkaasti kaikkien selittäjäkandidaattien kanssa. Korrelaatio on positiivista muuttujien CHEM1 ja CHEM2 kanssa ja negatiivinen muuttujien CHEM3 ja CHEM4 kanssa. Selittäjien CHEM1 ja CHEM3 välillä on voimakas negatiivinen korrelaatio, kuten myös selittäjien CHEM2 ja CHEM4 välillä. Estimoidan seuraavaksi täysi malli HEAT = β 0 + β 1 CHEM1 + β 2 CHEM2 + β 3 CHEM3 + β 4 CHEM4 + ɛ (1) taysimalli=lm(heat~chem1+chem2+chem3+chem4,data=hald) summary(taysimalli) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) CHEM CHEM CHEM CHEM Signif. codes: 0?***? 0.001?**? 0.01?*? 0.05?.? 0.1?? 1 Residual standard error: on 8 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 4 and 8 DF, p-value: 4.756e-07 Mallin (1) selitysaste on korkea (98.2%). F-testisuureen arvo nollahypoteesille H 0 : β 1 = β 2 = β 3 = β 4 = 0 on ja sitä vastaava p-arvo on lähellä nollaa, joten malli on kokonaisuudessaan tilastollisesti merkitsevä ja ainakin yksi regressiokertoimista β 0, β 1, β 2, β 3 poikkeaa 7 / 13

8 nollasta. Kuitenkaan yksikään mallin (1) selittäjistä ei ole tilastollisesti merkitsevä, jos merkitsevyyden rajana pidetään 5%:n merkitsevyystasoa. Tämä johtuu selittäjien multikollineaarisuudesta. Selittäjien multikollineaarisuutta voidaan mitata VIF-kertoimilla. VIF-kerroin on 1 selittävälle muuttujalle, jonka otoskorrelaatio on 0 muiden selittävien muuttujien kanssa. Selittäjän VIF-arvo on sitä suurempi mitä vahvemmin kyseinen muuttuja riippuu lineaarisesti muista selittäjistä. Jos VIF > 10, multikollineaarisuudesta saattaa olla haittaa. VIF-kertoimet saadaan paketin car funktiolla vif vif(taysimalli) CHEM1 CHEM2 CHEM3 CHEM Mallissa (1) selittäjien CHEM2 ja CHEM4 vastaavien varianssin inaatiotekijöiden arvot ovat suurempia kuin 200, mikä viittaa voimakkaaseen multikollineaarisuusteen. Tarkastellaan selittäjien multikollineaarisuuttea estimoimalla regressiomallit, joissa selitettävinä muuttujina ovat muuttujat CHEM2 ja CHEM4 ja kummassakin tapauksessa selittäjinä käytetään kaikkia muita alkuperäisen mallin (1) selittäjiä. Tarkastellaan mallia CHEM2 = α 0 + α 1 CHEM1 + α 3 CHEM3 + α 4 CHEM4 + δ. (2) Estimointitulokset mallista (2): malli2 <- lm(chem2 ~ CHEM1+CHEM3+CHEM4,data=hald) summary(malli2) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-12 *** CHEM e-06 *** 8 / 13

9 CHEM e-06 *** CHEM e-12 *** --- Signif. codes: 0?***? 0.001?**? 0.01?*? 0.05?.? 0.1?? 1 Residual standard error: on 9 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 3 and 9 DF, p-value: 3.864e-11 Mallin selitysaste on 99.6%, joten CHEM2 riippuu hyvin voimakkaasti muista selittäjistä. Huomaa, että muuttujan CHEM2 VIF-kerroin mallissa (1) on VIF 2 = 1, 1 R2 2 missä R 2 2 on selitysaste mallissa (2). Tarkastellaan mallia CHEM4 = α 0 + α 1 CHEM1 + α 2 CHEM2 + α 3 CHEM3 + δ. (3) Estimointitulokset mallissa (3): Call: lm(formula = CHEM4 ~ CHEM1 + CHEM2 + CHEM3) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-12 *** CHEM e-06 *** CHEM e-12 *** CHEM e-06 *** --- Signif. codes: 0?***? 0.001?**? 0.01?*? 0.05?.? 0.1?? 1 Residual standard error: 1.15 on 9 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 3 and 9 DF, p-value: 2.413e-11 Mallin selitysaste on 99.7% joten CHEM4 riippuu voimakkaasti muista selittäjistä. 9 / 13

10 Huomaa, että muuttujan CHEM4 VIF-kerroin mallissa (1) VIF 4 = 1, 1 R3 2 missä R3 2 on selitysaste mallista (3). Multikollineaarisuus mallissa (1) selittyy sillä että sementti koostuu lähes kokonaan ainesosista CHEM1, CHEM2, CHEM3 ja CHEM4. Muuttujien summa vaihtelee välillä 95-99%. Siten yhden ainesostan lisäämisen on pakko vähentää joidenkin muiden ainesosien osuutta sementin koostumuksessa. Tämä selittää sen, miksi muuttujapareilla CHEM1 ja CHEM3 sekä CHEM2 ja CHEM4 on voimakkaat negatiiviset korrelaatiot. b) Paras selittäjien yhdistelmä Regressiomallin selittäjien valikoimiseen voidaan käyttää erilaisia strategioita. Valittaessa parasta selittäjien yhdistelmää, kaikkia mahdollisia mallivaihtoehtoja verrataan toisiinsa käyttämällä jotakin mallinvalintakriteeriä ja lopulliseksi malliksi valitaan se, joka on käytetyn kriteerifunktion mielessä paras. Tilastotieteen kirjallisuudessa on esitetty lukuisia mallinvalintakriteereitä. Tunnettuja kriteereitä ovat esim. Akaiken informaatiokriteeri (AIC), Schwarzin bayeslainen informaatiokriteeri (SBIC) ja Hannanin ja Quinnin kriteeri (HQ). Mallin valinnan kriteerifunktio on muotoa min M (1,...,q) C( M, ˆσ2 M ) Missä M on selittäjäkandidaattien yhdistelmä, ja ˆσ 2 M sitä vastaavan mallin jäännösvarianssin suurimman uskottavuuden estimaattori, ja C näiden suhteen kasvava funktio. Yleisesti kriteerifunktiolta toivotaan Mahdollisimman suurta selitysastetta Mahdollisimman vähillä selittäjillä. R:ssä funktio step() valitsee sellaisen muuttujien kombinaation joka minimoi AIC arvon. Huomaa että funktio step() laskee AIC arvon perustuen oletukseen virhetermien normaalisuudesta. step(taysimalli) Start: AIC=26.94 HEAT ~ CHEM1 + CHEM2 + CHEM3 + CHEM4 Df Sum of Sq RSS AIC - CHEM / 13

11 - CHEM CHEM <none> CHEM Step: AIC=24.97 HEAT ~ CHEM1 + CHEM2 + CHEM4 Df Sum of Sq RSS AIC <none> CHEM CHEM CHEM Call: lm(formula = HEAT ~ CHEM1 + CHEM2 + CHEM4, data = hald) Coefficients: (Intercept) CHEM1 CHEM2 CHEM Tulostetta luetaan seuraavasti. Alussa AIC on koko mallille Jos mallista poistetaan muuttuja CHEM3, saa AIC arvon , jos CHEM4 poistetaan saa AIC arvon , jos CHEM2 poistetaan saa AIC arvon ja jos CHEM1 poistetaan AIC saa arvon Haluamme minimoida mallinvalintakriteeriä, eli jätetään muuttuja CHEM3 pois mallista. Tarkastellaan mallia HEAT = β 0 + β 1 CHEM1 + β 2 CHEM2 + β 4 CHEM4. (4) Nyt Mallin 4 AIC on R-tulosteesta huomataan, että AIC arvo kasvaa jos mikään jäljellä olevista muuttujista (CHEM1, CHEM2, CHEM4) jätetään pois. Estimoidaan Malli 4. malli4 <- lm(heat ~ CHEM1 summary(malli4) + CHEM2 + CHEM4, data=hald) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) *** 11 / 13

12 CHEM e-07 *** CHEM CHEM Signif. codes: 0 `***' `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: on 9 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 3 and 9 DF, p-value: 3.323e-08 Huomaa että ylläolevassa mallissa muuttujat CHEM2 ja CHEM4 eivät ole tilastollisesti merkitseviä 5% merkitsevyystasolla. Kuvassa 5 on täyden mallin residuaalit. Histogrammin muoto viittaa siihen että virhetermin normaalisuusoletus ei päde, minkä seurauksena AIC ei ole luotettava kriteeri parhaiden selittäjien etsimisessä. Kotitehtävässä 2.3 mallin valinta suoritetaan permutaatiotestin avulla. Permutaatiotesti ei vaadi virhetermin normaalisuusoletusta ja täten takaa luotettavamman lopputuloksen. Alkuperäisen mallin estimoidut residuaalit Frequency Kuva 5: Mallin 4 estimoidut residuaalit. Huomautus: Jäännösneliösummaa tai selitysastetta ei voida käyttää mallinvalintakriteerinä, koska sekä jäännösneliösumman minimointi että selitysasteen maksimointi johtavat aina täyteen (maksimaaliseen) malliin (tässä esimerkissä malliin jossa on selittäjinä kaikki kandidaatit CHEM1,CHEM2,CHEM3 ja CHEM4). 12 / 13

13 Kotitehtävät 2.3 Jatkoa tehtävälle 2.2. Käytä mallin valinassa alaspäin askellusta. Suorita alaspäin askellus permutaatiotestin avulla. Käytä apunasi luentokalvoja sekä viime viikon demotehtäviä. Vertaa tuloksia tehtävän 2.2 (b)-kohtaan. Alaspäin askelluksessa estimoidaan ensin malli käyttäen kaikkia selittäjiä ja tarkastellaan regressiokertoimien merkitsevyyttä. Mallista poistetaan vähiten merkitsevä selittäjä ja estimoidaan uusi malli ilman kyseistä muuttujaa. Muuttujia poistetaan kunnes mallissa on jäljellä vain tilastollisesti merkitseviä muuttujia. 2.4 Lannoiteaineen määrä vaikuttaa vehnän satoon. Määrän vaikutusta tutkittiin vaihtelemalla lannoiteaineen määrää (11 tasoa) 33:lla koealalla (sama määrä lannoitetta 3:lla koealalla) ja rekisteröimällä saatu sato. Tiedot kokeesta on annettu tiedostossa Vehnan- Sato.txt. Muuttujina tiedostossa ovat Sato Lannoite = Sadon määrä (yksikkönä kg/pinta-alayksikkö) = Lannoiteaineen määrä (yksikkönä kg/pinta-alayksikkö) a) Estimoi lineaarinen regressiomalli, jossa selitettävänä on muuttuja Sato ja selittäjänä muuttuja Lannoite. Tutki mallin hyvyyttä regressiograikan avulla. b) Estimoi lineaarinen regressiomalli, jossa kohdan a) malliin on lisätty selittäjäksi muuttuja LSqrd = Lannoite Lannoite, eli muuttujan lannoite jokainen alkio korotettuna toiseen. Tutki mallin hyvyyttä regressiograikan avulla. c) Kumpi malleista on parempi? Miksi? 13 / 13

MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4

MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4 MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4 Tehtävä 2.1. Jatkoa tietokonetehtävälle 1.2: (a) Piirrä aineistosta pisteparvikuvaaja (KULUTUS, SAIRAST) ja siihen

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat:

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat: Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Mallin valinta Painotettu PNS-menetelmä Alaspäin askellus, Askellus, Askeltava valikointi, Diagnostinen grafiikka, Diagnostiset

Lisätiedot

1. Tietokoneharjoitukset

1. Tietokoneharjoitukset 1. Tietokoneharjoitukset Aluksi Tällä kurssilla käytetään R-ohjelmistoa, jonka käyttämisestä lienee muutama sana paikallaan. R-ohjelmisto on laajasti käytetty vapaassa levityksessä oleva ammattimaiseen

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä 806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2011 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Eräässä suuressa yrityksessä

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään

Lisätiedot

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen! 8069 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2013 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOLLA 9! Ilmoittaudu Weboodissa 4.3.2013 klo

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiomallin valinta. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Regressiomallin valinta TKK (c) Ilkka Mellin (2007) 1 Regressiomallin valinta >> Regressiomallin valinta: Johdanto Mallinvalintatestit

Lisätiedot

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Regressiomallin valinta. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Regressiomallin valinta TKK (c) Ilkka Mellin (2004) 1 Regressiomallin valinta Regressiomallin valinta: Johdanto Mallinvalintatestit Mallinvalintakriteerit Epälineaaristen riippuvuuksien

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

Regressiodiagnostiikka ja regressiomallin valinta

Regressiodiagnostiikka ja regressiomallin valinta Regressiodiagnostiikka ja regressiomallin valinta MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja

Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja MS-C2128 Ennustaminen ja aikasarja-analyysi 6. harjoitukset / Tehtävät Kotitehtävä: 4 Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin erusteet, kevät 2007 10. luento: Regressiomallin (selittäjien) valinta Kai Virtanen 1 Regressiomallin selittäjien valinnasta Mallista uuttuu selittäjiä => harhaiset regressiokertoimien

Lisätiedot

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET

TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET TA7, Ekonometrian johdantokurssi HARJOITUS 4 1 RATKAISUEHDOTUKSET 16..015 1. a Poliisivoimien suuruuden lisäksi piirikuntien rikostilastoihin vaikuttaa monet muutkin tekijät. Esimerkiksi asukkaiden keskimääräinen

Lisätiedot

1. Tutkitaan tavallista kahden selittäjän regressiomallia

1. Tutkitaan tavallista kahden selittäjän regressiomallia TA7, Ekonometrian johdantokurssi HARJOITUS 5 RATKAISUEHDOTUKSET 232215 1 Tutkitaan tavallista kahden selittäjän regressiomallia Y i = β + β 1 X 1,i + β 2 X 2,i + u i (a) Kirjoita regressiomalli muodossa

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Load

Load Tampereen yliopisto Tilastollinen mallintaminen Mikko Alivuotila ja Anne Puustelli Lentokoneiden rakennuksessa käytettävien metallinkiinnittimien puristuskestävyys Matematiikan, tilastotieteen ja filosofian

Lisätiedot

Korrelaatiokertoinen määrittely 165

Korrelaatiokertoinen määrittely 165 kertoinen määrittely 165 Olkoot X ja Y välimatka- tai suhdeasteikollisia satunnaismuuttujia. Havaintoaineistona on n:n suuruisesta otoksesta mitatut muuttuja-arvoparit (x 1, y 1 ), (x 2, y 2 ),..., (x

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Yleinen lineaarinen malli

Yleinen lineaarinen malli MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: 1 Määritelmä ja standardioletukset 2

Lisätiedot

1 Johdatus varianssianalyysiin

1 Johdatus varianssianalyysiin Tilastollisia malleja 1 & 2: Varianssianalyysi Jarkko Isotalo Y131A & Y132A 15.1.2013 1 Johdatus varianssianalyysiin 1.1 Milloin varianssianalyysiä käytetään? Varianssianalyysi on tilastotieteellinen menetelmä,

Lisätiedot

Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus )

Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus 7.2.2017) Tämän harjoituskerran tehtävät

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli

Lisätiedot

Tehtävä 1. (a) JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset

Tehtävä 1. (a) JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset 12.05.2009 Tehtävä 1 (a) x

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiodiagnostiikka. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Regressiodiagnostiikka. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Regressiodiagnostiikka TKK (c) Ilkka Mellin (2007) 1 Regressiodiagnostiikka >> Yleinen lineaarinen malli ja regressiodiagnostiikka

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Harjoitukset 4 : Paneelidata (Palautus )

Harjoitukset 4 : Paneelidata (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

3. Tietokoneharjoitukset

3. Tietokoneharjoitukset 3. Tietokoneharjoitukset Aikasarjan logaritmointi Aikasarjoja analysoidaan usein logaritmisessa muodossa. Asialooginen perustelu logaritmoinnille: Muuttujan arvojen suhteelliset muutokset ovat usein tärkeämpiä

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

Nuoruusiän vaikutus aikuisen painoindeksiin Data-analyysin perusmenetelmät Harjoitustyö. Lassi Miinalainen

Nuoruusiän vaikutus aikuisen painoindeksiin Data-analyysin perusmenetelmät Harjoitustyö. Lassi Miinalainen Nuoruusiän vaikutus aikuisen painoindeksiin Data-analyysin perusmenetelmät Harjoitustyö Lassi Miinalainen lassimii@paju.oulu. 23.1.2012 Sisältö 1 Aineisto 2 1.1 Muuttujat...............................

Lisätiedot

proc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;

proc glm data = ex61; Title2 Aliasing Structure of the 2_IV^(5-1) design; model y = A B C D E /Aliasing; run; quit; Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf

Lisätiedot

R: mikä, miksi ja miten?

R: mikä, miksi ja miten? R: mikä, miksi ja miten? Ilmari Ahonen Matematiikan ja tilastotieteen laitos, Turun yliopisto SSL R-Webinaari 2015 Vähän minusta Valmistuin maisteriksi Turun yliopistossa 2012 Teen neljättä vuotta väitöskirjaa

Lisätiedot

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä MS-C2128 Ennustaminen ja aikasarja-analyysi 4. harjoitukset / Tehtävät Kotitehtävät: 3, 5 Aihe: ARMA-mallit Tehtävä 4.1. Tutustu seuraaviin aikasarjoihin: Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli: 2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 21 2 19 18 17 16 15 15

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Harjoitus 3: Regressiomallit (Matlab)

Harjoitus 3: Regressiomallit (Matlab) Harjoitus 3: Regressiomallit (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset TA7, Ekonometrian johdantokurssi HARJOITUS 7 RATKAISUEHDOTUKSET 16.3.2015 1. Tutkitaan regressiomallia Y i = β 0 + X i + u i ja oletetaan, että tavanomaiset regressiomallin oletukset pätevät (Key Concept

Lisätiedot

SELVITTÄJÄN KOMPETENSSISTA

SELVITTÄJÄN KOMPETENSSISTA OTM, KTM, Mikko Hakola, Vaasan yliopisto, Laskentatoimen ja rahoituksen laitos Helsinki 20.11.200, Helsingin kauppakorkeakoulu Projekti: Yrityksen maksukyky ja strateginen johtaminen SELVITTÄJÄN KOMPETENSSISTA

Lisätiedot

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1

Vastepintamenetelmä. Vilkkumaa / Kuusinen 1 Vastepintamenetelmä Vilkkumaa / Kuusinen 1 Motivointi Varianssianalyysissa tutkitaan tekijöiden vaikutusta vasteeseen siten, että tekijöiden tasot on ennalta valittu. - Esim. tutkitaan kemiallisen prosessin

Lisätiedot

Johdatus regressioanalyysiin

Johdatus regressioanalyysiin Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2007) 1 Johdatus regressioanalyysiin >> Regressioanalyysin lähtökohdat ja tavoitteet

Lisätiedot

Harjoitus 3: Regressiomallit (Matlab)

Harjoitus 3: Regressiomallit (Matlab) Harjoitus 3: Regressiomallit (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä mallin sovittamisessa

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012

Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012 Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP Luennoi: yliopisto-opettaja Pekka Pere. Logaritmin muutos ja suhteellinen muutos

TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP Luennoi: yliopisto-opettaja Pekka Pere. Logaritmin muutos ja suhteellinen muutos TILASTOTIEDE KÄYTÄNNÖN TUTKIMUKSESSA, 8 10 OP. 22.9.-11.12.2009. Luennoi: yliopisto-opettaja Pekka Pere. Aputuloksia Logaritmin muutos ja suhteellinen muutos Lähtökohta on approksimaatio log(1 + δ) δ,

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 6

031021P Tilastomatematiikka (5 op) viikko 6 031021P Tilastomatematiikka (5 op) viikko 6 Jukka Kemppainen Mathematics Division Satunnaismuuttujien välinen riippuvuus Kokeellisen tutkimuksen keskeinen tehtävä on selvittää mitattavien muuttujien välisiä

Lisätiedot

Harjoitus 7 : Aikasarja-analyysi (Palautus )

Harjoitus 7 : Aikasarja-analyysi (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa

Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Erityiskysymyksiä yleisen lineaarisen mallin soveltamisessa TKK (c) Ilkka Mellin (2007) 1 Erityiskysymyksiä yleisen lineaarisen

Lisätiedot

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä: Matriisi ja vektori laskennan ohjelmisto edellyttää

Lisätiedot

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Johdatus regressioanalyysiin. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Johdatus regressioanalyysiin TKK (c) Ilkka Mellin (2005) 1 Johdatus regressioanalyysiin Regressioanalyysin lähtökohdat ja tavoitteet Deterministiset mallit ja regressioanalyysi

Lisätiedot

Ristivalidointia ja grafiikkaa

Ristivalidointia ja grafiikkaa Ristivalidointia ja grafiikkaa Jari Oksanen Maanantai 12. syyskuuta 2005 Tiivistelmä Tässä monisteessa on maantain tapahtumien yhteenveto. Aloitimme Eija Hurmeen kurssipäiväkirjalla ja sen jälkeen päätiomme

Lisätiedot

b1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta.

b1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 9.3.2012 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Erikoistyö: Alkoholin kulutusmenojen ennustaminen

Erikoistyö: Alkoholin kulutusmenojen ennustaminen Erikoistyö: Alkoholin kulutusmenojen ennustaminen Tekijä: Mikko Nordlund 49857B mikko.nordlund@hut.fi Ohjaaja: Ilkka Mellin Jätetty: 11.12.2003 Sisällysluettelo 1. JOHDANTO... 3 2. MALLIEN TUTKIMINEN...

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot