ARMA mallien rakentaminen, Kalmanin suodatin

Koko: px
Aloita esitys sivulta:

Download "ARMA mallien rakentaminen, Kalmanin suodatin"

Transkriptio

1 ARMA mallien rakentaminen, Kalmanin suodatin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016

2 Viikko 5: ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalleihin 1 ARMA-mallien rakentaminen 1 Box-Jenkins menetelmä 2 Eksponentiaalinen tasoitus 3 Aikasarjojen ositus 2 Kalmanin suodatin

3 Sisältö 1 ARMA-mallien rakentaminen 2 Kalmanin suodatin

4 Box-Jenkins mallinnuksen idea Pyritään rakentamaan malli, joka kuvaa ilmiötä riittävän hyvin mahdollisimman vähillä parametreilla. Mitä enemmän parametreja estimoidaan, sitä enemmän voidaan mennä pieleen. Monimutkaisemmat mallit saadaan sovitettua aineistoon paremmin, mutta eivät yleensä toimi hyvin ennustamisessa.

5 Box-Jenkins mallinnusstrategia Box-Jenkins menetelmä on SARIMA-mallien rakentamisstrategia, joka sisältää kolme vaihetta: 1 Mallin tunnistaminen (a) Aikasarjan stationarisoimiseksi tarvittavien differensointien kertalukujen h ja H (sekä s) valinta (SARIMA SARMA-aikasarja). Muista: h on integroituvuuden aste ja H kausi-integroituvuuden aste. (b) SARMA-mallin viivepolynomien astelukujen (p, q, P, Q) valinta arvaamalla. 2 Mallin estimointi Estimoidaan parametrit θ i, Θ i, φ i, Φ i (yht p + q + P + Q kpl), esimerkiksi suurimman uskottavuuden (SU) menetelmällä (vrt. ARMA-mallin esitimointi edellä). 3 Diagnostiset tarkastukset: Ovatko estimoidun SARMA-mallin jäännökset valkoista kohinaa? Ei Palataan vaiheeseen 1. On Malli on valmis

6 Box-Jenkins menetelmä: 1a) Mallin tunnistaminen Differensointien kertaluvut Stationaarisuuden saavuttamiseksi aikasarjoja joudutaan usein differensoimaan tai logaritmoimaan. Differensointien kertalukujen valinnan apuna käytetään aikasarjan, sen korrelaatiofunktioiden sekä spektrin kuvaajia. Aikasarjaa differensoidaan kunnes tuloksena saatavaa aikasarjaa voidaan pitää stationaarisena. Jos kuvaajat näyttävät siltä, että aikasarja voisi olla stationaarinen, aikasarjaa ei pidä differensoida. Aikasarjan stationarisoimiseksi välttämättömät differensoinnit yleensä pienentävät aikasarjan varianssia, kun taas ylidifferensoinnilla on taipumus kasvattaa aikasarjan varianssia.

7 Box-Jenkins menetelmä: 1a) Mallin tunnistaminen Stationarisoinnin työkalut Differenssi Dx t = x t x t 1 poistaa aikasarjasta deterministisen lineaarisen trendin. Vastaavasti p. differenssi D p poistaa p. asteen polynomisen trendin. Kausidifferenssi D s x t = x t x ts poistaa aikasarjasta deterministisen kausivaihtelun, jonka periodi on s. Joskus tarvitaan lisäksi aikasarjan logaritmointia y t = log(x t ) Linearisoi aikasarjassa olevan eksponentiaalisen trendin Vakioi aikasarjan tason mukana kasvavan varianssin Alkuperäinen aikasarja saadaan palautettua käänteismuunnoksella Esim. Jos y t = Dx t niin x 1 = y 1 ja x t = y 1 + y y t, t = 2, 3,..., n. Esim. x t = exp(y t ).

8 Box-Jenkins menetelmä: 1b) Mallin tunnistaminen viivepolynomien asteluvut Kun aikasarja on stationarisoitu, valitaan käytettävän SARMA-mallin viivepolynomien asteluvut Valinnan apuna käytetään aikasarjan sekä sen korrelaatiofunktioiden ja spektrin kuvaajia Astelukujen valinta viivepolynomeille on usein niin vaativa tehtävä, että tavallisesti joudutaan tyytymään siihen, että mahdollisten astelukujen lukumäärä saadaan rajatuksi. Valittuja astelukuja kokeillaan estimoimalla vastaavat mallit (ks. Kohta 2) ja lopullisen mallin valinta tehdään vertailemalla estimoitujen mallien hyvyyttä. Vertailussa otetaan huomioon sekä estimoidun mallin parametrien merkitsevyys että diagnostisten tarkistusten (ks. Kohta 3) antamat tulokset.

9 Box-Jenkins menetelmä: 1 Mallin tunnistaminen Kommentteja Kun SARIMA(p, h, q)(p, H, Q) s -malleja sovitetaan yhteiskunnallisiin (esim. taloudellisiin) aikasarjoihin, joudutaan aika harvoin käyttämään malleja, joissa differensointien kertaluvut tai viivepolynomien asteluvut eivät olisi pieniä kokonaislukuja. Usein (ei kuitenkaan aina) riittää tarkastella seuraavia vaihtoehtoja: Differensointien kertaluvut: AR-osien asteluvut: MA-osien asteluvut: h = 0, 1 tai 2; H = 0 tai 1 p = 0, 1 tai 2; P = 0 tai 1 q = 0, 1 tai 2; Q = 0 tai 1

10 Esimerkki: Satunnaiskävely X t Kuva : Satunnaiskävely.

11 Esimerkki: Satunnaiskävely ACF Lag Partial ACF Lag Kuva : Satunnaiskävelyn autokorrelaatio ja osittaisautokorrelaatio.

12 Esimerkki: Satunnaiskävely X t Kuva : Satunnaiskävely (musta) ja differensoitu satunnaiskävely (sininen).

13 Esimerkki: Satunnaiskävely ACF Lag Partial ACF Lag Kuva : Differensoidun satunnaiskävelyn autokorrelaatio ja osittaisautokorrelaatio.

14 Esimerkki: Satunnaiskävely X t Kuva : Satunnaiskävely (musta) ja kahdesti differensoitu satunnaiskävely (vihreä).

15 Esimerkki: Satunnaiskävely ACF Lag Partial ACF Lag Kuva : Kahdesti differensoidun satunnaiskävelyn autokorrelaatio ja osittaisautokorrelaatio.

16 Esimerkki: geometrinen satunnaiskävely (GRW) Y t Kuva : Geometrinen satunnaiskävely.

17 Esimerkki: geometrinen satunnaiskävely ACF Lag Partial ACF Lag Kuva : GRW:n autokorrelaatio ja osittaisautokorrelaatio.

18 Esimerkki: geometrinen satunnaiskävely Y t Kuva : GRW:n (punainen) ja differensoitu GRW (sininen).

19 Esimerkki: geometrinen satunnaiskävely ACF Lag Partial ACF Lag Kuva : Differensoidun GBM:n autokorrelaatio ja osittaisautokorrelaatio.

20 Esimerkki: geometrinen satunnaiskävely Y t Kuva : Geometrinen satunnaiskävely (punainen) ja kahdesti differensoitu GRW (musta).

21 Esimerkki: geometrinen satunnaiskävely ACF Lag Partial ACF Lag Kuva : Kahdesti differensoidun GRW:n autokorrelaatio ja osittaisautokorrelaatio.

22 Esimerkki: geometrinen satunnaiskävely Y t Kuva : Geometrinen satunnaiskävely (punainen) ja logaritmoitu GRW (musta).

23 Esimerkki: geometrinen satunnaiskävely ACF Lag Partial ACF Lag Kuva : Logaritmoidun GRW:n autokorrelaatio ja osittaisautokorrelaatio.

24 Esimerkki: geometrinen satunnaiskävely Y t Kuva : GRW (musta) ja differensoitu log-grw (sininen).

25 Esimerkki: geometrinen satunnaiskävely ACF Lag Partial ACF Lag Kuva : Differensoidun log-grw:n autokorrelaatio ja osittaisautokorrelaatio.

26 Box-Jenkins menetelmä: 2. Mallin estimointi SARMA-malli voidaan estimoida R:llä käyttäen jotakin siihen tarkoitettua funktiota (esim. arima()), joka määrittää annetun aikasarjan parametrit käyttäen jotakin sopivaa menetelmää (esim. suurimman uskottavuuden menetelmä).

27 Box-Jenkins menetelmä: 3. Diagnostiset tarkistukset Diagnostiset tarkistukset perustuvat estimoidun SARMA-mallin residuaalien tutkimiseen: Tutkitaan residuaalien muodostaman aikasarjan sekä sen korrelaatiofunktioiden ja spektrin kuvaajia Testataan jäännösten korreloimattomuutta Estimoitua mallia pidetään riittävänä, jos sen jäännökset ovat valkoista kohinaa. Jos malli ei ole riittävä, niin on palattava tunnistamisvaiheeseen (1)

28 Box-Jenkins menetelmä: 3. Diagnostiset tarkistukset Jäännösten korreloimattomuutta voidaan testata Ljung-Box Q-testisuureella K r i Q K = n(n + 2) n i r i on jäännösten autokorrelaatio viiveellä i Saa selvästi sitä suurempia arvoja mitä voimakkaammin residuaalit ovat autokorreloituneita. Jos SARMA-mallin nollahypoteesi H 0 : ɛ t WN pätee, niin i=1 Q K a χ 2 (K m) m on estimoitujen parametrien lukumäärä SARMA-mallissa Suuret testisuureen Q K arvot johtavat nollahypoteesin hylkäämiseen. Q-testisuureen arvo ja sen jakauma rippuu mukaan otettujen autokorrelaatiokertoimien lukumäärästä K. Tavallisesti Q-testisuure on syytä laskea usealle eri K :lle.

29 Box-Jenkins menetelmä: 3. Diagnostiset tarkistukset Huom Ljung-Box menetelmällä testataan K :n ensimmäisen autokorrelaation merkitsevyyttä yhtä aikaa. K :n on oltava suurempi, kuin estimoitavien parametrien lukumäärä m. Käytännössä testin teho heikkenee, kun K kasvaa, koska testisuure noudattaa asymptoottisesti (n K :n suhteen) χ 2 (K m)-jakaumaa. Jos K on pieni, niin korkeamman asteen autokorrelaatiot jäävät testaamatta. Selkeää sääntöä K :n suuruudelle ei ole.

30 Eksponentiaalinen tasoitus Ad-hoc ennustemenetelmä, jolla ei ole vankkaa tilastotieteellistä pohjaa. Vrt. ARMA-mallit, joissa ensin oletetaan tietynlainen stokastinen prosessi, estimoidaan sen parametrit ja käytetään estimoitua mallia ennustamiseen. Eksponentiaalinen tasoitus alkaa ennusteesta. Laajasti käytetty Helppo toteuttaa Empiirinen havainto: Antaa robusteja ennusteita (eli suhteellisen hyviä ennusteita) erilaisille stokastisille prosesseille, vaikka ei olekaan yleensä optimaalinen ennuste.

31 Yksinkertainen eksponentiaalinen tasoitus Ennustetaan x t+1 :tä havaintojen x t, x t 1, x t 2,... painotetulla summalla ˆx t+1 t = w i x t i i=0 Painot w i = α(1 α) i 1, 0 < α < 1 pienenevät eksponentiaalisesti Nimi eksponentiaalinen tasoitus Tasoitusparametri α. Ennuste voidaan konstruoida päivityskaavalla ˆx t+1 t = αx t + (1 α)ˆx t t 1 = αˆɛ t + ˆx t t 1, missä ˆɛ t = x t ˆx t t 1 on askeleen t ennustevirhe.

32 Yksinkertainen eksponentiaalinen tasoitus: Tulkinta ˆx t+1 t = αx t + (1 α)ˆx t t 1 Voidaan osoittaa että yksinkertainen eksponentiaalinen tasoitus on optimaalinen ennuste, jos x t on ARIMA(0,1,1) prosessi: Dx t on MA(1)-prosessi Dx t = x t x t 1 = ɛ t + θ 1 ɛ t 1, (ɛ) t T WN(0, σ 2 ) Huom Päivitysparametrin arvo on α = θ Todistus: Harjoitustehtävä. Ehto MA(1) prosessin käännettävyydelle on θ 1 < 1, joten estimoitu MA(1)-malli voi implikoida päivitysparametrille arvon α (0, 2).

33 Yksinkertainen eksponentiaalinen tasoitus: Tulkinta ˆx t+1 t = αx t + (1 α)ˆx t t 1 Voidaan osoittaa että yksinkertainen eksponentiaalinen tasoitus on optimaalinen ennuste, jos x t on kohinainen satunnaiskävely, eli prosessi: x t = m t + ɛ t, missä m t = m t 1 + η t, on satunnaiskävely ja (ɛ t ) t T IID(0, σ 2 1), (η t ) t T IID(0, σ 2 2) Optimaalinen α riippuu signaali-kohina-suhteesta var(ɛt ) var(η t ). Todistuksessa käytetään Kalman-suodatinta, jota käsitellään myöhemmin. Taso m t on estimoitava havainnoista x t : m t = αx t + (1 α)m t 1 ja ˆx t+1 t = m t.

34 Kaksinkertainen eksponentiaalinen tasoitus Kaksinkertaisessa eksponentiaalisessa tasoituksessa päivitetään tason m ja trendin β estimaatteja: ˆx t+l t = m t + lβ t m t = α 1 x t + (1 α 1 )(m t 1 + β t 1 ) β t = α 2 (m t m t 1 ) + (1 α 2 )β t 1. Sopivilla parametreilla α i tämä on optimaalinen ARIMA(0,2,2) mallille. Voidaan kirjoittaa missä ˆɛ t = x t ˆx t t 1. m t = m t 1 + β t 1 + α 1ˆɛ t β t = β t 1 + α 1 α 2ˆɛ t,

35 Eksponentiaalinen tasoitus kausivaihtelulla Eksponentiaalisessa tasoituksessa voidaan ottaa huomioon myös kausivaihtelu (kauden pituus s): ˆx t+l t = ( m t + lβ t ) cn s+l, l = 1, 2,..., missä taso m t, trendi β t ja kausivaihtelu c t saadaan kaavoilla x t m t = α 1 + (1 α 1 ) ( ) m t 1 + β t 1 c t s β t = α 2 (m t m t 1 ) + (1 α 1 )β t 1 c t = α 3 x t m t + (1 α 2 )c t s.

36 Eksponentiaalinen tasoitus - Kommentteja Eksponentiaalista tasoitusta sovelletaan usein käyttämällä kiinteitä tasoitusparametreja Joskus tasoitusparametrit estimoidaan havainnoista, mikä parantaa mallin sopivuutta havaintoihin SARIMA-mallien käyttöä suositellaan, jos mahdollista Ei arvattuja vakioita (vrt. tasoitusparametrit α i ) vaan parametrit estimoidaan aineistosta. Eksponentiaalinen tasoitus tuottaa yhtä hyviä ennusteita, jos aikasarja todellakin on käytettyä eksponentiaalista tasoitusmenetelmää vastaavan SARIMA-prosessin generoima: Yksinkertainen eksponentiaalinen tasoitus - ARIMA(0,1,1) Kaksinkertainen eksponentiaalinen tasoitus - ARIMA(0,2,2)

37 Aikasarjojen ositus Useissa aikasarjoissa voidaan nähdä seuraavia piirteitä: Trendejä eli aikasarjan tason systemaattisia muutoksia. Syklistä vaihtelua tai suhdannevaihtelua. Kausivaihtelua, Satunnaista vaihtelua. Tämä empiirinen havainto on johtanut ajatukseen, että aikasarjat kannattaisi osana tilastollista analyysia yrittää osittaa vastaaviin komponentteihin eli osiin.

38 Aikasarjan osituksen tavoitteet (i) Aikasarjan käyttäytymisen kuvailu komponenttiensa avulla. (ii) Aikasarjan analysointi komponenttiensa avulla. (iii) Kausipuhdistus eli aikasarjan tilastollisen analyysin kannalta häiritseväksi koetun kausivaihtelun eliminointi. x t Time

39 Aikasarjan ositus Decomposition of additive time series seasonal trend observed random Time

40 Aikasarjan ositus komponentteihin Aikasarjan osituksessa oletetaan, että aikasarja x t, t = 1, 2,..., n voidaan esittää seuraavien komponenttien summana tai tulona: m t = trendikomponentti c t = syklinen (tai suhdanne-) komponentti s t = kausikomponentti e t = jäännös (tai satunnais-) komponentti. Summamuoto: x t = m t + c t + s t + e t. Tulomuoto: x t = m t c t s t e t. Tulomuoto voidaan muuntaa summamuotoon: log x t = log m t + log c t + log s t + log e t.

41 Aikasarjan ositus komponentteihin Huom Suhdannevaihtelu ja kausivaihtelu eivät ole sama asia: Suhdannevaihtelu (tai syklinen vaihtelu) on vaihtelua, jonka jaksot ovat epäsäännöllisiä ja syklit voivat olla pitkiä. Esimerkiksi talouden suhdanteet (nousukausi vs. lama). Kausivaihtelu puolestaan on saman pituisissa jaksoissa säännöllisesti toistuvaa vaihtelua. Esimerkiksi joulukuusten myynti.

42 Aikasarjojen ositus: Kausipuhdistus Aikasarjan osituksen tavoitteena on usein aikasarjan kausipuhdistus. Kausipuhdistuksessa alkuperäisestä aikasarjasta x t muodostetaan uusi aikasarja y t, josta häiritseväksi koettu kausivaihtelukomponentti s t on eliminoitu: (i) Kausipuhdistus summamuodossa: y t = x t s t = m t + c t + e t (ii) Kausipuhdistus tulomuodossa: y t = x t s t = m t c t e t.

43 Aikasarjojen ositusmenetelmät Yleisesti käytettyjä ositusmenetelmiä: X12 (iteratiivinen liukuvien keskiarvojen menetelmä). X12-ARIMA (ARIMA-mallit iteratiiviseen liukuvien keskiarvojen menetelmään yhdistävä menetelmä). Aikasarjojen rakennemallit (vrt. eksp. tasoituksen yhteydessä esitetyt tila-avaruus mallit).

44 Aikasarjojen osituksen kritiikki Osituksen/kausipuhdistuksen perustelut Komponenttien ja/tai kausipuhdistetun aikasarjan analysointi olisi helpompaa kuin alkuperäisen Osituksen/kausipuhdistuksen kritiikki Aikasarjan jako trendi-, suhdanne-, kausi- ja jäännöskomponentteihin on aina enemmän tai vähemmän mielivaltaista. Komponentit eivät ole todellisia, mitattavissa olevia suureita. Ositusmenetelmien taustalla ei ole (rakennemalleja lukuun ottamatta) mitään tilastollista mallia. Osituksen onnistumista on hyvin vaikeata mitata tilastollisin kriteerein. Kausipuhdistus vääristää aikasarjojen autokorrelaatiorakenteen (sisäiset aikariippuvuudet). Kausipuhdistus vääristää aikasarjojen taajuusalueen ominaisuudet. Kausipuhdistus saattaa vääristää aikasarjojen väliset riippuvuudet.

45 Aikasarjojen osituksen käyttö Johtopäätös kritiikistä: Aikasarjojen ositusta voidaan suhteellisen järkevästi käyttää osana aikasarjojen kuvailua, mutta komponenttien käyttäminen tilastollisissa malleissa on yleensä arveluttavaa. Kausipuhdistus voidaan tilastollisessa analyysissa korvata muilla, tilastotieteen kannalta paremmin perustelluilla menetelmillä: Ajassa aggregointi Yhdistetään (summaamalla, keskiarvoistamalla) aikasarjan peräkkäisiä havaintoja uudeksi aikasarjaksi Ajassa otanta Poimitaan aikasarjasta havaintoja tasaisin aikavälein uudeksi aikasarjaksi Kausidifferensointi Kausivaihtelun huomioiminen tilastollisten mallien rakenteessa.

46 Sisältö 1 ARMA-mallien rakentaminen 2 Kalmanin suodatin

47 Dynaamisen systeemin tila-avaruusesitys Usein halutaan ennustaa tai käyttää ennustamiseen prosessia (tai tilaa) x, josta ei saada suoria havaintoja, mutta käytettävissä on havaintoja prosessista y, joka riippuu tilasta x. Tällaisessa tapauksessa on hyödyllistä kirjoittaa prosessi tila-avaruusesityksen avulla.

48 Dynaamisen systeemin tila-avaruusesitys Tarkastellaan MA(1)-prosessia y t = ɛ t + θ 1 ɛ t 1. Määritellään tila-vektori x t ja kohina v t+1 asettamalla [ ] [ ] ɛt ɛt+1 x t = ja v t+1 =. 0 ɛ t 1 Silloin ja x t+1 = F x t + v t+1, F = [ ] y t = H x t, missä H = [ 1 θ ].

49 Dynaamisen systeemin tila-avaruusesitys Määritelmä Olkoot y t = (y 1t,..., y dt ) ja x t = (x 1t,..., x kt ) satunnaisvektorit. Dynaamisen systeemin tila-avaruusesitys on x t+1 = F x t + v t+1 y t = H x t + w t, missä F ja H ovat k k- ja k d-matriisit ja satunnaisvektorit v = (v 1t,..., v kt ) sekä w = (w 1t,..., w dt ) ovat valkoista kohinaa siten, että E[v t w s ] = 0 kaikilla t ja s E[v t x 1 ] = 0 = E[w tx 1 ], t T. Viimeisestä ehdosta seuraa, että kohinat ovat korreloimattomia vektoreiden y t ja x t kanssa kaikilla t T.

50 Tila-avaruusesitys Esimerkki ARMA(p, q)-prosessin y t = φ 1 y t φ p y t p + ɛ t + θ 1 ɛ t θ q ɛ t q tila-avaruusesitys on φ 1 φ 2 φ k 1 φ k x t+1 = x t y t = [ 1 θ 1 θ 2 θ k 1 ] x t, missä k = max{p, q + 1} ja ɛ t+1 φ j = 0, kun j > p ja θ j = 0 kun j > q

51 Kalmanin suodatin: Ongelma Halutaan ennustaa tilaa x t+1 = (x 1(t+1),..., x k(t+1) ), mutta käytettävissä on vain havaintoja muuttujasta y t = (y 1t,..., y dt ), joka sisältää kaiken käytettävissä olevan informaation tilasta x t+1. Oletetaan, että systeemillä on tila-avaruusesitys x t+1 = F x t + v t+1 y t = H x t + w t missä y t ja w t ovat d-ulotteisia satunnaismuuttujia, x t+1 ja v t+1 ovat k-ulotteisia satunnaismuuttujia sekä { { Q, t = s R, t = s cov(v t, v s ) = ja cov(w t, w s ) = 0, t s 0, t s.

52 Esimerkki: GPS paikannus m 1 satelliittia mittaa kohteen pseudoetäisyyksien sekä niiden derivaattojen differenssit kuhunkin satelliittiin hetkellä t, ja m 2 kappaletta tukiasemia mittaa etäisyyden kohteeseen, jolloin saadaan mittaustuloksista koostuva vektori y t = (y 1t,..., y dt ), d = 2m 1 + m 2. tila-vektori x t sisältää kohteen sijainnin koordinaatit ξ t ja nopeuden v t, [ ] ξt x t =. v t Tila-avaruusmalli paikannukselle (ja nopeuden mittaamiselle) on x t+1 = F x t + u t y t = h(x t ) + w t, missä h(x t ) on sopivasti valittu epälineaarinen funktio ja u t sekä w t ovat kohinaa.

53 Kalmanin suodatin Kalmanin suodattimessa ollaan usein kiinnostuttu tilasta x t+1 = (x 1(t+1),...x k(t+1 )), jota pyritään ennustamaan havaintojen y t = (y 1t,..., y dt ) avulla. Ennuste tilalle x t+1 hetkellä t on ehdollinen odotusarvo ˆx t+1 t := E[x t+1 Y t ], Y t := (y t,..., y 1 ). Kalmanin suodatin laskee ennusteet ˆx 1 (), ˆx 2 1,..., ˆx T T 1 rekursiivisesti ja jokaiseen ennusteeseen liittyy keskineliövirhematriisi P t+1 t := E [ (x t+1 ˆx t+1 t )(x t+1 ˆx t+1 t ) ]

54 Kalmanin suodatin: algoritmi 1 Alkuarvot (pitää valita): ˆx 1 () = E[x 1 ] P 1 () = E [ (x 1 E[x 1 ])(x 1 E[x 1 ]) ] 2 Rekursiokaavat ennusteelle ˆx t+1 t ja matriisille P t+1 t ovat ˆx t+1 t = F ˆx t t 1 + F P t t 1 H ( H P t t 1 H + R ) 1( y t H ˆx ) t t 1 P t+1 t = ( F K t H ) ( F P t t 1 F HK ) t + K t RK t + Q, missä K t on Kalmanin vahvistus (Kalman gain), K t := F P t t 1 H ( H P t t 1 H + R ) 1. 3 Ennuste ŷ t+1 t saadaan kaavalla ŷ t+1 t = H ˆx t+1 t E [ (y t+1 ŷ t+1 t )(y t+1 ŷ t+1 t ) ] = H P t+1 t H + R. ja

55 Kalmanin suodattimen yleistys Kalmanin suodattimessakin voidaan luopua lineaarisuusoletuksista, jolloin tila-avaruusesitys on x t+1 = f t (z t, x t ) + v t+1 y t = h t (x t ) + w t, missä x t+1, y t, v t+1 ja w t ovat kuten edellä, z t on eksogeeninen, kaikista muista riippumaton muuttuja, sekä f t ja h t ovat ajasta t, tilasta x t sekä syötteestä z t riippuvia funktioita. Tällöin ennusteet ovat monimutkaisempia, mutta erittäin käyttökelpoisia.

56 Lähteet: 1 Hamilton, J. (1994): Time Series Analysis, Princeton University Press 2 Ali-Löytty, S. (2004): Kalmanin suodatin ja sen laajennukset paikannuksessa, Diplomityö, TTY

57 Ensi viikolla: Dynaamiset regressiomallit Vierailijaluento: Aleksi Seppänen: Kuntoon perustuva kunnossapito Kertaus

58 Luentokalvot pohjautuvat osittain Mellinin ja Liesiön aiempien vuosien kalvoihin.

Ennustaminen ARMA malleilla ja Kalmanin suodin

Ennustaminen ARMA malleilla ja Kalmanin suodin Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalle

ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalle ARMA mallien rakentaminen, johdatus dynaamisiin regressiomalleihin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä

Lisätiedot

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä

Lisätiedot

ARMA mallien ominaisuudet ja rakentaminen

ARMA mallien ominaisuudet ja rakentaminen MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen

Lisätiedot

Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus

Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus MS-C2128 Ennustaminen ja aikasarja-analyysi 5. harjoitukset / Tehtävät Kotitehtävät: 2 Aihe: ARMA-mallit Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tehtävä 5.1. Tarkastellaan

Lisätiedot

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

3. Tietokoneharjoitukset

3. Tietokoneharjoitukset 3. Tietokoneharjoitukset Aikasarjan logaritmointi Aikasarjoja analysoidaan usein logaritmisessa muodossa. Asialooginen perustelu logaritmoinnille: Muuttujan arvojen suhteelliset muutokset ovat usein tärkeämpiä

Lisätiedot

4. Tietokoneharjoitukset

4. Tietokoneharjoitukset 4. Tietokoneharjoitukset Demotehtävät 4.1 Tarkastellaan seuraavia aikasarjoja. Tiedosto (.txt) Muuttuja Kuvaus Havaintoväli Aikasarjan pituus INTEL Intel_Close Intelin osakekurssi Pörssipäivä n = 20 Intel_Volume

Lisätiedot

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH 8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin

Lisätiedot

MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä

MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.

Lisätiedot

Ilkka Mellin Aikasarja-analyysi Aikasarjat

Ilkka Mellin Aikasarja-analyysi Aikasarjat Ilkka Mellin Aikasarja-analyysi Aikasarjat TKK (c) Ilkka Mellin (2007) 1 Aikasarjat >> Aikasarjat: Johdanto Aikasarjojen esikäsittely Aikasarjojen dekomponointi TKK (c) Ilkka Mellin (2007) 2 Aikasarjat:

Lisätiedot

Stationaariset stokastiset prosessit ja ARMA-mallit

Stationaariset stokastiset prosessit ja ARMA-mallit Stationaariset stokastiset prosessit ja ARMA-mallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

6. Tietokoneharjoitukset

6. Tietokoneharjoitukset 6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen

Lisätiedot

6.5.2 Tapering-menetelmä

6.5.2 Tapering-menetelmä 6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

9. Tila-avaruusmallit

9. Tila-avaruusmallit 9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä MS-C2128 Ennustaminen ja aikasarja-analyysi 4. harjoitukset / Tehtävät Kotitehtävät: 3, 5 Aihe: ARMA-mallit Tehtävä 4.1. Tutustu seuraaviin aikasarjoihin: Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t

Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a

Lisätiedot

Järjestyslukuihin perustuva eksponentiaalinen tasoitus ja volatiliteetin ennustaminen

Järjestyslukuihin perustuva eksponentiaalinen tasoitus ja volatiliteetin ennustaminen Tilastotieteen pro gradu -tutkielma Järjestyslukuihin perustuva eksponentiaalinen tasoitus ja volatiliteetin ennustaminen Ari Väisänen Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos 14.6.2009

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Dynaamisten systeemien identifiointi 1/2

Dynaamisten systeemien identifiointi 1/2 Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Ilkka Mellin Aikasarja-analyysi ARMA-mallit

Ilkka Mellin Aikasarja-analyysi ARMA-mallit Ilkka Mellin Aikasarja-analyysi ARMA-mallit TKK (c) Ilkka Mellin (007) 1 ARMA-mallit >> ARMA-mallit ja niiden ominaisuudet ARMA-mallien auto- ja osittaisautokorrelaatiofunktiot ARMA-mallien spektri ARMA-mallien

Lisätiedot

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6) Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Auringonpilkkujen jaksollisuus

Auringonpilkkujen jaksollisuus Mat-2.108 Sovelletun matematiikan erikoistyöt 16.1.2004 Auringonpilkkujen jaksollisuus Teknillinen korkeakoulu Systeemianalyysin laboratorio Keijo Jaakola 51624B 1 1. Johdanto...3 2. Aikasarjamalleja...3

Lisätiedot

5.7 Uskottavuusfunktioon perustuvia testejä II

5.7 Uskottavuusfunktioon perustuvia testejä II 5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot

Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Harjoitus 7 : Aikasarja-analyysi (Palautus )

Harjoitus 7 : Aikasarja-analyysi (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitus 7 : Aikasarja-analyysi (Palautus 28.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit

Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit TKK (c) Ilkka Mellin (2007) 1 Stationaariset stokastiset prosessit >> Stationaariset stokastiset prosessit Integroituvuus Korrelaatiofunktioiden

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1 Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia Heliövaara 1 Regressiokertoimien PNS-estimaattorit Määritellään havaintojen x j ja y j, j = 1, 2,...,n

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

ARMA(p, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma.

ARMA(p, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma. missä µ = c φ ja C j,k = Γj k) = σ 2 φj k φ 2. ARMAp, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma. Käytännösssä optimointi tehdään numeerisesti

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.

Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio. Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Aki Taanila AIKASARJAENNUSTAMINEN

Aki Taanila AIKASARJAENNUSTAMINEN Aki Taanila AIKASARJAENNUSTAMINEN 26.4.2011 SISÄLLYS JOHDANTO... 1 1 AIKASARJA ILMAN SYSTEMAATTISTA VAIHTELUA... 2 1.1 Liukuvan keskiarvon menetelmä... 2 1.2 Eksponentiaalinen tasoitus... 3 2 AIKASARJASSA

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Yleinen lineaarinen malli

Yleinen lineaarinen malli MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: 1 Määritelmä ja standardioletukset 2

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: 4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

2. Uskottavuus ja informaatio

2. Uskottavuus ja informaatio 2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Regressiodiagnostiikka ja regressiomallin valinta

Regressiodiagnostiikka ja regressiomallin valinta Regressiodiagnostiikka ja regressiomallin valinta MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Yleistetyistä lineaarisista malleista

Yleistetyistä lineaarisista malleista Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit

Lisätiedot