MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

Koko: px
Aloita esitys sivulta:

Download "MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely"

Transkriptio

1 MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016

2 Aikataulu ja suoritustapa (Katso MyCourses) Luennot 24h, () maanantaisin C (y205) ja keskiviikkoisin D (y122) 12:15-14:00 Harjoitukset 24h, Teoria (Niko Lietzèn): maanantaisin 14:15-16:00 (M1), ATK (Marko Voutilainen): torstaisin ryhmä 1 12:15-14:00 (U344) ryhmä 2 14:15-16:00 (U344) ryhmä 3 16:15-18:00 (U344, poikkeuksena to jolloin U257) Kotitehtävät: 1-2 teoria- ja 1-2 tietokonetehtävää viikoittain Tentti 5 tehtävää, joista yhden voi korvata kotitehtäväpisteillä Harjoituksista maksimi on 6 pistettä yhteensä, eli 1 piste / viikko. Läsnäolosta (teoria tai ATK) saa 1/4-pistettä ja tehdyistä kotitehtävistä (teoria tai ATK) 1/4-pistettä viikottain. Tenttitehtävistä maksimi on 6 pistettä / tehtävä. Mukana saa olla A4-kokoinen muistilappu ja laskin

3 Esitiedot Stokastiikka Moniulotteiset jakaumat ja niiden tunnusluvut: Odotusarvo, varianssi, kovarianssi, korrelaatio Tilastollinen testaus Hypoteesi, testisuure, p-arvo, tulkinta Estimointi Estimaattori, estimaatti Estimaattorin harhattomuus, tehokkuus, tarkentuvuus Matriisilaskentaa, sarjoja

4 Harjoituksissa käytetään R-ohjelmointia Ilmainen avoimen lähdekoodin ohjelmisto tilastoanalyysiin Suosio vahvassa kasvussa sekä akateemisessa tutkimuksessa että yrityksissä.

5 Harjoituksissa käytetään R-ohjelmointia

6 Sisältö Viikko 1 Yleinen lineaarinen malli. Viikko 2 Regressiodiagnostiikka ja regressiomallin valinta. Viikko 3 Stationaariset stokastiset prosessit ja ARMA-malli. Viikko 4 ARMA-mallin ominaisuudet sekä rakentaminen. Viikko 5 ARMA-mallin rakentaminen ja Kalmanin suodatin. Viikko 6 Dynaamiset regressiomallit, vierailijaluento sekä kertausta.

7 Osaamistavoitteet Kurssin suoritettuaan osallistuja tuntee regressiomalliin, dynaamisen regressiomalliin sekä ARIMA-malleihin liittyvää teoriaa. osaa analysoida ja ennustaa aikasarjoja yllä mainittujen mallien avulla.

8 Työmäärä toteutustavoittain Valtaosa kurssin työmäärästä muodostuu itsenäisestä opiskelusta. Luennot - kontaktiopetus (6 x 4) 24 h Luennot - itsenäinen työskentely (6 x 3) 18 h Laskuharjoitukset - kontaktiopetus (6 x 2) 12 h Laskuharjoitukset - itsenäinen työskentely (6 x 4) 24 h Tietokoneharjoitukset - kontaktiopetus (6 x 2) 12 h Tietokoneharjoitukset - itsenäinen työskentely (6 x 4) 24 h Tenttiin valmistautuminen 18 h Tentti 3 h Yht 135 h 1 op vastaa 27 h kokonaistyöskentelyä -> 5 op on 135 h työtä.

9 Vuoden 2014 kurssin arvosanat Alla oleva taulukko demonstroi tehtyjen laskuharjoitustehtävien vaikutusta kurssiarvosanaan. Arvosana 0 7 pist pist. >12 pist. 0 3 (50%) 0 (0%) 0 (0%) 1 2 (33%) 0 (0%) 0 (0%) 2 1 (17%) 1 (20%) 0 (0%) 3 0 (0%) 4 (80%) 5 (11%) 4 0 (0%) 0 (0%) 2 (4%) 5 0 (0%) 0 (0%) 39 (85%) ka ,74 Taulukossa on huomioitu vain tenttiin osallistuneet opiskelijat.

10 Aikasarja-analyysin sovelluskohteita Kansanterveyden tutkimus Rahoitusriskien hallinta Talouspolitiikan päätöksenteko Tuotannon suunnittelu

11 Syövän yleisyys Lähde: ( )

12 Tenor basis vs cross currency basis Swap spread (bp) Date

13 Ennustaminen Ennustaminen on erittäin vaikeaa Mikään malli ei kuvaa todellisuutta täydellisesti Oikein valittu malli auttaa tulevaisuutta koskevien päätösten tekemisessä, mutta ennustamiseen liittyy aina paljon epävarmuutta Malli valitaan aineiston ja kontekstitietämyksen perusteella

14 Eri mallien ominaisuudet on tunnettava, että kuhunkin tilanteeseen sopivan mallin valitseminen onnistuu. Tällä kurssilla käsitellään perusmalleja yleisessä muodossa, mutta käytännön tilanteissa käytetään usein tarkoitukseen sopiviksi muokattuja tai niitä varten kehitettyjä malleja.

15 Esityksessä käytetyt kuvat

16 Kirjallisuutta: 1. Brockwell / Davis (1991), Time Series: Theory and Methods 2. Hamilton (1994), Time Series Analysis 3. Harvey, A.C. (1993), Time Series Models. Philip Allan. 4. Tsay (2014), Multivariate Time Series Analysis with R and financial applications

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

ELEC-C5210 Satunnaisprosessit tietoliikenteessä

ELEC-C5210 Satunnaisprosessit tietoliikenteessä ELEC-C5210 Satunnaisprosessit tietoliikenteessä Esa Ollila Aalto University, Department of Signal Processing and Acoustics, Finland esa.ollila@aalto.fi http://signal.hut.fi/~esollila/ Kevät 2017 E. Ollila

Lisätiedot

Tuloslaskenta (22C00400, 6 op)

Tuloslaskenta (22C00400, 6 op) Tuloslaskenta (22C00400, 6 op) OPETUSSUUNNITELMA 3.10.2016 Opettajanyhteystiedot Kurssin tiedot Luennot ja harjoitukset Kurssin asema KTK, erikoistumisopinnot Nimi Kari Toiviainen (TS2013) S-posti kari.toiviainen@aalto.fi

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Kurssin esittely (syksy 2016)

Kurssin esittely (syksy 2016) Kurssin esittely (syksy 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Opettajat Tuntiopettaja Anna Anttalainen (BIO), aktiivinen kiltatoiminnassa

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2003 Aleksi Penttinen & Eeva Nyberg Tietoverkkolaboratorio Teknillinen korkeakoulu http://www.netlab.hut.fi/opetus/s38145/

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Harri Haanpää Peda-forum 2004 AB TEKNILLINEN KORKEAKOULU Tietojenkäsittelyteorian laboratorio T 79.148 Tietojenkäsittelyteorian

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten

Lisätiedot

Kurssin opettajat, tavoitteet ja käytänteet (kevät 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt 1

Kurssin opettajat, tavoitteet ja käytänteet (kevät 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Kurssin opettajat, tavoitteet ja käytänteet (kevät 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Kuvissa Anna Anttalainen, Juho Timonen, Touko Väänänen

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja. Jari Melgin Huone H 3.35/Töölö Puhelin

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja. Jari Melgin Huone H 3.35/Töölö Puhelin 22A00110 Laskentatoimen perusteet (6 op) SYLLABUS Kurssin asema ja ajankohta; luentojen aika ja paikka Opettaja Liiketoimintaosaamisen perusteet Syksy 2016, II-periodi Ma 13.15 15 Ke 13.15 15 To 13.15

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

PHYS-A0120 Termodynamiikka (TFM) Maanantai

PHYS-A0120 Termodynamiikka (TFM) Maanantai PHYS-A0120 Termodynamiikka (TFM) Maanantai 26.10.2015 Käytännönjärjestelyt Kurssin alkuosan henkilökunnasta Kurssi jakautuu kahteen osaan: ensimmäistä 3 viikkoa luennoi TkT Kati Miettunen ja jälkimmäistä

Lisätiedot

OPISKELUTYÖN MITOITUS Opetuksen suunnittelun työväline, jolla arvioidaan opiskelijan työmäärää suhteessa 1 PERUSTIEDOT

OPISKELUTYÖN MITOITUS Opetuksen suunnittelun työväline, jolla arvioidaan opiskelijan työmäärää suhteessa 1 PERUSTIEDOT OPISKELUTYÖN MITOITUS Opetuksen suunnittelun työväline, jolla arvioidaan opiskelijan työmäärää suhteessa 1 PERUSTIEDOT Tiedekunta Laitos Yksikkö Taso (kandidaatti, maisteri, jatkoopinnot) Moduuli Kurssikoodi

Lisätiedot

https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu

https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu Johdatus ohjelmointiin 811122P Yleiset järjestelyt: Kurssin sivut noppa -järjestelmässä: https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu 0. Kurssin suorittaminen Tänä vuonna kurssin suorittaminen tapahtuu

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo

MAT INVESTOINTITEORIA. (5 op) Kevät Ville Brummer / Pekka Mild / Ahti Salo MAT - 2.114 INVESTOINTITEORIA (5 op) Kevät 2008 Ville Brummer / Pekka Mild / Ahti Salo 1 Opintojakson sisältö Taustaa Kattaa matemaattisen investointiteorian perusteet: Teemoja sivuttu osin muilla Mat-2

Lisätiedot

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 1 Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 Palautus to 5.2. klo 16 mennessä Chiaran lokerolle Koetilantie 5, 3. krs. Tehtävät voidaan palauttaa myös to 5.2. luennon alussa. En ota vastaan myöhään

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Tervetuloa jatkamaan DIGITAALI- TEKNIIKAN opiskelua! Digitaalitekniikka (piirit) Luku 0 Sivu 1 (8)

Tervetuloa jatkamaan DIGITAALI- TEKNIIKAN opiskelua! Digitaalitekniikka (piirit) Luku 0 Sivu 1 (8) Tervetuloa jatkamaan DIGITAALI- TEKNIIKAN opiskelua! Digitaalitekniikka (piirit) Luku 0 Sivu 1 (8) Digitaalitekniikka (piirit) Luku 0 Sivu 2 (8) Yleistä opintojaksosta Laajuus 3 op = 80 h, 1. periodilla

Lisätiedot

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2002 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Sarjat ja integraalit, kevät 2014

Sarjat ja integraalit, kevät 2014 Sarjat ja integraalit, kevät 2014 Peter Hästö 12. maaliskuuta 2014 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016 CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016 Kontaktiopetus 70 h Luennot 44 h Laboratoriotyöt 24 h + 2 h = 26 h Oma työ 65 h Laskutuvat ja kotitehtävät 24 h Laboratoriotöiden loppuraportti

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

TFM-tutkinto-ohjelma, tekniikan kandidaatin tutkinnon pääaineet lv Teknillinen fysiikka Matematiikka Mekaniikka Systeemitieteet

TFM-tutkinto-ohjelma, tekniikan kandidaatin tutkinnon pääaineet lv Teknillinen fysiikka Matematiikka Mekaniikka Systeemitieteet TFM-tutkinto-ohjelma, tekniikan kandidaatin tutkinnon pääaineet lv 2006-2007 Teknillinen fysiikka Matematiikka Mekaniikka Systeemitieteet 12.7.2006 Tekniikan kandidaatin tutkinto 1, teknillinen fysiikka

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op

031075P MATEMATIIKAN PERUSKURSSI II 5,0 op 031075P MATEMATIIKAN PERUSKURSSI II 5,0 op Kurssin jokaiseen kolmeen välikokeeseen on ilmoittauduttava erikseen WebOodissa (https://weboodi.oulu.fi/oodi/). Huom! Välikoeilmoittautuminen on PAKOLLINEN.

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2001 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

Kon HYDRAULIIKKA JA PNEUMATIIKKA

Kon HYDRAULIIKKA JA PNEUMATIIKKA Kon-41.3023 HYDRAULIIKKA JA PNEUMATIIKKA 2016 Kurssin tavoitteet Opintojakso antaa yleistiedot hydrauliikan ja pneumatiikan komponenteista sekä niiden toiminnasta osana kokonaisjärjestelmää. Teleskooppi

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

21C00250 Organisaatiokäyttäytyminen, 6 op

21C00250 Organisaatiokäyttäytyminen, 6 op 21C00250 Organisaatiokäyttäytyminen, 6 op SYLLABUS Versio 17.8.2016 Opettajan yhteystiedot Nimi: Apulaisprofessori Olli-Pekka Kauppila, KTT S-posti: olli-pekka.kauppila@aalto.fi Huone: Arkadia E.3.11,

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja (alkukurssi)

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja (alkukurssi) 22A00110 Laskentatoimen perusteet (6 op) SYLLABUS Kurssin asema ja ajankohta; luentojen aika ja paikka Opettaja (alkukurssi) Opettaja (loppukurssi) Liiketoimintaosaamisen perusteet Syksy 2015, II-periodi

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Korrelaatiokertoinen määrittely 165

Korrelaatiokertoinen määrittely 165 kertoinen määrittely 165 Olkoot X ja Y välimatka- tai suhdeasteikollisia satunnaismuuttujia. Havaintoaineistona on n:n suuruisesta otoksesta mitatut muuttuja-arvoparit (x 1, y 1 ), (x 2, y 2 ),..., (x

Lisätiedot

Ohjelmointi II. Erkki Pesonen Luennot ja harjoitukset. Itä-Suomen yliopisto Tietojenkäsittelytieteen laitos 2015

Ohjelmointi II. Erkki Pesonen Luennot ja harjoitukset. Itä-Suomen yliopisto Tietojenkäsittelytieteen laitos 2015 Ohjelmointi II Erkki Pesonen Luennot ja harjoitukset Itä-Suomen yliopisto Tietojenkäsittelytieteen laitos 2015 1 Johdantoa kurssilla opiskeluun: oppimistavoitteet. 1. Tiedän mitä asioita kurssilla opiskellaan

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa

Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa Aktivoiviin opetusmenetelmiin perustuvat matematiikan opetuskokeilut Aalto-yliopistossa Linda Havola, Helle Majander, Harri Hakula ja Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto,

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2017 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

Aikasarjamallit. Pekka Hjelt

Aikasarjamallit. Pekka Hjelt Pekka Hjelt Aikasarjamallit Aikasarja koostuu järjestyksessä olevista havainnoista, ja yleensä se on tasavälinen ja diskreetti eli havaintopisteet ovat erillisiä. Lisäksi aikasarjassa on yleensä autokorrelaatiota

Lisätiedot

Stationaariset stokastiset prosessit ja ARMA-mallit

Stationaariset stokastiset prosessit ja ARMA-mallit Stationaariset stokastiset prosessit ja ARMA-mallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Opiskelijan motivaation rakentuminen ja ylläpitäminen virtuaaliympäristössä

Opiskelijan motivaation rakentuminen ja ylläpitäminen virtuaaliympäristössä Opiskelijan motivaation rakentuminen ja ylläpitäminen virtuaaliympäristössä Esimerkkinä Palvelujen markkinointi kurssin verkkototeutus Virpi Näsänen 16.11.2016 Lähtökohtatilanne Sovimme Aalto-yliopiston

Lisätiedot

OPETUSSUUNNITELMALOMAKE v0.90

OPETUSSUUNNITELMALOMAKE v0.90 OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Harjoitukset 4 : Paneelidata (Palautus )

Harjoitukset 4 : Paneelidata (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa

Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa Matematiikan oppimisen uudet tuulet Metropolia Ammattikorkeakoulun talotekniikan koulutusohjelmassa Riikka Nurmiainen riikka.nurmiainen@metropolia.fi Arviointikokeiluja talotekniikan matematiikan opintojaksoilla

Lisätiedot

Tietokoneverkot. T Tietokoneverkot (4 op) viimeistä kertaa CSE-C2400 Tietokoneverkot (5 op) ensimmäistä kertaa

Tietokoneverkot. T Tietokoneverkot (4 op) viimeistä kertaa CSE-C2400 Tietokoneverkot (5 op) ensimmäistä kertaa Tietokoneverkot T-110.4100 Tietokoneverkot (4 op) viimeistä kertaa CSE-C2400 Tietokoneverkot (5 op) ensimmäistä kertaa ja Matti Siekkinen Tietokoneverkot 2014 sanna.suoranta@aalto.fi Kurssista kaksi versiota

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin

Lisätiedot

T harjoitustehtävät, syksy 2011

T harjoitustehtävät, syksy 2011 T-110.4100 harjoitustehtävät, syksy 2011 Kurssiassistentit Tietotekniikan laitos Perustieteiden korkeakoulu Aalto-yliopisto T-110.4100@tkk.fi Yleistä Kurssin osasuoritteita ovat kaksi osatenttiä ja harjoitustehtävät

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Kohti tentitöntä matematiikkaa

Kohti tentitöntä matematiikkaa Kohti tentitöntä matematiikkaa Riikka Nurmiainen Esitys Matematiikan, fysiikan ja kemian AMK-opettajien päivillä 2152015 Arviointikokeiluja talotekniikan matematiikan opintojaksoilla Miksi? Koska laskemalla

Lisätiedot

Taloustieteen perusopetus yliopistossa. Matti Pohjola

Taloustieteen perusopetus yliopistossa. Matti Pohjola Taloustieteen perusopetus yliopistossa Matti Pohjola Kauppatieteen uuden kandidaattiohjelman rakenne Aalto-yliopistossa Perusopinnot 60 op - taloustiede 6 Erikoistumisopinnot 42 op - pakolliset kurssit

Lisätiedot

Kysynnän ennustaminen muuttuvassa maailmassa

Kysynnän ennustaminen muuttuvassa maailmassa make connections share ideas be inspired Kysynnän ennustaminen muuttuvassa maailmassa Nina Survo ja Antti Leskinen SAS Institute Mitä on kysynnän ennustaminen? Ennakoiva lähestymistapa, jolla pyritään

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat Prof. Anouar Belahcen Anouar.belahcen@aalto.fi Opetushenkilökunta Luennoitsijat: Matti Lehtonen (matti.lehtonen@aalto.fi),

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat Prof. Anouar Belahcen Anouar.belahcen@aalto.fi Opetushenkilökunta Luennoitsijat: Anouar Belahcen (anouar.belahcen@aalto.fi),

Lisätiedot

ENE-C3001 Energiasysteemit

ENE-C3001 Energiasysteemit ENE-C3001 Energiasysteemit Tervetuloa kurssille! Kari Alanne Kurssin henkilökunta Vanhempi yliopistonlehtori Dosentti, TkT Kari Alanne Aalto-yliopisto, Energiatekniikan laitos kari.alanne@aalto.fi Puhelin

Lisätiedot

Juha Merikoski. Jyväskylän yliopiston Fysiikan laitos Kevät 2009

Juha Merikoski. Jyväskylän yliopiston Fysiikan laitos Kevät 2009 FYSP120 FYSIIKAN NUMEERISET MENETELMÄT Juha Merikoski Jyväskylän yliopiston Fysiikan laitos Kevät 2009 1 Kurssin sisältö JOHDANTOA, KÄSITTEITÄ, VÄLINEITÄ [1A] Laskennallista fysiikkaa [1B] Matlabin alkeita

Lisätiedot

T harjoitustyö, kevät 2012

T harjoitustyö, kevät 2012 T-110.4100 harjoitustyö, kevät 2012 Kurssiassistentit T-110.4100@tkk.fi Tietotekniikan laitos Perustieteiden korkeakoulu Aalto-yliopisto 31.1.2012 Yleistä Kurssin osasuoritteita ovat kaksi osatenttiä,

Lisätiedot

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan

Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan Johdatus Ammattikorkeakoulun matematiikkaan ja fysiikkaan ammattiopiston viimeisenä keväänä vahvistaa AMK:uun pyrkivien taitoja pääsykoetta varten saada jo etukäteen 5 op:n suoritus valinnaisiin Tulos:

Lisätiedot

Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta

Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta MS E2177 Operaatiotutkimuksen projektityöseminaari Projektisuunnitelma Tehokkaiden strategioiden identifiointi vakuutusyhtiön taseesta 12.3.2016 Asiakas: Model IT Projektiryhmä: Niko Laakkonen (projektipäällikkö),

Lisätiedot

Yleinen lineaarinen malli

Yleinen lineaarinen malli MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: 1 Määritelmä ja standardioletukset 2

Lisätiedot

Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan

Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Matemaattiset menetelmät, syksy 2012 Lassi Korhonen, Oulun yliopisto, Matematiikan jaos 4.12.2012 1 Lähtökohta, opiskelijan näkökulma

Lisätiedot

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 29-31.10.2008. 1 Tällä viikolla 1. Käytännön järjestelyistä 2. Kurssin sisällöstä ja aikataulusta 3. Johdantoa Mitä koneoppiminen

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit. Autokovarianssi: (kun τ 0) Γ t (τ) = E[(X t µ t )(X t τ µ t τ )] ( ) ( = E[ φ k ε t k φ j ε t τ j )] = = j=0 φ j+k E[ε t k ε t τ j ] k,j=0 φ j+k σ 2 δ k,τ+j k,j=0 = σ 2 φ j+k δ k,τ+j = = k,j=0 φ τ+2j I

Lisätiedot

Harjoitus 7 : Aikasarja-analyysi (Palautus )

Harjoitus 7 : Aikasarja-analyysi (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

Aktivoivat opetuskokeilut matematiikan perusopetuksessa

Aktivoivat opetuskokeilut matematiikan perusopetuksessa Aktivoivat opetuskokeilut matematiikan perusopetuksessa Linda Havola ja Helle Majander Matematiikan ja systeemianalyysin laitos Aalto-yliopisto, Perustieteiden korkeakoulu linda.havola@aalto.fi 15. toukokuuta

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Flipped classroom (2op) Käänteinen opetus/luokkahuone Lähipäivä

Flipped classroom (2op) Käänteinen opetus/luokkahuone Lähipäivä Flipped classroom (2op) Käänteinen opetus/luokkahuone Lähipäivä 6.10.2015 Learning services / OPIT Timo Ovaska Keskeinen sisältö ja osaamistavoitteet Käänteisen opetuksen suunnittelu ja elementit Erilaisten

Lisätiedot

Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista

Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista Harri Haanpää 18. kesäkuuta 2004 Tietojenkäsittelyteorian perusteiden kevään 2004

Lisätiedot

PERUSTIETEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2010 informaatiotilaisuudet: to 2.9. klo L-salissa / pe 3.9. klo F-salissa TERVETULOA!

PERUSTIETEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2010 informaatiotilaisuudet: to 2.9. klo L-salissa / pe 3.9. klo F-salissa TERVETULOA! PERUSTIETEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2010 informaatiotilaisuudet: to 2.9. klo 14.15-15 L-salissa / pe 3.9. klo 12.15-13 F-salissa TERVETULOA! prof. Juhani Pitkäranta (mat.) tutk. Antti Hakola(fys.) suunn.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

PERUSAINEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2008 informaatiotilaisuudet: to 4.9. klo L-salissa/ pe 5.9. klo L-salissa TERVETULOA!

PERUSAINEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2008 informaatiotilaisuudet: to 4.9. klo L-salissa/ pe 5.9. klo L-salissa TERVETULOA! PERUSAINEIDEN LAAJA OPPIMÄÄRÄ Syksyn 2008 informaatiotilaisuudet: to 4.9. klo 14-15 L-salissa/ pe 5.9. klo 12-13 L-salissa TERVETULOA! Prof. Juhani Pitkäranta (mat.) Leht. Petri Salo (fys.) suunn. Katriina

Lisätiedot