4. Tietokoneharjoitukset
|
|
- Krista Järvinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume Intelin osakkeiden myynti SUNSPOT Spots Auringonpilkkujen määrä 1v n = 215 SALES Sales Erään tukkukaupan 1kk n = 144 myynnin volyymi Yritä löytää jokaiselle aikasarjalle paras mahdollinen ARMA-perheeseen kuuluva malli. Käytä aikasarjan viimeistä viidesosaa mallin verifioimiseen. Ratkaisu. Ladataan aluksi paketti forecast. install.packages("forecast") library(forecast) # install.packages() tarvitsee ajaa vain kerran # library() tulee ajaa aina kun haluat jonkin paketin funktioita käyttöön INTEL <- read.table("intel.txt",header=t) SUNSPOT <- read.table("sunspot.txt",header=t,row.names=1) SALES <- read.table("sales.txt",header=t) Intel_Close <- ts(intel$intel_close) Spots <- ts(sunspot,start=1749) Sales <- ts(sales$sales,frequency=12) Intel_Close Lasketaan autokorrelaatiot ja osittaisautokorrelaatiot. acf(intel_close,main="acf",lag.max=25) pacf(intel_close,main="pacf",lag.max=25) Kuvasta 1 nähdään että PACF näyttää katkeavan viiveellä 2 ja ACF vaimenee eksponentiaalisesti. Yritetään sovittaa AR(2)-malli. ARMA-mallien sovitus, tapahtuu komennolla Arima. Funktion ensimmäinen parametri on sovitettava aikasarja, order on ARIMA-osan asteet muodossa (p,h,q), missä p, d ja q kuten luentokalvoissa. Lisäksi on mahdollista antaa määre seasonal, joka vastaa kausiparametreja (P,H,Q). 1 / 13
2 ACF PACF Kuva 1: Intel_Close aineston auto- ja osittaisautokorrelaatiofunktiot. Arima(Intel_Close, order=c(2,0,0)) Series: Intel_Close ARIMA(2,0,0) with non-zero mean Coefficients: ar1 ar2 intercept s.e sigma^2 estimated as : log likelihood=-28.2 AIC=64.39 AICc=67.06 BIC=68.38 Estimoitu malli sisältää vakion (Intercept), sen voi asettaa nollaksi parametrilla include.mean=f. Arima estimoi parametrit oletuksena CSS-ML (conditional sum of squares - maximum likelihood) menetelmällä. Menetelmässä alkuarvaus saadaan CSS menetelmällä, jonka jälkeen estimoidaan suurimman uskottavuuden (SU) estimaatit. Lisätietoa SU-menetelmästä viikon 4 luentokalvoissa. Sovitetaan AR(2)-malli ja tutkitaan residuaaleja: malli <- Arima(Intel_Close, order=c(2,0,0)) acf(malli$res,main="acf",lag.max=25) pacf(malli$res,main="pacf",lag.max=25) Kuvan 2 perusteella residuaalit eivät näytä autokorreloituneilta. Hyvässä sovitteessa residuaalit on lähellä satunnaista kohinaa. Tehdään Ljung-Box testi residuaaleille. Testi suoritetaan komennolla: Box.test(residual,lag=h,fitdf=k,type="Ljung-Box") 2 / 13
3 ACF PACF Kuva 2: Intel_Close aineistoon sovitetun AR(2)-mallin residuaalien auto- ja osittaisautokorrelaatiofunktiot. missä h on viive, ja k estimoitujen parametrien määrä mallissa. AR(2)-mallissa k=2. Ljung-Box testi voidaan tehdä viiveille (lag), jotka ovat suurempia kuin k+1 (katso luento 5). Huomaa, että funktio Box.test tekee oletuksena ns. Box-Pierce testin. Tilastotieteen kirjallisuudessa Ljung-Box on kuitenkin todettu Box-Pierce testiä paremmaksi. #Alustetaan tyhjä vektori ljung_box <- c(rep(na,17)) k <- 2 for(i in 1:17){ ljung_box[i] <- Box.test(malli$res,lag=(i+k), fitdf=k, type="ljung-box")$p.value } [1] [8] [15] Ljung-Box testin nollahypoteesi on, että korrelaatiota ei ole. Testin p-arvot ovat kaikilla viivellä selvästi yli merkitsevyystason 5%. Täten Ljung-Box testin perusteella AR(2) on riittävä malli. Piirretään sovite ja alkuperäinen aikasarja samaan kuvaan. sovite <- fitted(malli) plot(sovite,type="b",col="blue",ylim=c(60,68), ylab="kurssi",xlab="aika") lines(intel_close,col="red",type="b") legend(16,68, legend=c("alkup.", "Sovite"), col=c("red","blue"),lty=c(1,1),cex=0.8) 3 / 13
4 Kurssi Sales aikasarja AR(2) Sovite Aika Kuva 3: Intel_close aikasarja punaisella ja AR(2)-sovite sinisellä. Kuvan 3 perusteella sovite vastaa melko hyvin alkuperäistä aikasarjaa. Estimoidaan AR(2)-malli ensimmäisestä 16 havainnosta ja katsotaan miten hyvin malli ennustaa 4 viimeistä havaintoa. malli_ver <- Arima(Intel_Close[1:16],order=c(2,0,0)) ennuste <- forecast(malli_ver,h=4,level=false)$mean #level=false, jättää luottamusvälit pois plot(intel_close,col="red",type="b",ylim=c(60,68), ylab="kurssi",xlab="aika") lines(ennuste,col="blue",type="b") legend(16,68, legend=c("alkup.", "Ennuste"), col=c("red", "blue"), lty=c(1,1), cex=0.8) Kurssi Sales aikasarja AR(2) Ennuste Aika Kuva 4: Intel_close aikasarja punaisella ja 16 ensimmäisen havaintopisteen avulla estimoidun AR(2)-mallin ennuste sinisellä. 4 / 13
5 Kuvasta 4 nähdään, että 16 ensimmäistä havaintoa eivät ennusta erityisen hyvin viimeistä neljää havaintoa, vaikka AR(2)-malli todettiin riittäväksi. Tämä selittyy sillä, että alkuperäinen aikasarja on suhteellisen lyhyt. Varsinkin lyhyitä aikasarjoja ennustaessa tulee olla siis hyvin varovainen. Spots acf(spots,lag.max=50) pacf(spots,lag.max=50) ACF PACF Kuva 5: Spots aikasarjan auto- ja osittaisautokorrelaatiofunktio. Kuvan 5 perusteella PACF näyttää katkeavan viiveellä 2, vaikka osittaisautokorrelaatio viiveillä 6-8, 29 ja 48 menee merkitsevyysrajan yli. Sovitetaan AR(2)-malli ja tutkitaan residuaaleja. malli2 <- Arima(Spots,order=c(2,0,0)) acf(malli2$res) pacf(malli2$res) Kuvasta 6 nähdään että viiveillä 9-11 residuaalien auto- ja osittaisautokorrelaatio ovat merkitsevyystason yläpuolella. Tehdään Ljung-Box testi residuaaleille. k <- 2 spots_bl <- rep(na,44) for (i in 1:47) { spots_bl[i]=box.test(malli2$res,lag=(i+k),fitdf=k, type="ljung-box")$p.value } 5 / 13
6 AR(2) mallin residuaalien ACF AR(2) mallin residuaalien PACF Kuva 6: Aikasarjan Spots AR(2)-mallin residuaalien auto- ja osittaisautokorrelaatiofunktio. round(spots_bl,3) [1] [12] [23] [34] AR(2)-malli ei ole Ljung-Box testien perusteella riittävä selittämään aikasarjan Spots käyttäytymistä. Ljung-Box testin nollahypoteesi hylätään viiveillä Huomaa että Ljung-Box testin ensimmäinen arvo vastaa viivettä k + 1. Kokeillaan nyt automaattista SARIMA-mallien sijoitusta ja tutkitaan mallin residuaaleja. malli.auto <- auto.arima(spots) malli.auto acf(malli.auto$res,lag.max=50) pacf(malli.auto$res,lag.max=50) Series: Spots ARIMA(3,0,1) with non-zero mean Coefficients: ar1 ar2 ar3 ma1 intercept s.e sigma^2 estimated as 266.4: log likelihood= AIC= AICc= BIC= Algoritmi sovittaa parhaan mahdollisen SARIMA-mallin annettuun aikasarjaan käyttäen minimoitavana mallinvalintakriteerinä joko AIC, AICc tai BIC. Huomaa, että 6 / 13
7 SARIMA-mallien sovittaminen aikasarjoihin ei ole yleensä helppoa ja ei ole olemassa täydellistä algoritmia joka löytää aina parhaan mahdollisen mallin. Tästä syystä funktioon auto.arima ei tule luottaa sokeasti. Funktio lisäksi valitsee usein tarpeettoman monimutkaisia SARIMA-perheen malleja, jotka ovat vain marginaalisesti parempia suhteessa johonkin yksinkertaiseen malliin. Kuvan 7 perusteella viiveillä 9,10 ja 11 residuaalien auto- ja osittaisautokorrelaatio ovat merkitseviä myös ARMA(3,1)-sovitteen residuaaleille. Lisäksi Ljung-Box testin nollahypoteesi hylätään viiveillä Ljung-Box testien tulokset alla. Täten myöskään ARMA(3,1)-malli ei testien perusteella riittävä selittämään aikasarjan spots käyttäytymistä. k <- 4 spots_bl <- rep(na,44) for (i in 1:47) { spots_bl[i]=box.test(malli.auto$res,lag=(i+k),fitdf=k, type="ljung-box")$p.value } round(spots_bl,3) [1] [12] [23] [34] ARMA(3,1) mallin residuaalien ACF ARMA(3,1) mallin residuaalien PACF Kuva 7: Aineistosta Spots auto.arima-funktiolla valitun mallin residuaalien ACF ja PACF. Kommentteja: (1) Auringonpilkkujen määrää kuvaava aikasarja Spots osoittautuu vaikeaksi mallintaa SARIMA-malleilla. Eräs ongelman aiheuttajista on se, että kausivaihtelun jak- 7 / 13
8 son pituus n. 11 vuotta ei ole täysin vakio. Täten kausi ARIMA-malleja on vaikea sovittaa Spots aikasarjaan. (2) Auringonpilkku-aikasarjaa on tutkittu paljon. Tämänhetkisen käsityksen mukaan eräs parhaista kandidaateista selittämään sen käyttäytymistä, on ns. kynnysmalli (threshold model). Piirretään sovitteet ja aikasarja samaan kuvioon: sovite.sun <- fitted(malli2) sovite.auto <- fitted(malli.auto) plot(sovite.sun,type="b",col="blue", ylab="lkm.",xlab="aika") lines(spots,col="red",type="b") lines(sovite.auto,col="green",type="b") legend("topleft", legend=c("spots-aikasarja", "AR(2)-Sovite", "ARMA(3,1)-Sovite"), col=c("red","blue","green"),lty=c(1,1),cex=0.8) Lkm Spots aikasarja AR(2) Sovite ARMA(3,1) Sovite Aika Kuva 8: Spots aikasarja punaisella, AR(2)-sovite sinisellä ja ARMA(3,1)-sovite vihreällä. Kuvasta 8 nähdään että molemmat sovitteet seuraavat hyvin alkuperäisen aikasarjan käyttäytymistä. Ennustetaan viimeiset 43 havaintoa käyttäen AR(2)-mallia, samat voidaan toistaa myös ARMA(3,1)-mallille. 8 / 13
9 malli_ver <- Arima(Spots[1:172],order=c(2,0,0)) # Korjataan ennuste alkamaan oikeasta ajanhetkestä ennuste <- ts(forecast(malli_ver,h=43)$mean,start=1921) plot(spots,col="red",type="l",ylim=c(0,200)) lines(ennuste,col="blue",type="l") 43 aika askeleen ennuste 5 aika askeleen ennuste Kuva 9: Spots aikasarja punaisella ja AR(2)-mallin ennuste sinisellä. Kuvasta 9 nähdään että ennusteet pitkälle tulevaisuuteen ovat melko epäluotettavia. Toisaalta muutaman aika-askeleen ennustaminen onnistuu suhteellisen hyvin. Pitkän aikavälin ennustamista huonontaa lisäksi se, että valitut mallit eivät ole riittäviä selittämään aikasarjan Spots käyttäytymistä. Sales Kotitehtävän perusteella Sales ei näytä stationaariselta, mutta D 12 DSales näyttää. Kotitehtävässä laskettujen auto- ja osittaisautokorrelaatiofunktioiden perusteella Sales voisi noudattaa jotain SARIMA-perheen mallia. Etsitään sopivaa mallia auto.arima avulla ja tutkitaan residuaaleja. malli_sales <- auto.arima(sales) Series: Sales ARIMA(2,1,2)(1,1,2)[12] Coefficients: ar1 ar2 ma1 ma2 sar1 sma1 sma s.e sigma^2 estimated as 23.85: log likelihood= AIC= AICc= BIC= / 13
10 ACF PACF Kuva 10: Aikasarjan Sales SARIMA(2,1,2)(1,1,2) 12 -mallin residuaalien auto- ja osittaisautokorrelaatiofunktio. acf(malli_sales$res,lag.max=50) pacf(malli_sales$res,lag.max=50) # nyt sovitettavia parametreja =7 k <- 7 sales_bl <- rep(na,47) for (i in 1:47) { sales_bl[i]=box.test(malli_sales$res,lag=(i+k),fitdf=k, type="ljung-box")$p.value } round(sales_bl,3) [1] [12] [23] [34] [45] plot(forecast(malli,h=24)) SARIMA(2,1,2)(1,1,2) 12 -malli ei ole Ljung-Box testien perusteella riittävä. Testin nollahypoteesi hylätään 5% merkitsevyystasolla kaikilla paitsi viiveellä 9. Osittais- ja autokorrelaatiofunktioiden perusteella, sopiva malli voisi olla esimerkiksi SARIMA(2,1,0)(1,1,0) 12. malli_sales2 <- Arima(Sales,order=c(2,1,0),season=c(1,1,0)) 10 / 13
11 ACF PACF Kuva 11: Aikasarjan Sales SARIMA(2,1,0)(1,1,0) 12 -mallin residuaalien auto- ja osittaisautokorrelaatiofunktio. # Huomaa, että Arima() ei toimi jos aikasarjan frequency parametri on # asetettu väärin. Frequency voidaan joko määrittää joko funktiolla ts() # tai Arima() funktiossa asettamalla season=list(order=c(1,1,0),period=12) acf(malli_sales2$res,lag.max=50) pacf(malli_sales2$res,lag.max=50) # nyt sovitettavia parametreja 2+1=3 k <- 3 sales_bl2 <- rep(na,47) for (i in 1:47) { sales_bl2[i]=box.test(malli_sales2$res,lag=(i+k),fitdf=k, type="ljung-box")$p.value } round(sales_bl2,3) [1] [12] [23] [34] [45] Nyt Ljung-Box testin nollahypoteesi hyväksytään viiveillä 4-16 ja Vaikka sovite on parempi suhteessa auto.arima valitsemaan malliin, silti tulosta ei voida pitää kovin onnistuneena. Parempaa mallia on kuitenkin vaikeata löytää ainakaan SARIMAperheestä. 11 / 13
12 Kommentti: Aikasarja Sales osoittautuu vaikeaksi mallintaa täydellisesti. Katsotaan vielä miten hyvin SARIMA(2, 1, 0)(1, 1, 0) 12 estimaatit sopivat alkuperäiseen aikasarjaan. Kurssi Aika Kuva 12: Aikasarja Sales punaisella ja SARIMA(2,1,0)(1,1,0) 12 -mallin sovitteet sinisellä. Aikasarjan verifioimisen voi toteuttaa kuten aiemmissa kohdissa. Katsotaan miltä mallin ennuste näyttää 48 aika-askelta (4 vuotta) eteenpäin: sovite.sales <- fitted(malli_sales2) plot(sovite.sales,type="b",col="blue", ylab="kurssi",xlab="aika") lines(sales,col="red",type="b") ennuste_sales <- forecast(malli_sales2,h=48)$mean plot(sales,col="red",type="b",ylim=c(100,340), xlim=c(1970,1987),ylab="lkm.",xlab="aika") lines(ennuste_sales,col="blue",type="b") 12 / 13
13 Lkm Aika Kuva 13: Aikasarja Sales punaisella ja SARIMA(2,1,0)(1,1,0)-mallin ennuste sinisellä. Kuvasta 13 nähdään, että saatava ennuste neljä vuotta tulevaisuuteen näyttää järkevältä, vaikka SARIMA(2, 1, 0)(1, 1, 0) 12 -malli ei ole Ljung-Box-testien perusteella riittävä Kotitehtävät 4.2 Tiedostoon MLCO2 on tallennettu aikasarja MLCO2, joka sisältää Mauna Loa-tulivuorella tehtyjen hiilidioksidimittausten tulokset 216 kuukaudelta. Aikasarjaa on tarkasteltu alustavasti viikon 3 tietokoneharjoituksissa. a) Etsi paras mahdollinen SARIMA-perheen malli aikasarjalle MLCO2. b) Ennusta aikasarjaa 2 ja 24 askelta eteenpäin. Pohdi ennusteiden hyvyyttä. 13 / 13
4. Tietokoneharjoitukset
4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume
Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus
MS-C2128 Ennustaminen ja aikasarja-analyysi 5. harjoitukset / Tehtävät Kotitehtävät: 2 Aihe: ARMA-mallit Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tehtävä 5.1. Tarkastellaan
3. Tietokoneharjoitukset
3. Tietokoneharjoitukset Aikasarjan logaritmointi Aikasarjoja analysoidaan usein logaritmisessa muodossa. Asialooginen perustelu logaritmoinnille: Muuttujan arvojen suhteelliset muutokset ovat usein tärkeämpiä
Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä
MS-C2128 Ennustaminen ja aikasarja-analyysi 4. harjoitukset / Tehtävät Kotitehtävät: 3, 5 Aihe: ARMA-mallit Tehtävä 4.1. Tutustu seuraaviin aikasarjoihin: Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan
6. Tietokoneharjoitukset
6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
ARMA mallien ominaisuudet ja rakentaminen
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen
2. Tietokoneharjoitukset
2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten
STOKASTISET PROSESSIT
TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Aikasarjamallit. Pekka Hjelt
Pekka Hjelt Aikasarjamallit Aikasarja koostuu järjestyksessä olevista havainnoista, ja yleensä se on tasavälinen ja diskreetti eli havaintopisteet ovat erillisiä. Lisäksi aikasarjassa on yleensä autokorrelaatiota
Ennustaminen ARMA malleilla ja Kalmanin suodin
Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
Auringonpilkkujen jaksollisuus
Mat-2.108 Sovelletun matematiikan erikoistyöt 16.1.2004 Auringonpilkkujen jaksollisuus Teknillinen korkeakoulu Systeemianalyysin laboratorio Keijo Jaakola 51624B 1 1. Johdanto...3 2. Aikasarjamalleja...3
ARMA mallien rakentaminen, Kalmanin suodatin
ARMA mallien rakentaminen, Kalmanin suodatin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016
Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio
Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n
ARMA mallien ominaisuudet ja rakentaminen
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen
2. Teoriaharjoitukset
2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien
ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalle
ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalleihin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Laura Lizana Bister ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon Informaatiotieteiden laitos Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden
Harjoitus 7 : Aikasarja-analyysi (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,
Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi
MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi Aikasarja on joukko peräkkäisiä, toisistaan riippuvia havaintoja. Aikasarja-analyysin tavoitteena
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla
Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla Kandidaatintyö 27.5.2015 Touko Väänänen Työn saa
Yleistetyistä lineaarisista malleista
Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
Stationaariset stokastiset prosessit ja ARMA-mallit
Stationaariset stokastiset prosessit ja ARMA-mallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Harha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
1. Tietokoneharjoitukset
1. Tietokoneharjoitukset Aluksi Tällä kurssilla käytetään R-ohjelmistoa, jonka käyttämisestä lienee muutama sana paikallaan. R-ohjelmisto on laajasti käytetty vapaassa levityksessä oleva ammattimaiseen
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
6.5.2 Tapering-menetelmä
6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO
Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...
Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
Logistinen regressio, separoivat hypertasot
Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen
Harjoitus 3: Regressiomallit (Matlab)
Harjoitus 3: Regressiomallit (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Laskuharjoitus 9, tehtävä 6
Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
S-114.3812 Laskennallinen Neurotiede
S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte
9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
A250A0050 Ekonometrian perusteet Tentti
A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin
Harjoitus 3: Regressiomallit (Matlab)
Harjoitus 3: Regressiomallit (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä mallin sovittamisessa
Diskriminanttianalyysi I
Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi
PRO GRADU -TUTKIELMA Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Tilastotiede Joulukuu 2012 2 Tampereen yliopisto Informaatiotieteiden yksikkö
VARIANSSIANALYYSI ANALYSIS OF VARIANCE
VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Erikoistyö: Alkoholin kulutusmenojen ennustaminen
Erikoistyö: Alkoholin kulutusmenojen ennustaminen Tekijä: Mikko Nordlund 49857B mikko.nordlund@hut.fi Ohjaaja: Ilkka Mellin Jätetty: 11.12.2003 Sisällysluettelo 1. JOHDANTO... 3 2. MALLIEN TUTKIMINEN...
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11
11. laskuharjoituskierros, vko 15, ratkaisut
11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
7 Osa 7: Pidempiä esimerkkejä R:n käytöstä
7 Osa 7: Pidempiä esimerkkejä R:n käytöstä R:n pääasiallinen käyttö monelle on tilastollisten menetelmien suorittaminen. Käydään nyt läpi joitain esimerkkitilanteita, alkaen aineiston luvusta ja päättyen
Pienimmän neliösumman menetelmä (PNS)
neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1
Regressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli
MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään
Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003
Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä
Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme
Harjoitus 6 -- Ratkaisut
Harjoitus 6 -- Ratkaisut 1 Ei kommenttia. 2 Haetaan data tiedostosta. SetDirectory"homeofysjmattas" SetDirectory "c:documents and settingsmattasdesktopteachingatk2harjoitukseth06" netnfstuhome4ofysjmattas
Pienimmän neliösumman menetelmä (PNS)
neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1
Vastepintamenetelmä. Kuusinen/Heliövaara 1
Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,
Load
Tampereen yliopisto Tilastollinen mallintaminen Mikko Alivuotila ja Anne Puustelli Lentokoneiden rakennuksessa käytettävien metallinkiinnittimien puristuskestävyys Matematiikan, tilastotieteen ja filosofian
T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾
ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos
Pienimmän neliösumman menetelmä (PNS)
neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1
TIE- JA VESIRAKENNUSHALLITUS TUTKIMUSKESKUS INSINÖÖRITOIMISTO PENTTI POLVINEN KY TVH HELSINKI ii / / / - 1)
2400 / - 1) ii / / Tammi Helmi Maalis Huhti Touko KesA HelnA Elo Syys Loka Marras Joulu LIIKENNEONNETTOMUUKSIEN AIKASARJA- ENNUSTE VUODELLE 1989 TIE- JA VESIRAKENNUSHALLITUS TUTKIMUSKESKUS INSINÖÖRITOIMISTO
Harjoitukset 4 : Paneelidata (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä
Ilkka Mellin Aikasarja-analyysi ARMA-mallit
Ilkka Mellin Aikasarja-analyysi ARMA-mallit TKK (c) Ilkka Mellin (007) 1 ARMA-mallit >> ARMA-mallit ja niiden ominaisuudet ARMA-mallien auto- ja osittaisautokorrelaatiofunktiot ARMA-mallien spektri ARMA-mallien
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Harjoitus 9: Excel - Tilastollinen analyysi
Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely)
Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Lauri Nyman 17.9.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =
1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista
9. laskuharjoituskierros, vko 12-13, ratkaisut
9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t