4. Tietokoneharjoitukset

Koko: px
Aloita esitys sivulta:

Download "4. Tietokoneharjoitukset"

Transkriptio

1 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume Intelin osakkeiden myynti SUNSPOT Spots Auringonpilkkujen määrä 1v n = 215 SALES Sales Erään tukkukaupan 1kk n = 144 myynnin volyymi Yritä löytää jokaiselle aikasarjalle paras mahdollinen ARMA-perheeseen kuuluva malli. Käytä aikasarjan viimeistä viidesosaa mallin verifioimiseen. Ratkaisu. Ladataan aluksi paketti forecast. Paketin asentamisessa voi olla ongelmia Linux koneille. R-ohjelmistoon on saatavilla muitakin paketteja ARMA-mallejen estimoimiseksi, joista lisätietoa voi etsiä googlettamalla. install.packages("forecast") library(forecast) # install.packages() tarvitsee ajaa vain kerran # library() tulee ajaa aina kun haluat jonkin paketin funktioita käyttöön INTEL <- read.table("intel.txt",header=t) SUNSPOT <- read.table("sunspot.txt",header=t,row.names=1) SALES <- read.table("sales.txt",header=t) Intel_Close <- ts(intel$intel_close) Spots <- ts(sunspot,start=1749) Sales <- ts(sales$sales,frequency=12) Intel_Close Lasketaan autokorrelaatiot ja osittaisautokorrelaatiot. acf(intel_close,main="acf") pacf(intel_close,main="pacf") Kuvasta 1 nähdään että PACF näyttää katkeavan viiveellä 2 ja ACF vaimenee eksponentiaalisesti. Yritetään sovittaa AR(2)-malli. ARMA-mallien sovitus, tapahtuu komennolla Arima. Funktion ensimmäinen parametri on sovitettava aikasarja, order on 1 / 13

2 ACF PACF Kuva 1: Intel_Close aineiston auto- ja osittaisautokorrelaatiofunktiot. ARIMA-osan asteet muodossa (p,h,q), missä p, h ja q kuten luentokalvoissa. Lisäksi on mahdollista antaa määre seasonal, joka vastaa kausiparametreja (P,H,Q). Arima(Intel_Close, order=c(2,0,0)) Series: Intel_Close ARIMA(2,0,0) with non-zero mean Coefficients: ar1 ar2 intercept s.e sigma^2 estimated as : log likelihood=-28.2 AIC=64.39 AICc=67.06 BIC=68.38 Estimoitu malli sisältää vakion (Intercept), sen voi asettaa nollaksi parametrilla include.mean=f. Arima estimoi parametrit oletuksena CSS-ML (conditional sum of squares - maximum likelihood) menetelmällä. Menetelmässä alkuarvaus saadaan CSS menetelmällä, jonka jälkeen estimoidaan suurimman uskottavuuden (SU) estimaatit. Lisätietoa SU-menetelmästä viikon 4 luentokalvoissa. Sovitetaan AR(2)-malli ja tutkitaan residuaaleja: malli <- Arima(Intel_Close, order=c(2,0,0)) acf(malli$res,main="acf") pacf(malli$res,main="pacf") Kuvan 2 perusteella residuaalit eivät näytä autokorreloituneilta. Hyvässä sovitteessa residuaalit on lähellä satunnaista kohinaa. Tehdään Ljung-Box testi residuaaleille. Testi suoritetaan komennolla: 2 / 13

3 ACF PACF Kuva 2: Intel_Close aineistoon sovitetun AR(2)-mallin residuaalien auto- ja osittaisautokorrelaatiofunktiot. Box.test(residual,lag=h,fitdf=k,type="Ljung-Box") missä h on viive, ja k estimoitujen parametrien määrä mallissa. AR(2)-mallissa k=2. Ljung-Box testi voidaan tehdä viiveille (lag), jotka ovat suurempia kuin k+1 (katso luento 5). Huomaa, että funktio Box.test tekee oletuksena ns. Box-Pierce testin. Tilastotieteen kirjallisuudessa Ljung-Box on kuitenkin todettu Box-Pierce testiä paremmaksi. #Alustetaan tyhjä vektori ljung_box <- c(rep(na,17)) k <- 2 for(i in 1:17){ ljung_box[i] <- Box.test(malli$res,lag=(i+k), fitdf=k, type="ljung-box")$p.value } [1] [8] [15] Ljung-Box testin nollahypoteesi on, että korrelaatiota ei ole. Testin p-arvot ovat kaikilla viivellä selvästi yli merkitsevyystason 5%. Täten Ljung-Box testin perusteella AR(2) on riittävä malli. Piirretään sovite ja alkuperäinen aikasarja samaan kuvaan. sovite <- fitted(malli) plot(sovite,type="b",col="blue",ylim=c(60,68), ylab="kurssi",xlab="aika") lines(intel_close,col="red",type="b") 3 / 13

4 legend(16,68, legend=c("aikasarja", "Sovite"), col=c("red","blue"),lty=c(1,1),cex=0.8) Kurssi Aikasarja Sovite Aika Kuva 3: Intel_close aikasarja punaisella ja AR(2)-sovite sinisellä. Kuvan 3 perusteella sovite vastaa melko hyvin alkuperäistä aikasarjaa. Estimoidaan AR(2)-malli ensimmäisestä 16 havainnosta ja katsotaan miten hyvin malli ennustaa 4 viimeistä havaintoa. malli_ver <- Arima(Intel_Close[1:16],order=c(2,0,0)) ennuste <- forecast(malli_ver,h=4,level=false)$mean #level=false, jättää luottamusvälit pois plot(intel_close,col="red",type="b",ylim=c(60,68), ylab="kurssi",xlab="aika") lines(ennuste,col="blue",type="b") legend(16,68, legend=c("aikasarja", "Ennuste"), col=c("red", "blue"), lty=c(1,1), cex=0.8) Kuvasta 4 nähdään, että 16 ensimmäistä havaintoa eivät ennusta erityisen hyvin viimeistä neljää havaintoa, vaikka AR(2)-malli todettiin riittäväksi. Tämä selittyy sillä, että alkuperäinen aikasarja on suhteellisen lyhyt. Varsinkin lyhyitä aikasarjoja ennustaessa tulee olla siis hyvin varovainen. Spots acf(spots,lag.max=50) pacf(spots,lag.max=50) Kuvan 5 perusteella PACF näyttää katkeavan viiveellä 2, vaikka osittaisautokorrelaatio viiveillä 6-8, 29 ja 48 menee merkitsevyysrajan yli. Sovitetaan AR(2)-malli ja tutkitaan residuaaleja. 4 / 13

5 Kurssi Aikasarja Ennuste Aika Kuva 4: Intel_close aikasarja punaisella ja 16 ensimmäisen havaintopisteen avulla estimoidun AR(2)-mallin ennuste sinisellä. ACF PACF Kuva 5: Spots aikasarjan auto- ja osittaisautokorrelaatiofunktio. malli2 <- Arima(Spots,order=c(2,0,0)) acf(malli2$res) pacf(malli2$res) Kuvasta 6 nähdään että viiveillä 9-11 residuaalien auto- ja osittaisautokorrelaatio ovat merkitsevyystason yläpuolella. Tehdään Ljung-Box testi residuaaleille. k <- 2 spots_bl <- rep(na,47) 5 / 13

6 AR(2) mallin residuaalien ACF AR(2) mallin residuaalien PACF Kuva 6: Aikasarjan Spots AR(2)-mallin residuaalien auto- ja osittaisautokorrelaatiofunktio. for (i in 1:47) { spots_bl[i]=box.test(malli2$res,lag=(i+k),fitdf=k, type="ljung-box")$p.value } round(spots_bl,3) [1] [12] [23] [34] AR(2)-malli ei ole Ljung-Box testien perusteella riittävä selittämään aikasarjan Spots käyttäytymistä. Ljung-Box testin nollahypoteesi hylätään viiveillä Huomaa että Ljung-Box testin ensimmäinen arvo vastaa viivettä k + 1. Kokeillaan nyt automaattista SARIMA-mallien sijoitusta ja tutkitaan mallin residuaaleja. malli.auto <- auto.arima(spots) malli.auto acf(malli.auto$res,lag.max=50) pacf(malli.auto$res,lag.max=50) Series: Spots ARIMA(3,0,1) with non-zero mean Coefficients: ar1 ar2 ar3 ma1 intercept s.e / 13

7 sigma^2 estimated as 266.4: log likelihood= AIC= AICc= BIC= Algoritmi sovittaa parhaan mahdollisen SARIMA-mallin annettuun aikasarjaan käyttäen minimoitavana mallinvalintakriteerinä joko AIC, AICc tai BIC. Huomaa, että SARIMA-mallien sovittaminen aikasarjoihin ei ole yleensä helppoa ja ei ole olemassa täydellistä algoritmia joka löytää aina parhaan mahdollisen mallin. Tästä syystä funktioon auto.arima ei tule luottaa sokeasti. Funktio lisäksi valitsee usein tarpeettoman monimutkaisia SARIMA-perheen malleja, jotka ovat vain marginaalisesti parempia suhteessa johonkin yksinkertaiseen malliin. Kuvan 7 perusteella viiveillä 9,10 ja 11 residuaalien auto- ja osittaisautokorrelaatio ovat merkitseviä myös ARMA(3,1)-sovitteen residuaaleille. Lisäksi Ljung-Box testin nollahypoteesi hylätään viiveillä Ljung-Box testien tulokset alla. Täten myöskään ARMA(3,1)-malli ei testien perusteella riittävä selittämään aikasarjan spots käyttäytymistä. k <- 4 spots_bl <- rep(na,47) for (i in 1:47) { spots_bl[i]=box.test(malli.auto$res,lag=(i+k),fitdf=k, type="ljung-box")$p.value } round(spots_bl,3) [1] [12] [23] [34] Kommentteja: (1) Auringonpilkkujen määrää kuvaava aikasarja Spots osoittautuu vaikeaksi mallintaa SARIMA-malleilla. Eräs ongelman aiheuttajista on se, että kausivaihtelun jakson pituus n. 11 vuotta ei ole täysin vakio. Täten kausi ARIMA-malleja on vaikea sovittaa Spots aikasarjaan. (2) Auringonpilkku-aikasarjaa on tutkittu paljon. Tämänhetkisen käsityksen mukaan eräs parhaista kandidaateista selittämään sen käyttäytymistä, on ns. kynnysmalli (threshold model). Piirretään sovitteet ja aikasarja samaan kuvioon: 7 / 13

8 ARMA(3,1) mallin residuaalien ACF ARMA(3,1) mallin residuaalien PACF Kuva 7: Aineistosta Spots auto.arima-funktiolla valitun mallin residuaalien ACF ja PACF. sovite.sun <- fitted(malli2) sovite.auto <- fitted(malli.auto) plot(sovite.sun,type="b",col="blue", ylab="lkm.",xlab="aika") lines(spots,col="red",type="b") lines(sovite.auto,col="green",type="b") legend("topleft", legend=c("spots-aikasarja", "AR(2)-Sovite", "ARMA(3,1)-Sovite"), col=c("red","blue","green"),lty=c(1,1),cex=0.8) Kuvasta 8 nähdään että molemmat sovitteet seuraavat hyvin alkuperäisen aikasarjan käyttäytymistä. Ennustetaan viimeiset 43 havaintoa käyttäen AR(2)-mallia, samat voidaan toistaa myös ARMA(3,1)-mallille. malli_ver <- Arima(Spots[1:172],order=c(2,0,0)) # Korjataan ennuste alkamaan oikeasta ajanhetkestä ennuste <- ts(forecast(malli_ver,h=43)$mean,start=1921) plot(spots,col="red",type="l",ylim=c(0,200)) lines(ennuste,col="blue",type="l") Kuvasta 9 nähdään että ennusteet pitkälle tulevaisuuteen ovat melko epäluotettavia. Toisaalta muutaman aika-askeleen ennustaminen onnistuu suhteellisen hyvin. Pitkän aikavälin ennustamista huonontaa lisäksi se, että valitut mallit eivät ole riittäviä selittämään aikasarjan Spots käyttäytymistä. Sales Kotitehtävän perusteella Sales ei näytä stationaariselta, mutta D 12 DSales näyttää. Kotitehtävässä laskettujen auto- ja osittaisautokorrelaatiofunktioiden perusteella Sales voisi 8 / 13

9 Aika Lkm Spots aikasarja AR(2) Sovite ARMA(3,1) Sovite Kuva 8: Spots aikasarja punaisella, AR(2)-sovite sinisellä ja ARMA(3,1)-sovite vihreällä. 43 aika askeleen ennuste aika askeleen ennuste Kuva 9: Spots aikasarja punaisella ja AR(2)-mallin ennuste sinisellä. noudattaa jotain SARIMA-perheen mallia. Etsitään sopivaa mallia auto.arima avulla ja tutkitaan residuaaleja. malli_sales <- auto.arima(sales) Series: Sales ARIMA(2,1,2)(1,1,2)[12] 9 / 13

10 ACF PACF Kuva 10: Aikasarjan Sales SARIMA(2,1,2)(1,1,2) 12 -mallin residuaalien auto- ja osittaisautokorrelaatiofunktio. Coefficients: ar1 ar2 ma1 ma2 sar1 sma1 sma s.e sigma^2 estimated as 23.85: log likelihood= AIC= AICc= BIC= acf(malli_sales$res,lag.max=50) pacf(malli_sales$res,lag.max=50) # nyt sovitettavia parametreja =7 k <- 7 sales_bl <- rep(na,47) for (i in 1:47) { sales_bl[i]=box.test(malli_sales$res,lag=(i+k),fitdf=k, type="ljung-box")$p.value } round(sales_bl,3) [1] [12] [23] [34] [45] / 13

11 SARIMA(2,1,2)(1,1,2) 12 -malli ei ole Ljung-Box testien perusteella riittävä. Testin nollahypoteesi hylätään 5% merkitsevyystasolla kaikilla paitsi viiveellä 9. ACF PACF Kuva 11: Aikasarjan Sales SARIMA(2,1,0)(1,1,0) 12 -mallin residuaalien auto- ja osittaisautokorrelaatiofunktio. Osittais- ja autokorrelaatiofunktioiden perusteella, sopiva malli voisi olla esimerkiksi SARIMA(2,1,0)(1,1,0) 12. malli_sales2 <- Arima(Sales,order=c(2,1,0),season=c(1,1,0)) # Huomaa, että Arima() ei toimi jos aikasarjan frequency parametri on # asetettu väärin. Frequency voidaan joko määrittää joko funktiolla ts() # tai Arima() funktiossa asettamalla season=list(order=c(1,1,0),period=12) acf(malli_sales2$res,lag.max=50) pacf(malli_sales2$res,lag.max=50) # nyt sovitettavia parametreja 2+1=3 k <- 3 sales_bl2 <- rep(na,47) for (i in 1:47) { sales_bl2[i]=box.test(malli_sales2$res,lag=(i+k),fitdf=k, type="ljung-box")$p.value } round(sales_bl2,3) [1] [12] [23] [34] [45] / 13

12 Nyt Ljung-Box testin nollahypoteesi hyväksytään viiveillä 4-16 ja Vaikka sovite on parempi suhteessa auto.arima valitsemaan malliin, silti tulosta ei voida pitää kovin onnistuneena. Parempaa mallia on kuitenkin vaikeata löytää ainakaan SARIMAperheestä. Kommentti: Aikasarja Sales osoittautuu vaikeaksi mallintaa täydellisesti. Katsotaan vielä miten hyvin estimoitu SARIMA(2, 1, 0)(1, 1, 0) 12 malli sopii alkuperäiseen aikasarjaan. Kurssi Aika Kuva 12: Aikasarja Sales punaisella ja SARIMA(2,1,0)(1,1,0) 12 -mallin sovitteet sinisellä. Katsotaan miltä mallin ennuste näyttää 48 aika-askelta (4 vuotta) eteenpäin: sovite.sales <- fitted(malli_sales2) plot(sovite.sales,type="b",col="blue", ylab="kurssi",xlab="aika") lines(sales,col="red",type="b") ennuste_sales <- forecast(malli_sales2,h=48)$mean 12 / 13

13 plot(sales,col="red",type="b",ylim=c(100,340), xlim=c(1970,1987),ylab="lkm.",xlab="aika") lines(ennuste_sales,col="blue",type="b") Lkm Aika Kuva 13: Aikasarja Sales punaisella ja SARIMA(2,1,0)(1,1,0)-mallin ennuste sinisellä. Kuvasta 13 nähdään, että saatava ennuste neljä vuotta tulevaisuuteen näyttää järkevältä, vaikka SARIMA(2, 1, 0)(1, 1, 0) 12 -malli ei ole Ljung-Box-testien perusteella riittävä Kotitehtävät 4.2 Tiedostoon MLCO2 on tallennettu aikasarja MLCO2, joka sisältää Mauna Loa-tulivuorella tehtyjen hiilidioksidimittausten tulokset 216 kuukaudelta. Aikasarjaa on tarkasteltu alustavasti viikon 3 tietokoneharjoituksissa. a) Etsi paras mahdollinen SARIMA-perheen malli aikasarjalle MLCO2. b) Ennusta aikasarjaa 2 ja 24 askelta eteenpäin. Pohdi ennusteiden hyvyyttä. 13 / 13

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus

Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus MS-C2128 Ennustaminen ja aikasarja-analyysi 5. harjoitukset / Tehtävät Kotitehtävät: 2 Aihe: ARMA-mallit Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tehtävä 5.1. Tarkastellaan

Lisätiedot

3. Tietokoneharjoitukset

3. Tietokoneharjoitukset 3. Tietokoneharjoitukset Aikasarjan logaritmointi Aikasarjoja analysoidaan usein logaritmisessa muodossa. Asialooginen perustelu logaritmoinnille: Muuttujan arvojen suhteelliset muutokset ovat usein tärkeämpiä

Lisätiedot

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä MS-C2128 Ennustaminen ja aikasarja-analyysi 4. harjoitukset / Tehtävät Kotitehtävät: 3, 5 Aihe: ARMA-mallit Tehtävä 4.1. Tutustu seuraaviin aikasarjoihin: Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan

Lisätiedot

6. Tietokoneharjoitukset

6. Tietokoneharjoitukset 6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä

MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH 8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

2. Tietokoneharjoitukset

2. Tietokoneharjoitukset 2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten

Lisätiedot

Aikasarjamallit. Pekka Hjelt

Aikasarjamallit. Pekka Hjelt Pekka Hjelt Aikasarjamallit Aikasarja koostuu järjestyksessä olevista havainnoista, ja yleensä se on tasavälinen ja diskreetti eli havaintopisteet ovat erillisiä. Lisäksi aikasarjassa on yleensä autokorrelaatiota

Lisätiedot

Ennustaminen ARMA malleilla ja Kalmanin suodin

Ennustaminen ARMA malleilla ja Kalmanin suodin Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Auringonpilkkujen jaksollisuus

Auringonpilkkujen jaksollisuus Mat-2.108 Sovelletun matematiikan erikoistyöt 16.1.2004 Auringonpilkkujen jaksollisuus Teknillinen korkeakoulu Systeemianalyysin laboratorio Keijo Jaakola 51624B 1 1. Johdanto...3 2. Aikasarjamalleja...3

Lisätiedot

ARMA mallien rakentaminen, Kalmanin suodatin

ARMA mallien rakentaminen, Kalmanin suodatin ARMA mallien rakentaminen, Kalmanin suodatin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016

Lisätiedot

ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalle

ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalle ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalleihin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

Harjoitus 7 : Aikasarja-analyysi (Palautus )

Harjoitus 7 : Aikasarja-analyysi (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,

Lisätiedot

1. Tietokoneharjoitukset

1. Tietokoneharjoitukset 1. Tietokoneharjoitukset Aluksi Tällä kurssilla käytetään R-ohjelmistoa, jonka käyttämisestä lienee muutama sana paikallaan. R-ohjelmisto on laajasti käytetty vapaassa levityksessä oleva ammattimaiseen

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla

Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla Kandidaatintyö 27.5.2015 Touko Väänänen Työn saa

Lisätiedot

ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon

ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon TAMPEREEN YLIOPISTO Pro gradu -tutkielma Laura Lizana Bister ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon Informaatiotieteiden laitos Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi

Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi Aikasarja on joukko peräkkäisiä, toisistaan riippuvia havaintoja. Aikasarja-analyysin tavoitteena

Lisätiedot

Yleistetyistä lineaarisista malleista

Yleistetyistä lineaarisista malleista Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Stationaariset stokastiset prosessit ja ARMA-mallit

Stationaariset stokastiset prosessit ja ARMA-mallit Stationaariset stokastiset prosessit ja ARMA-mallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

Harjoitus 3: Regressiomallit (Matlab)

Harjoitus 3: Regressiomallit (Matlab) Harjoitus 3: Regressiomallit (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä

Lisätiedot

6.5.2 Tapering-menetelmä

6.5.2 Tapering-menetelmä 6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6) Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista

Lisätiedot

Harjoitus 3: Regressiomallit (Matlab)

Harjoitus 3: Regressiomallit (Matlab) Harjoitus 3: Regressiomallit (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä mallin sovittamisessa

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Erikoistyö: Alkoholin kulutusmenojen ennustaminen

Erikoistyö: Alkoholin kulutusmenojen ennustaminen Erikoistyö: Alkoholin kulutusmenojen ennustaminen Tekijä: Mikko Nordlund 49857B mikko.nordlund@hut.fi Ohjaaja: Ilkka Mellin Jätetty: 11.12.2003 Sisällysluettelo 1. JOHDANTO... 3 2. MALLIEN TUTKIMINEN...

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi

Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi PRO GRADU -TUTKIELMA Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Tilastotiede Joulukuu 2012 2 Tampereen yliopisto Informaatiotieteiden yksikkö

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

VARIANSSIANALYYSI ANALYSIS OF VARIANCE

VARIANSSIANALYYSI ANALYSIS OF VARIANCE VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä 7 Osa 7: Pidempiä esimerkkejä R:n käytöstä R:n pääasiallinen käyttö monelle on tilastollisten menetelmien suorittaminen. Käydään nyt läpi joitain esimerkkitilanteita, alkaen aineiston luvusta ja päättyen

Lisätiedot

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot

Harjoitus 6 -- Ratkaisut

Harjoitus 6 -- Ratkaisut Harjoitus 6 -- Ratkaisut 1 Ei kommenttia. 2 Haetaan data tiedostosta. SetDirectory"homeofysjmattas" SetDirectory "c:documents and settingsmattasdesktopteachingatk2harjoitukseth06" netnfstuhome4ofysjmattas

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu 5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Load

Load Tampereen yliopisto Tilastollinen mallintaminen Mikko Alivuotila ja Anne Puustelli Lentokoneiden rakennuksessa käytettävien metallinkiinnittimien puristuskestävyys Matematiikan, tilastotieteen ja filosofian

Lisätiedot

TIE- JA VESIRAKENNUSHALLITUS TUTKIMUSKESKUS INSINÖÖRITOIMISTO PENTTI POLVINEN KY TVH HELSINKI ii / / / - 1)

TIE- JA VESIRAKENNUSHALLITUS TUTKIMUSKESKUS INSINÖÖRITOIMISTO PENTTI POLVINEN KY TVH HELSINKI ii / / / - 1) 2400 / - 1) ii / / Tammi Helmi Maalis Huhti Touko KesA HelnA Elo Syys Loka Marras Joulu LIIKENNEONNETTOMUUKSIEN AIKASARJA- ENNUSTE VUODELLE 1989 TIE- JA VESIRAKENNUSHALLITUS TUTKIMUSKESKUS INSINÖÖRITOIMISTO

Lisätiedot

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1 T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Harjoitukset 4 : Paneelidata (Palautus )

Harjoitukset 4 : Paneelidata (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

Pelaisitko seuraavaa peliä?

Pelaisitko seuraavaa peliä? Lisätehtävä 1 seuraavassa on esitetty eräs peli, joka voidaan mallintaa paramterisena tilastollisena mallina tehtävänä on selvittää, kuinka peli toimii ja näyttää mallin takana oleva apulause (Tehtävä

Lisätiedot

Ilkka Mellin Aikasarja-analyysi ARMA-mallit

Ilkka Mellin Aikasarja-analyysi ARMA-mallit Ilkka Mellin Aikasarja-analyysi ARMA-mallit TKK (c) Ilkka Mellin (007) 1 ARMA-mallit >> ARMA-mallit ja niiden ominaisuudet ARMA-mallien auto- ja osittaisautokorrelaatiofunktiot ARMA-mallien spektri ARMA-mallien

Lisätiedot