MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely"

Transkriptio

1 MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015

2 Aikataulu ja suoritustapa (Katso MyCourses) Luennot 24h, () maanantaisin U1 (u142) ja keskiviikkoisin U8 (u270) 12:15-14:00 Harjoitukset 24h, (Niko Lietzèn) Teoria: maanantaisin 14:15-16:00 (E), ATK: torstaisin ryhmä 1 12:15-14:00 (U256) ryhmä 2 14:15-16:00 (U344) Kotitehtävät: 1-2 teoria- ja 1-2 tietokonetehtävää viikoittain Tentti 5 tehtävää, joista 2 voi korvata kotitehtäväpisteillä kotitehtävistä maksimipistemäärä on 8 pistettä per tehtävä, tenttitehtävistä 6 pistettä. Mukana saa olla A4-kokoinen muistilappu ja laskin

3 Esitiedot Stokastiikka Moniulotteiset jakaumat ja niiden tunnusluvut: Odotusarvo, varianssi, kovarianssi, korrelaatio Tilastollinen testaus Hypoteesi, testisuure, p-arvo, tulkinta Estimointi Estimaattori, estimaati Estimaattorin harhattomuus, tehokkuus, tarkentuvuus Matriisilaskentaa, sarjoja

4 Harjoituksissa käytetään R-ohjelmointia Ilmainen avoimen lähdekoodin ohjelmisto tilastoanalyysiin Suosio vahvassa kasvussa sekä akateemisessa tutkimuksessa että yrityksissä.

5 Harjoituksissa käytetään R-ohjelmointia

6 Sisältö Viikko 1 Yleinen lineaarinen malli. Viikko 2 Regressiodiagnostiikka ja regressiomallin valinta. Viikko 3 Stationaariset stokastiset prosessit ja ARMA-malli. Viikko 4 ARMA-mallin rakentaminen ja muita aikasaraja-malleja. Viikko 5 Dynaamiset regressiomallit. Viikko 6 Kertausta.

7 Osaamistavoitteet Kurssin suoritettuaan osallistuja tuntee regressiomalliin, dynaamisen regressiomalliin sekä ARIMA-malleihin liittyvää teoriaa. osaa analysoida ja ennustaa aikasarjoja yllä mainittujen mallien avulla.

8 Työmäärä toteutustavoittain Valtaosa kurssin työmäärästä muodostuu itsenäisestä opiskelusta. Luennot - kontaktiopetus (6 x 4) 24 h Luennot - itsenäinen työskentely (6 x 3) 18 h Laskuharjoitukset - kontaktiopetus (6 x 2) 12 h Laskuharjoitukset - itsenäinen työskentely (6 x 4) 24 h Tietokoneharjoitukset - kontaktiopetus (6 x 2) 12 h Tietokoneharjoitukset - itsenäinen työskentely (6 x 4) 24 h Tenttiin valmistautuminen 18 h Tentti 3 h Yht 135 h 1 op vastaa 27 h kokonaistyöskentelyä -> 5 op on 135 h työtä.

9 Vuoden 2014 kurssin arvosanat Alla oleva taulukko demonstroi tehtyjen laskuharjoitustehtävien vaikutusta kurssiarvosanaan. Arvosana 0 7 pist pist. >12 pist. 0 3 (50%) 0 (0%) 0 (0%) 1 2 (33%) 0 (0%) 0 (0%) 2 1 (17%) 1 (20%) 0 (0%) 3 0 (0%) 4 (80%) 5 (11%) 4 0 (0%) 0 (0%) 2 (4%) 5 0 (0%) 0 (0%) 39 (85%) ka ,74 Taulukossa on huomioitu vain tenttiin osallistuneet opiskelijat.

10 Aikasarja-analyysin sovelluskohteita Kansanterveyden tutkimus Rahoitusriskien hallinta Talouspolitiikan päätöksenteko Tuotannon suunnittelu

11 Syövän yleisyys Lähde: ( )

12 Tenor basis vs cross currency basis Swap spread (bp) Date

13 Ennustaminen Ennustaminen on erittäin vaikeaa Mikään malli ei kuvaa todellisuutta täydellisesti Oikein valittu malli auttaa tulevaisuutta koskevien päätösten tekemisessä, mutta ennustamiseen liittyy aina paljon epävarmuutta Malli valitaan aineiston ja kontekstitietämyksen perusteeella

14 Eri mallien ominaisuudet on tunnettava, että kuhunkin tilanteeseen sopivan mallin valitseminen onnistuu. Tällä kurssilla käsitellään perusmalleja yleisessä muodossa, mutta käytännön tilanteissa käytetään usein tarkoitukseen sopiviksi muokattuja tai niitä varten kehitettyjä malleja.

15 Esityksessä käytetyt kuvat

16 Kirjallisuutta: 1. Brockwell / Davis (1991), Time Series: Theory and Methods 2. Hamilton (1994), Time Series Analysis 3. Harvey, A.C. (1993), Time Series Models. Philip Allan. 4. Tsay (2014), Multivariate Time Series Analysis with R and financial applications

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä

Lisätiedot

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Todennäköisyyslaskennan kertaus Satunnaismuuttujat ja tn-jakaumat Tunnusluvut χ 2 -, F- ja t-jakauma Riippumattomuus Tilastotieteen

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

ELEC-C5210 Satunnaisprosessit tietoliikenteessä

ELEC-C5210 Satunnaisprosessit tietoliikenteessä ELEC-C5210 Satunnaisprosessit tietoliikenteessä Esa Ollila Aalto University, Department of Signal Processing and Acoustics, Finland esa.ollila@aalto.fi http://signal.hut.fi/~esollila/ Kevät 2017 E. Ollila

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

Tuloslaskenta (22C00400, 6 op)

Tuloslaskenta (22C00400, 6 op) Tuloslaskenta (22C00400, 6 op) OPETUSSUUNNITELMA 3.10.2016 Opettajanyhteystiedot Kurssin tiedot Luennot ja harjoitukset Kurssin asema KTK, erikoistumisopinnot Nimi Kari Toiviainen (TS2013) S-posti kari.toiviainen@aalto.fi

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH 8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Syksy 2015 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 27.10.2015 1 / 8 Kangaslampi Lineaarialgebra ja differentiaaliyhtälöt

Lisätiedot

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) MTTTP5, luento 7.12.2017 7.12.2017/1 6.1.3 Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) y = lepopulssi x = sukupuoli y = musikaalisuus x = sukupuoli

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2003 Aleksi Penttinen & Eeva Nyberg Tietoverkkolaboratorio Teknillinen korkeakoulu http://www.netlab.hut.fi/opetus/s38145/

Lisätiedot

Korrelaatiokertoinen määrittely 165

Korrelaatiokertoinen määrittely 165 kertoinen määrittely 165 Olkoot X ja Y välimatka- tai suhdeasteikollisia satunnaismuuttujia. Havaintoaineistona on n:n suuruisesta otoksesta mitatut muuttuja-arvoparit (x 1, y 1 ), (x 2, y 2 ),..., (x

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

Tuloslaskenta (22C00400, 6 op)

Tuloslaskenta (22C00400, 6 op) Tuloslaskenta (22C00400, 6 op) OPETUSSUUNNITELMA 29.9.2017 Opettajanyhteystiedot Kurssin tiedot Luennot ja harjoitukset Kurssin asema KTK, erikoistumisopinnot Nimi Kari Toiviainen (TS2013) S-posti kari.toiviainen@aalto.fi

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja. Jari Melgin Huone H 3.35/Töölö Puhelin

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja. Jari Melgin Huone H 3.35/Töölö Puhelin 22A00110 Laskentatoimen perusteet (6 op) SYLLABUS Kurssin asema ja ajankohta; luentojen aika ja paikka Opettaja Liiketoimintaosaamisen perusteet Syksy 2016, II-periodi Ma 13.15 15 Ke 13.15 15 To 13.15

Lisätiedot

Tervetuloa jatkamaan DIGITAALI- TEKNIIKAN opiskelua! Digitaalitekniikka (piirit) Luku 0 Sivu 1 (8)

Tervetuloa jatkamaan DIGITAALI- TEKNIIKAN opiskelua! Digitaalitekniikka (piirit) Luku 0 Sivu 1 (8) Tervetuloa jatkamaan DIGITAALI- TEKNIIKAN opiskelua! Digitaalitekniikka (piirit) Luku 0 Sivu 1 (8) Digitaalitekniikka (piirit) Luku 0 Sivu 2 (8) Yleistä opintojaksosta Laajuus 3 op = 80 h, 1. periodilla

Lisätiedot

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kon HYDRAULIIKKA JA PNEUMATIIKKA Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA 2016 Kurssin tavoitteet Opintojakso antaa yleistiedot hydrauliikan ja pneumatiikan komponenteista sekä niiden toiminnasta osana kokonaisjärjestelmää. Teleskooppi

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

Ennustaminen ARMA malleilla ja Kalmanin suodin

Ennustaminen ARMA malleilla ja Kalmanin suodin Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2016 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto Yleistä Esitiedot: (kurssi

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa

Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa Riikka Nurmiainen riikka.nurmiainen@metropolia.fi Arviointikokeiluja talotekniikan matematiikan opintojaksoilla

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä MS-C2128 Ennustaminen ja aikasarja-analyysi 4. harjoitukset / Tehtävät Kotitehtävät: 3, 5 Aihe: ARMA-mallit Tehtävä 4.1. Tutustu seuraaviin aikasarjoihin: Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Harri Haanpää Peda-forum 2004 AB TEKNILLINEN KORKEAKOULU Tietojenkäsittelyteorian laboratorio T 79.148 Tietojenkäsittelyteorian

Lisätiedot

Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi

Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi PRO GRADU -TUTKIELMA Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Tilastotiede Joulukuu 2012 2 Tampereen yliopisto Informaatiotieteiden yksikkö

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo

MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo MAT - 2.114 INVESTOINTITEORIA (5 op) Kevät 2008 Ville Brummer / Pekka Mild / Ahti Salo 1 Opintojakson sisältö Taustaa Kattaa matemaattisen investointiteorian perusteet: Teemoja sivuttu osin muilla Mat-2

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Kysynnän ennustaminen muuttuvassa maailmassa

Kysynnän ennustaminen muuttuvassa maailmassa make connections share ideas be inspired Kysynnän ennustaminen muuttuvassa maailmassa Nina Survo ja Antti Leskinen SAS Institute Mitä on kysynnän ennustaminen? Ennakoiva lähestymistapa, jolla pyritään

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2002 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan ammattiopiston viimeisenä keväänä vahvistaa AMK:uun pyrkivien taitoja pääsykoetta varten saada jo etukäteen 5 op:n suoritus valinnaisiin Tulos:

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja (alkukurssi)

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja (alkukurssi) 22A00110 Laskentatoimen perusteet (6 op) SYLLABUS Kurssin asema ja ajankohta; luentojen aika ja paikka Opettaja (alkukurssi) Opettaja (loppukurssi) Liiketoimintaosaamisen perusteet Syksy 2015, II-periodi

Lisätiedot

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op 031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit. Autokovarianssi: (kun τ 0) Γ t (τ) = E[(X t µ t )(X t τ µ t τ )] ( ) ( = E[ φ k ε t k φ j ε t τ j )] = = j=0 φ j+k E[ε t k ε t τ j ] k,j=0 φ j+k σ 2 δ k,τ+j k,j=0 = σ 2 φ j+k δ k,τ+j = = k,j=0 φ τ+2j I

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa

Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa Linda Havola, Helle Majander, Harri Hakula ja Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto,

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

21C00250 Organisaatiokäyttäytyminen, 6 op

21C00250 Organisaatiokäyttäytyminen, 6 op 21C00250 Organisaatiokäyttäytyminen, 6 op SYLLABUS Versio 17.8.2016 Opettajan yhteystiedot Nimi: Apulaisprofessori Olli-Pekka Kauppila, KTT S-posti: olli-pekka.kauppila@aalto.fi Huone: Arkadia E.3.11,

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2018 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto A! Yleistä Esitiedot:

Lisätiedot

Aikasarjamallit. Pekka Hjelt

Aikasarjamallit. Pekka Hjelt Pekka Hjelt Aikasarjamallit Aikasarja koostuu järjestyksessä olevista havainnoista, ja yleensä se on tasavälinen ja diskreetti eli havaintopisteet ovat erillisiä. Lisäksi aikasarjassa on yleensä autokorrelaatiota

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 1 Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 Palautus to 5.2. klo 16 mennessä Chiaran lokerolle Koetilantie 5, 3. krs. Tehtävät voidaan palauttaa myös to 5.2. luennon alussa. En ota vastaan myöhään

Lisätiedot

MS-C2111 Stokastiset prosessit

MS-C2111 Stokastiset prosessit Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos toimisto: Y241, vastaanotto: pe 13:30-14:30 2017, periodi I KURSSIN JÄRJESTELYT Kurssin järjestelyt Luennot ja harjoitusryhmät Luennot tiistaisin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen aineiston kuvaileminen, mallintaminen ja estimointi Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op 031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely)

Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Lauri Nyman 17.9.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua 2. Keskiarvojen vartailua Esimerkki 2.1: Oheiset mittaukset liittyvät Portland Sementin sidoslujuuteen (kgf/cm 2 ). Mittaukset y 1 ovat nykyisestä seoksesta ja mittaukset y 2 uudesta seoksesta, jossa lisäaineena

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat .9. Kaksiulotteiset satunnaismuuttujat MS-A Todennäköisslaskennan ja tilastotieteen peruskurssi Viikko Moniulotteiset satunnaismuuttujat sekä niiden jakaumat ja tunnusluvut; Moniulotteisia jakaumia Usein

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

6. Tietokoneharjoitukset

6. Tietokoneharjoitukset 6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen

Lisätiedot

3. Tietokoneharjoitukset

3. Tietokoneharjoitukset 3. Tietokoneharjoitukset Aikasarjan logaritmointi Aikasarjoja analysoidaan usein logaritmisessa muodossa. Asialooginen perustelu logaritmoinnille: Muuttujan arvojen suhteelliset muutokset ovat usein tärkeämpiä

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2001 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

PHYS-A0120 Termodynamiikka (TFM) Maanantai

PHYS-A0120 Termodynamiikka (TFM) Maanantai PHYS-A0120 Termodynamiikka (TFM) Maanantai 26.10.2015 Käytännönjärjestelyt Kurssin alkuosan henkilökunnasta Kurssi jakautuu kahteen osaan: ensimmäistä 3 viikkoa luennoi TkT Kati Miettunen ja jälkimmäistä

Lisätiedot