Erikoistyö: Alkoholin kulutusmenojen ennustaminen

Koko: px
Aloita esitys sivulta:

Download "Erikoistyö: Alkoholin kulutusmenojen ennustaminen"

Transkriptio

1 Erikoistyö: Alkoholin kulutusmenojen ennustaminen Tekijä: Mikko Nordlund 49857B Ohjaaja: Ilkka Mellin Jätetty:

2 Sisällysluettelo 1. JOHDANTO MALLIEN TUTKIMINEN MALLIT VIITTEET... 5 DOKUMENTTI: ALKOHOLIN KULUTUSMENOJEN ENNUSTAMINEN...LIITE 2

3 1. Johdanto Tämä erikoistyö on osa OtaStat-projektia. OtaStat on Ilkka Mellinin johtama projekti Teknillisen korkeakoulun Systeemianalyysin laboratoriossa. OtaStat-hankkeen tavoitteena on tuottaa verkko-opetusmateriaalia todennäköisyyslaskennan ja tilastotieteen opetusta varten [1]. Materiaalia voidaan käyttää myös osana Systeemianalyysin laboratorion tavallista opetusta. Koko työ on luettavissa WWW-sivulta ja liitteenä on työn vedos, josta puuttuvat laskutoimitukset ja jonka kuvien asettelu poikkeaa WWW-sivulla olevasta versiosta. Erikoistyö liittyy ennustamiseen ja aikasarja-analyysiin. Se käsittelee alkoholin markkamääräisen kysynnän kuvaamista ja ennustamista. Työ on kirjoitettu opetusmateriaaliksi ja tämän takia siinä käsitellään useita malleja, joiden puutteita korjataan ja lopulta päädytään käyttökelpoiseen malliin. Opetustarkoitusta varten työ on tehty Microsoft Excel ohjelmalla, joka on useimpien saatavilla. Laskutoimitukset ovat työssä mukana Excel-tiedostoina ja näistä näkee, miten erilaisia tilastollisia testejä voi tehdä tavallisella taulukkolaskentaohjelmalla. Testien tekeminen on myös havainnollisempaa Excelillä, koska erilliset tilasto-ohjelmistot eivät yleensä näytä laskutoimituksia vaan tulostavat pelkästään testin tuloksen. Näin testisuureiden laskeminen voi jäädä epäselväksi. Osittaisautokorrelaatiokertoimien estimaatit on kuitenkin laskettu NCSS 2000 ohjelman avulla, koska Excelillä näiden laskeminen edellyttää joko todella monien aputermien laskemista tai Visual Basic kielellä ohjelmoimista. Hypertext Markup Language eli HTML-muodossa oleva dokumentti sekä Portable Document Format eli PDF-muodossa oleva dokumentti on tuotettu OtaStat Markup Language eli OSML-kielellä, jonka Jussi Virtanen on suunnitellut ja toteuttanut yhdessä Veli Peltolan kanssa. OSML on XML eli Extensible Markup Language pohjainen kieli. Liitteenä on PDFmuodossa olevan dokumentin tuloste. 2. Mallien tutkiminen Mallien hyvyyttä tutkitaan useasta eri näkökulmasta. Malleista tehdään erilaisia kuvia graafisen tarkastelun avuksi. Selitysaste on keskeisin tunnusluku hyvyyden vertaamisessa. Residuaalit asetetaan diagnostisten testien kohteeksi. Lopuksi malleilla laaditaan ennuste viidelle vuodelle ja tätä verrataan toteutuneeseen kulutukseen. Estimoimisen jälkeen mallien residuaalit asetetaan graafisen tarkastelun ja diagnostisten testien kohteeksi, joiden tarkoituksena on selvittää, täyttävätkö mallin jäännöstermit niin kutsutut regressiomallin standardioletukset [2]: 1. Jäännöstermien ehdollinen odotusarvo on Jäännöstermit ovat ehdollisesti homoskedastisia. 3. Jäännöstermit ovat ehdollisesti korreloimattomia. 4. Jäännöstermit ovat ehdollisesti normaalijakautuneita 3

4 Ehdollisuus tarkoittaa ehdolla X, missä X on täysiasteinen selittäjämatriisi, jonka alkiot ovat satunnaismuuttujia. Standardioletusten testaamiseen käytetyistä tilastollisista testeistä on selvitys liitteenä olevassa selostuksessa. Kaikista malleista tehtiin seuraavat kuvat: 1. Aikasarjadiagrammi havainnoista ja sovitteista. 2. Aikasarjakuva residuaaleista. 3. Aikasarjakuva toteutuneesta kulutuksesta sekä sovitteesta ja ennusteesta. 4. Q-Q kuva residuaaleista. 5. Kuva estimoiduista autokorrelaatiokertoimista. 6. Kuva estimoiduista osittaisautokorrelaatiokertoimista. Kuvatyypistä 1 nähdään miten hyvin estimoitu malli sopii havaintoihin. Parhaassa tapauksessa käyrät asettuvat päällekkäin. Systemaattiset poikkeamat puolestaan viittaavat siihen, että malli ei ole oikein spesifioitu. Aikasarjakuva residuaaleista esittää samaa asiaa, mutta tästä kuvasta systemaattiset poikkeamat ja heteroskedastisuus on helpompi tunnistaa. Kuvatyyppi 3 kertoo miten hyvin mallin avulla laskettu ennuste sopii havaintoihin. Alkoholin kulutusmenojen pitkään jatkunut kasvutrendi taittuu vuoden 1973 tienoilla ja tämän vuoksi vuosille laadittu ennuste markkamääräisestä myynnistä osuu yläkanttiin. Kuvatyyppi 4 on eräs normaalipaperi, jonka avulla voidaan tutkia jäännöstermien normaalisuutta. Kuvia estimoiduista autokorrelaatio- ja osittaisautokorrelaatiokertoimista käytettiin jäännöstermien korreloituneisuuden arvioimiseen. Kuten aikasarja-analyysissä yleensä, myös alkoholin kulutusmenoja kuvattaessa regressiomallilla törmätään autokorrelaatio-ongelmaan. Autokorrelaation ohella toinen jäännöstermeihin liittyvä ongelma on heteroskedastisuus. Usein nämä ongelmat ilmenevät samanaikaisesti. Kun havaitaan, että malli ei täytä sille asetettuja standardioletuksia, mallia korjataan. Näin päädytään lopulta malliin, jonka jäännöstermit ovat normaalisia, homoskedastisia ja korreloimattomia. Tälläistä mallia kutsutaan riittäväksi. 3. Mallit Estimoidut mallit perustuvat kansantalouden kysyntäteoriaan. Työn alussa on lyhyesti selitetty peruskäsitteitä, kuten joustokerroin ja normaalihyödyke. Kysynnän hintajoustolla mitataan, kuinka herkästi kysytty määrä reagoi hinnan muutokseen. Kysynnän hintajoustossa määrän prosentuaalinen muutos jaetaan hinnan prosentuaalisella muutoksella [3]. Jos hyödykkeen hintajousto on esimerkiksi -1.25, yhden prosentin nousu hinnassa näkyy 1.25 prosentin laskuna kysytyssä määrässä muiden tekijöiden pysyessä ennallaan. Normaalihyödykkeen tapauksessa kysytty määrä kasvaa hinnan laskiessa ja vastaavasti kysyntä pienenee hinnan noustessa muiden tekijöiden pysyessä ennallaan. Siten normaalihyödykkeen hintajousto on negatiivinen. Kysynnän tulojoustossa hyödykkeen kysynnän prosentuaalinen muutos jaetaan kuluttajien tulojen prosentuaalisella muutoksella. Jos hyödykkeen tulojousto on esimerkiksi 1.4, yhden prosentin nousu kuluttajien tuloissa näkyy 1.4 prosentin nousuna hyödykkeen kysytyssä määrässä muiden tekijöiden pysyessä ennallaan. Normaalihyödykkeen kysyntä kasvaa, kun kuluttajien tulot kasvavat ja muut 4

5 tekijät pysyvät ennallaan. Vastaavasti normaalihyödykkeen kysyntä pienenee, kun kuluttajien tulot pienenevät. Tämän takia normaalihyödykkeen tulojousto on positiivinen. Malleissa käytetään selitettävänä muuttujana alkoholin per capita kulutusmenojen logaritmia. Selittäjinä käytetään per capita kokonaiskulutusmenojen logaritmia sekä alkoholin reaalihintaindeksin logaritmia. Logaritmoinnin ansiosta regressiokertoimet voidaan tulkita tulojoustoksi ja hintajoustoksi. Ensimmäinen tasomalli osoittautuu kelvottomaksi regressiodiagnostiikan näkökulmasta, vaikka mallin selitysaste on korkea ja regressiokertoimet merkitseviä. Tasomallia vastaavan differenssimallin jäännöstermejä ei voida pitää normaalisina ja niiden homoskedastisuutta on aihetta epäillä. Toiseen malliin lisätään selittäjäksi dummy-muuttuja. Vuonna 1969 alkoholilain muutos lisäsi Alkon myymälöiden määrää huomattavasti ja alkoholin markkamääräinen kysyntä kasvoi huomattavasti. Kokonaiskulutusmenot ja alkoholin hintaindeksi eivät selitä tätä muutosta, joten malliin lisätään dummy-muuttuja. Malli ei kuitenkaan läpäise diagnostisia testejä, autokorrelaatio on edelleen ongelma. Mallia vastaava differenssimalli sen sijaan läpäisee kaikki testit. Tasomallia korjataan lisäämällä selittäjiksi viivästetty selitettävä sekä viivästetyt selittäjät. Näin saadaan kolmas malli, joka on dynaaminen toisin kuin edelliset. Havaitaan, että dummy-muuttujan ja viivästetyn dummy-muuttujan regressiokertoimet ovat itseisarvoltaan lähes yhtä suuria, mutta vastakkaismerkkisiä. Tämän vuoksi ne voidaan korvata yhdellä impulssi-dummyllä. Neljännessa mallissa dummy-muuttujat on korvattu impulssi-dummylla, joka saa arvon 1 vuonna Näin mallissa on saatu vähennettyä selittäjien määrää yhdellä edelliseen verrattuna. Malli läpäisee diagnostiset testit ja sen tuottama ennuste on myös parempi kuin edellisillä malleilla. Mallien tarkempi vertailu on liitteessä. 4. Viitteet [1] OtaStat-projektin kuvaus: viitattu [2] Mellin, Ilkka Oppimateriaalia [3] Mäkelä, Vilho Käytännön kansantaloustiede. 2. uudistettu painos. KY-Palvelu Oy. 172 s. ISBN

6 5. Liite: Alkoholin kulutusmenojen ennustaminen 6

7 Alkoholin kulutusmenojen ennustaminen Mikko Nordlund Tausta Alkoholin kulutuksella on suuri kansantaloudellinen merkitys. Alkoholitulot muodostivat vuonna 2002 noin 5.5 % valtion verotuloista[1], mutta lisääntyvä kulutus kasvattaa myös muun muassa sosiaalimenoja. Alkoholin kulutuksen muutos vaikuttaa valtion tuloihin ja menoihin sekä suorasti että epäsuorasti. Tarkoituksena on kuvata alkoholin markkamääräistä kulutusta sopivalla aikasarjamallilla. Opetustarkoituksessa havaintoaineistoon sovitetaan erilaisia malleja, joita vertaillaan sekä graafisesti että tunnuslukujen ja diagnostisten testien avulla. Malleja korjataan, jos ne eivät läpäise diagnostisia testejä. Estimoitujen mallien avulla laaditaan ennuste, jota verrataan toteutuneeseen kulutukseen. Tilastollisesti hyvä malli yleensä myös tuottaa paremman ennusteen kuin huono malli. Mallit perustuvat kansantalouden kysyntäteoriaan. Kysynnän hintajoustolla mitataan, kuinka herkästi kysytty määrä reagoi hinnan muutokseen. Kysynnän hintajoustossa määrän prosentuaalinen muutos jaetaan hinnan prosentuaalisella muutoksella [2]. Jos hyödykkeen hintajousto on esimerkiksi -1.25, yhden prosentin nousu hinnassa näkyy 1.25 prosentin laskuna kysytyssä määrässä muiden tekijöiden pysyessä ennallaan. Normaalihyödykkeen tapauksessa kysytty määrä kasvaa hinnan laskiessa ja vastaavasti kysyntä pienenee hinnan noustessa muiden tekijöiden pysyessä ennallaan. Siten normaalihyödykkeen hintajousto on negatiivinen. Kysynnän tulojoustossa hyödykkeen kysynnän prosentuaalinen muutos jaetaan kuluttajien tulojen prosentuaalisella muutoksella. Jos hyödykkeen tulojousto on esimerkiksi 1.4, yhden prosentin nousu kuluttajien tuloissa näkyy 1.4 prosentin nousuna hyödykkeen kysytyssä määrässä muiden tekijöiden pysyessä ennallaan. Normaalihyödykkeen kysyntä kasvaa, kun kuluttajien tulot kasvavat ja muut tekijät pysyvät ennallaan. Vastaavasti normaalihyödykkeen kysyntä pienenee, kun kuluttajien tulot pienenevät. Tämän takia normaalihyödykkeen tulojousto on positiivinen. Mallien estimoinnin yhteydessä kommentoidaan myös laskettujen alkoholin tulo- ja hintajouston kertoimien järkevyyttä. On syytä olettaa, että alkoholin tulojousto on positiivinen ja hintajousto negatiivinen. Malleissa alkoholin markkamääräisen myynnin oletetaan riippuvan Suomen asukasluvusta, kuluttajien kokonaiskulutusmenoista (reaaliansioista) sekä alkoholin hinnasta. Asukasluvun ja kokonaiskulutusmenojen kasvu lisäävät alkoholin kysyntää, kun taas alkoholin hinnan nousu vähentää kysyntää. Väestönkasvun 1

8 vaikutus on huomioitu siirtymällä tutkimaan per capita aikasarjoja eli vuotuiset kokonaiskulutusmenot ja alkoholin kulutusmenot on suhteutettu väestömäärään. Inflaation vaikutus on poistettu aikasarjoista siirtymällä hintaindekseihin, joissa käypät hinnat on suhteutettu kiinteisiin hintoihin. Perusvuodeksi on valittu vuosi 1975 eli vuoden 1975 alkoholin reaalihintaindeksi on 100 ja kokonaiskulutusmenojen indeksi samoin 100. Mallien selitettävän ja selittäjien muodostaminen on käsitelty jokaisen mallin yhteydessä olevassa Excel-tiedostossa. Aikasarjat alkavat vuodesta Aikasarjat ulottuvat vuoteen 1981 asti, mutta vuosien havaintoja ei käytetä mallien estimoimiseen. Mallien avulla on laskettu ennuste vuosien kulutukselle ja tätä verrataan toteutuneeseen kulutukseen. Vuonna 1969 voimaan tullut alkoholilain muutos lisäsi Alkon myymälöiden lukumäärää huomattavasti. Lakiuudistus salli myös keskioluen myynnin kaupoissa ja kahviloissa. Tämä ei kuitenkaan näy tutkittavissa alkoholin kulutusmenoissa, koska keskiolutta ei luokitella alkoholijuomaksi. Suomen alkoholipolitiikka on pyrkinyt säätelemään alkoholin kulutusta hinnanmuutosten avulla. Tämä näkyy alkoholin reaalihintaindeksissä, joka on pysynyt lähes vakiona. Alkoholin hintaa on siis korotettu likimäärin reaalihintojen nousun mukana. Käytetyt välineet Kaikki laskutoimitukset osittaisautokorrelaatiokertoimien estimaatteja lukuun ottamatta on tehty Microsoft Excel -ohjelmalla. Samoin kaikki kuvat on tehty Excelin avulla. Regressiomallit on estimoitu käyttämällä Regression-nimistä työkalua, jonka saa käyttöön asentamalla Data Analysis ToolPak -lisäosan Exceliin. Tulostuksia on jonkin verran muokattu: keskeisimmät tunnusluvut on korostettu sinisellä värillä ja luottamusvälien rajat on poistettu. Osittaisautokorrelaatiokertoimien estimaatit on laskettu Jerry Hintzen NCSS ohjelman avulla. Kertoimien laskeminen edellyttää rekursiokaavan käyttämistä ja lukuisien aputermien laskemista. Tämän vuoksi Excelillä on laskettu ainoastaan 4 ensimmäistä estimaattia ja muut kertoimet on laskettu NCSS ohjelmalla. Satunnaisten selittäjien regressiomallin standardioletukset Estimoidun mallin regressiokertoimien merkitsevyys ja korkea selitysaste eivät riitä takaamaan, että malli on käyttökelpoinen. Jäännöstermien odotusarvon pitää olla 0, jäännöstermit eivät saa korreloida keskenään ja jäännösvarianssin tulee olla vakio. Jos nämä ehdot täyttyvät, estimoidun mallin residuaalit muistuttavat nk. valkoista kohinaa ja malli on riittävä. Tämän lisäksi asetetaan jäännöstermeille normaalisuusvaatimus. Yleinen lineaarinen regressiomalli voidaan esittää matriisimuodossa seuraavasti: y = Xβ + ε 2

9 missä y on selitettävän muuttujan y havaittujen arvojen muodostama satunnainen n-vektori. X on selittäjien x 1, x 2,..., x k havaittujen arvojen muodostama n (k + 1)- matriisi, jossa 1. sarake on ykkösten muodostama vakioselittäjä. β on regressiokertoimien muodostama tuntematon ja kiinteä eli ei-satunnainen (k+1)-vektori, jossa 1. alkio vastaa ykkösten muodostamaa vakioselittäjää. ε on jäännöstermien muodostama ei-havaittu ja satunnainen n-vektori. Koska mallien selittäjät ovat satunnaisia, yleisen lineaarisen regressiomallin standardioletukset voidaan esittää matriisein seuraavassa muodossa: 1. Selittäjämatriisin X alkiot ovat satunnaismuuttujia. 2. Selittäjämatriisi X on täysiasteinen: r(x) = k Jäännöstermin ε ehdollinen odotusarvo ehdolla X on 0: E(ε X) = 0 4. Jäännöstermit ovat ehdollisesti homoskedastisia ja ehdollisesti korreloimattomia: Cov(ε X) = σ 2 I 5. Jäännöstermit ovat ehdollisesti normaalijakautuneita: (ε X) N n (0, σ 2 I) Mallien regressiodiagnostiikka keskittyy standardioletusten voimassaolon testaamiseen. Ensimmäisenä on tutkittu jäännöstermien normaalisuutta, koska se on edellytys useiden testien käyttämiselle. Toisena on tutkittu jäännöstermien korreloimattomuutta. Jäännöstermien autokorrelaatio tekee muiden testien tuloksista vain suuntaa-antavia. Viimeisenä on tutkittu jäännöstermien homoskedastisuutta. Residuaalien aritmeettinen keskiarvo on 0, koska kaikissa estimoiduissa malleissa on mukana vakioselittäjä. 3

10 Käytettävät diagnostiset testit Jarquen ja Beran testi jäännöstermien normaalisuudelle Jarquen ja Beran (esiintyy myös kirjallisuudessa nimellä Bowmanin ja Shentonin) testin avulla tutkitaan jäännöstermien normaalisuutta residuaalien avulla. Residuaaleista lasketaan tunnusluvut vinoudelle (skewness) ja huipukkuudelle (kurtosis). Normaalijakautuneilla havainnoilla kumpikin tunnusluku on 0 satunnaisvaihtelua lukuun ottamatta. JB-testisuureen suuret arvot viittaavat siihen, että jäännöstermit eivät ole normaalisia. Olkoot tutkittavan mallin residuaalit. Lasketaan tunnusluku vinoudelle: S = e 1, e 2,..., e n 1 n (e t ē) 3 n t=1 ( ) 3/2 1 n (e t ē) 2 n t=1 Lasketaan tunnusluku huipukkuudelle: K = 1 n ( 1 n n (e t ē) 4 t=1 ) 2 3 n (e t ē) 2 t=1 Jos PNS-menetelmällä estimoidussa regressiomallissa on mukana vakioselittäjä, residuaalien summa (ja aritmeettinen keskiarvo) on 0. Koska kaikissa tässä käsitellyissä malleissa on mukana vakiotermi, residuaalien keskusmomentit yhtyvät origomomentteihin, ja tunnuslukujen kaavat supistuvat alla olevaan muotoon. Tunnusluku vinoudelle, kun mallissa on vakiotermi: S = 1 n n t=1 ( 1 n n t=1 e 2 t e 3 t ) 3/2 Tunnusluku huipukkuudelle, kun mallissa on vakiotermi: K = 1 n ( 1 n n t=1 n t=1 4 e 4 t e 2 t ) 2 3

11 Testattava hypoteesi H 0 : Jäännöstermit ovat normaalisia: ε t N(0, σ 2 ) kaikille t Testisuure ja sen jakauma (S K2 ) JB = n 6 Jos H 0 pätee, JB a χ 2 (2). Testisuureen suuret arvot viittaavat siihen, että H 0 ei päde. Huomautus: ˆ Testi reagoi voimakkaasti poikkeaviin havaintoihin, mutta ei ole muuten erityisen voimakas (ts. hyväksymisvirhe on suuri). ˆ Jäännöstermien ei-normaalisuus tekee muista tässä käsiteltävistä testeistä vain suuntaa-antavia. ˆ Testi saattaa reagoida myös mallin väärään funktionaaliseen muotoon. Durbinin ja Watsonin testi Durbinin ja Watsonin testillä tutkitaan ensimmäisen kertaluvun autokorrelaation olemassaoloa jäännöstermeissä. Testisuure perustuu estimoidun mallin residuaaleihin e t. Testisuureen kriittiset rajat löytyvät taulukoituina useista alan oppikirjoista. Testattava hypoteesi H 0 : Jäännöstermit eivät ole autokorreloituneita: Cor(ε t, ε t 1 ) = 0 kaikille t Testisuure ja sen jakauma DW = T (e t e t 1 ) 2 t=2 DW -testisuure ei noudata mitään yleistä jakaumaa, mutta testisuureen kriittiset rajat löytyvät taulukoituina useista alan oppikirjoista. DW -testisuure saa arvoja avoimelta väliltä 0 4, pienet arvot viittaavat positiiviseen autokorrelaatioon ja suuret puolestaan negatiiviseen autokorrelaatioon. Testisuureen normaaliarvo korreloimattomuusoletuksen pätiessä on luvun 2 lähellä. T t=1 e 2 t 5

12 Huomautuksia: ˆ Durbinin ja Watsonin testiä ei voi käyttää, jos mallissa on viivästetty selitettävä. Tällöin voidaan kuitenkin käyttää Durbinin h-testiä. ˆ Mallin selittäjien täytyy olla kiinteitä. ˆ Testi saattaa reagoida myös mallin väärään funktionaaliseen muotoon. ˆ Jäännöstermien korrelaatio tekee muista tässä käsiteltävistä testeistä vain suuntaa-antavia. Durbinin h-testi Durbinin h-testillä tutkitaan ensimmäisen kertaluvun autokorrelaation olemassaoloa jäännöstermeissä, kun estimoidussa mallissa on selittäjänä viivästetty selitettävä. Testisuure perustuu estimoidun mallin residuaaleihin e t. Olkoon tutkittava malli Estimoidun mallin residuaalit ovat y t = α + βy t 1 + γx t + ε t e t = y t ŷ t Testattava hypoteesi H 0 : Jäännöstermit eivät ole autokorreloituneita: Cor(ε t, ε t 1 ) = 0 kaikille t Testisuure ja sen jakauma h = r 1 n 1 n Var( β) missä r 1 on ensimmäisen kertaluvun autokorrelaatiokertoimen estimaatti, n on havaintojen lukumäärä ja Var( β) on viivästetyn selitettävän regressiokertoimen varianssin harhaton estimaatti. Jos H 0 pätee, h a N(0, 1). Testisuureen nollasta merkitsevästi poikkeavat arvot viittaavat jäännöstermien autokorrelaatioon. 6

13 Huomautuksia: ˆ Durbinin h-testiä ei voi käyttää, jos n Var( β) 1, koska neliöjuuren sisällä olevasta lausekkeesta tulee tällöin negatiivinen. ˆ Jäännöstermien korrelaatio tekee muista tässä käsiteltävistä testeistä vain suuntaa-antavia. ˆ Durbinin h-testi saattaa reagoida myös mallin väärään funktionaaliseen muotoon. Lagrangen kertojatesti autokorrelaatiolle Jäännöstermien autokorreloituneisuutta voidaan tutkia Lagrangen kertojatestillä (Lagrange multiplier, LM), joka voidaan tehdä PNS-menetelmällä estimoidun apuregression avulla. Apuregressiomallissa tutkittavan mallin residuaaleja selitetään alkuperäisillä selittäjillä sekä residuaalien astelukua p olevalla autoregressiolla. Apuregressiomallin suuri selitysaste viittaa jäännöstermien autokorrelaatioon. Olkoon tutkittava malli Estimoidun mallin residuaalit ovat y t = α + βx t + ε t e t = y t ŷ t Estimoidaan PNS-menetelmällä apuregressiomalli e t = γ 0 + γ 1 x t + φ 1 e t 1 + φ 2 e t φ p e t p + δ t δ t on jäännöstermi Testattava hypoteesi H 0 : Jäännöstermit eivät ole autokorreloituneita: Cor(ε t, ε s ) = 0 kaikille t s Testisuure ja sen jakauma nr 2 Jos H 0 pätee, nr 2 a χ 2 (p), missä n on residuaalien lukumäärä, R 2 on apuregressiomallin selitysaste ja p on autoregression asteluku. Testisuureen suuret arvot viittaavat siihen, että H 0 ei päde. Joskus testisuureena käytetään apuregressiomallia testaavaa F -testisuuretta. 7

14 Huomautuksia: ˆ LM-testi jäännöstermin autokorrelaatiolle saattaa reagoida myös mallin väärään funktionaaliseen muotoon. ˆ Apuregression asteluvun p valinta vaikuttaa testin tulokseen: p pitää valita suureksi, mutta ei liian suureksi. ˆ Jäännöstermien korrelaatio tekee muista tässä käsiteltävistä testeistä vain suuntaa-antavia. ˆ Mallissa saa olla mukana myös viivästetty selitettävä. Boxin ja Piercen Q-testi jäännöstermien korreloimattomuudelle Jos malli on oikein määritelty, residuaalit muistuttavat valkoista kohinaa. Jäännöstermien korreloimattomuutta voidaan testata Boxin ja Piercen Q-testisuureella (esiintyy myös nimellä portmanteau-testi). Testisuureen suuret arvot viittaavat jäännöstermien autokorrelaatioon. Olkoot r 1, r 2,..., r k tutkittavan regressiomallin otosautokorrelaatiokertoimet. Testattava hypoteesi H 0 : Jäännöstermit eivät ole autokorreloituneita: Cor(ε t, ε s ) = 0 kaikille t s Testisuure ja sen jakauma Q K = n(r r r 2 K) missä K on yhteenlaskettavien autokorrelaatiokertoimien estimaattien lukumäärä ja n on havaintojen lukumäärä. Jos H 0 pätee, Q K a χ 2 (K). Testisuureen suuret arvot viittaavat siihen, että H 0 ei päde. Huomautuksia: ˆ Mallissa ei saa olla viivästettyä endogeenista muuttujaa. ˆ Testi saattaa reagoida myös mallin väärään funktionaaliseen muotoon. 8

15 Lagrangen kertojatesti homoskedastisuudelle 1 Jäännöstermien homoskedastisuutta voidaan tutkia Lagrangen kertojatestillä (Lagrange multiplier, LM), joka voidaan tehdä PNS-menetelmällä estimoidun apuregression avulla. Apuregressiomallissa selitetään tutkittavan mallin residuaalien neliöitä alkuperäisen mallin selittäjillä, selittäjien neliöillä sekä selittäjien ristitulolla. Ristitulotermejä ei ole käytetty tässä yhteydessä selittäjinä, jos alkuperäisessä mallissa on ollut yli 3 selittäjää. Apuregressiomallin korkea selitysaste viittaa siihen, että jäännöstermit ovat heteroskedastisia. Testi esiintyy kirjallisuudessa myös nimellä Whiten testi. Olkoon tutkittava malli Estimoidun mallin residuaalit ovat y t = α + β 1 x t + β 2 z t + ε t e t = y t ŷ t Estimoidaan PNS-menetelmällä apuregressiomalli e 2 t = γ 0 + γ 1 x t + γ 2 z t + γ 3 x 2 t + γ 4 z 2 t + γ 5 x t z t + δ t δ t on jäännöstermi Testattava hypoteesi H 0 : Jäännöstermit ovat homoskedastisia: Var(ε t ) = σ 2 kaikille t Testisuure ja sen jakauma nr 2 Jos H 0 pätee, nr 2 a χ 2 (p), missä n on residuaalien lukumäärä, R 2 on apuregressiomallin selitysaste ja p on apuregression aitojen selittäjien lukumäärä (vakioselittäjä poisluettuna). Testisuureen suuret arvot viittaavat siihen, että H 0 ei päde. Joskus testisuureena käytetään apuregressiomallia testaavaa F -testisuuretta. Huomautus: ˆ Testi saattaa reagoida myös mallin väärään funktionaaliseen muotoon. 9

16 Lagrangen kertojatesti homoskedastisuudelle 2 Lagrangen kertojatesti (Lagrange multiplier, LM) jäännöstermien homoskedastisuudelle voidaan tehdä PNS-menetelmällä estimoidun apuregression avulla, jossa selitetään tutkittavan mallin residuaalien neliöitä mallin sovitteilla. Apuregressiomallin korkea selitysaste viittaa siihen, että jäännöstermit ovat heteroskedastisia. Olkoon tutkittava malli Estimoidun mallin residuaalit ovat y t = α + βx t + ε t e t = y t ŷ t Estimoidaan PNS-menetelmällä apuregressiomalli e 2 t = γ 0 + γ 1 ŷ t + δ t δ t on jäännöstermi Testattava hypoteesi H 0 : Jäännöstermit ovat homoskedastisia: Var(ε t ) = σ 2 kaikille t Testisuure ja sen jakauma nr 2 Jos H 0 pätee, nr 2 a χ 2 (1), missä n on residuaalien lukumäärä ja R 2 on apuregressiomallin selitysaste. Testisuureen suuret arvot viittaavat siihen, että H 0 ei päde. Joskus testisuureena käytetään apuregressiomallia testaavaa F -testisuuretta. Huomautus: ˆ Testi saattaa reagoida myös mallin väärään funktionaaliseen muotoon. Sarjat, selittäjät ja selitettävä Logaritmointi Mallin estimoinnissa on käytetty logaritmoituja selittäjiä sekä selitettävää. Tämä tekee suhteellisten muutosten tulkitsemisen helpommaksi. Esimerkiksi jos x 0 muuttuu p %, niin uusi arvo x 1 on 10

17 ja edelleen ( x 1 = 1 + p ) x ( log(x 1 ) = log(x 0 ) + log 1 + p ) log(x 0 ) + p Logaritmoinnin ansiosta reaalihintaindeksin sekä per capita kokonaiskulutusmenojen regressiokertoimet voidaan tulkita hinta- ja tulojoustona. Differenssien laskeminen Osa käsitellyistä regressiomalleista on nk. differenssimalleja, joissa selitetään muuttujien vuosimuutosta. Differenssioperaattorin merkkinä on käytetty D- kirjainta. Esimerkiksi muuttujan x t ensimmäinen differenssi on D x t = x t x t 1 Ensimmäisen differenssin tulkinta vastaa kahden peräkkäisen vuoden havaintojen muutosta tutkittavissa vuosisarjoissa. Aikasarjat Mallinrakennukseen on käytetty seuraavia aikasarjoja vuosilta : Vexp45 Kokonaiskulutusmenot käypällä hintatasolla [milj. mk] Qexp45 Kokonaiskulutusmenot kiinteällä vuoden 1975 hintatasolla [milj. mk] Popul Asukasluku V1c Alkoholin kulutusmenot käypällä hintatasolla [milj. mk] Q1c Alkoholin kulutusmenot kiinteällä vuoden 1975 hintatasolla [milj. mk] Lisäksi sarjoista on vuosilta havainnot, joita käytetään ennusteen ja toteutuneen kulutuksen vertailuun. Aikasarjat ovat liitteenä Excel-tiedostossa sarjat.xls. Aikasarjoista muodostettiin seuraavat apumuuttujat: V t Q t P t v t Per capita kokonaiskulutusmenot käypällä hintatasolla V t = 10 6 Vexp45/Popul [mk] Per capita kokonaiskulutusmenot kiinteällä vuoden 1975 hintatasolla Q t = 10 6 Qexp45/Popul [mk] Kokonaiskulutusmenojen implisiittinen deflaattori P t = 100 V t /Q t (1975 = 100) Per capita alkoholin kulutusmenot käypällä hintatasolla v t = 10 6 V1c/Popul [mk] 11

18 Kuva 1: Pistediagrammi alkoholin reaalihintaindeksin logaritmista log(100 p t /P t ) kokonaiskulutusmenojen logaritmia log(q t ) vastaan. q t p t Per capita alkoholin kulutusmenot kiinteällä vuoden 1975 hintatasolla q t = 10 6 Q1c/Popul [mk] Alkoholin implisiittinen hintaindeksi p t = 100 v t /q t (1975 = 100) 100 p t /P t Alkoholin reaalihintaindeksi 100 p t /P t (1975 = 100) Pistediagrammista näkyy, että alkoholin kulutusmenojen ja alkoholin reaalihintaindeksin välillä on heikko negatiivinen korrelaatio. Alkoholin kulutusmenoissa näkyy aikasarjakuvassa selvä nouseva trendi, kun taas alkoholin reaalihintaindeksi on pysynyt lähes vakiona. Sekä pistediagrammista että aikasarjakuvasta näkyy, että kokonaiskulutusmenojen ja alkoholin kulutusmenojen välillä on vahva positiivinen korrelaatio. Molemmissa sarjoissa näkyy selvä nouseva trendi. Edellä esitetyt pistediagrammit ja aikasarjat löytyvät tiedostosta pari_regr.xls. Tiedostossa on myös kuvia sarjoista. 1. malli Regressiomallin selitettävä (log-funktio on luonnollinen logaritmi): ˆ Per capita kiinteän hintatason alkoholin kulutusmenojen logaritmi log(q t ) Regressiomallissa käytettiin seuraavia selittäjiä: 12

19 Kuva 2: Aikasarja alkoholin kulutusmenojen logaritmista log(q t ) ja alkoholin reaalihintaindeksin logaritmista log(100 p t /P t ). Kuva 3: Pistediagrammi kokonaiskulutusmenojen logaritmista log(q t ) alkoholin kulutusmenojen logaritmia log(q t ) vastaan. 13

20 Kuva 4: Aikasarja alkoholin kulutusmenojen logaritmista log(q t ) ja kokonaiskulutusmenojen logaritmista log(q t ). ˆ Alkoholin reaalihintaindeksin logaritmi log(100 p t /P t ) ˆ Per capita kiinteän hintatason kokonaiskulutusmenojen logaritmi log(q t ) Estimoidaan PNS-menetelmällä regressiomalli, jossa selitetään alkoholin per capita kulutusmenojen logaritmia alkoholin reaalihintaindeksin logaritmilla sekä per capita kokonaiskulutusmenojen logaritmilla. Selitettävä ja selittäjät löytyvät Excel-taulukosta malli1_selittajat.xls. Logaritmoidun reaalihintaindeksin regressiokertoimen tulkinta vastaa pitkän aikavälin hintajoustoa. Hintatason nousu johtaa yleensä kysynnän laskuun, joten hintajousto on tyypillisesti negatiivinen. Logaritmoidun per capita kokonaiskulutusmenojen regressiokertoimen tulkinta vastaa pitkän aikavälin tulojoustoa. Tulotason nousu lisää tavallisesti kysyntää ellei kyseessä ole nk. inferiorinen hyödyke, jonka kysyntä vähentyy tulotason noustessa. Tulojousto on siis tyypillisesti positiivinen. Estimoitu malli ja tunnusluvut Estimoitu lineaarinen regressiomalli on seuraava (suluissa estimaattien keskihajonnat): log(q t ) = (2.352) (0.470) log(100 p t/p t ) (0.072) log(q t) R 2 =

21 Kuva 5: Kuva havainnoista ja sovitteista aikaa vastaan. Malli löytyy laskutoimituksineen Excel-tiedostosta malli1.xls. Mallin regressiokertoimet ovat merkitseviä vakioselittäjän kerroin pois lukien. Sekä pitkän aikavälin hintajousto 1.12 että tulojousto 1.51 ovat merkitseviä. Pitkän aikavälin hintajousto voidaan tulkita siten, että 1 %:n nousu alkoholin reaalihinnassa näkyy pitkällä aikavälillä 1.12 %:n laskuna alkoholin kulutusmenoissa muiden tekijöiden pysyessä ennallaan. Vastaavasti pitkän aikavälin tulojousto voidaan tulkita siten, että 1 %:n kasvu per capita kokonaiskulutusmenoissa näkyy 1.51 %:n kasvuna alkoholin kulutusmenoissa pitkällä aikavälillä muiden tekijöiden pysyessä ennallaan. Mallin selitysaste R 2 = on korkea. Graafinen tarkastelu Malli ei näytä sopivan havaintoihin kovin hyvin. Vaikka trendit asettuvat kohdalleen, mallin tuottamat sovitteet ovat systemaattisesti havaintoja pienempiä tai suurempia usean peräkkäisen vuoden ajan, joten malli ei ole hyvä. Malli ei kykene selittämään vuoden 1969 lainmuutoksen aiheuttamaa hyppäystä alkoholin kulutusmenoissa. Kuvassa katkoviiva kuvaa mallin avulla laskettua ennustetta. Residuaalit ovat ensin positiivisia vuosien ajan, tämän jälkeen negatiivisia vuosien ajan ja jälleen positiivisia vuosina Tämä viittaa voimakkaaseen positiiviseen ensimmäisen kertaluvun autokorrelaatioon. Itseisarvoltaan pieniä residuaaleja on vähän. Tämän antaa aihetta epäillä jäännöstermien homoskedastisuutta. Huomaa residuaalikuvassa tapahtuva muutos vuosien 1968 ja 1969 välillä (havainnot 19 ja 20). Katkoviivalla piirretty kiinteän hintatason ennuste poikkeaa selvästi havainnoista. Vuonna 1981 ennusteen ja toteutuneen kulutuksen erotus on 316 miljoonaa markkaa. Ennustevirhe on niin suuri, että mallin tuottamaa ennustetta ei voi pitää käyttökelpoisena. 15

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Aikasarja-analyysiä taloudellisilla aineistoilla

Aikasarja-analyysiä taloudellisilla aineistoilla Aikasarja-analyysiä taloudellisilla aineistoilla Leena Kalliovirta, Luonnonvarakeskus Leena.kalliovirta@luke.fi Kurssi Tilastotiede tutuksi HY matematiikan ja tilastotieteen laitos 1 Leena Kalliovirta

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Alkoholijuomien hinnat ja kulutus

Alkoholijuomien hinnat ja kulutus Alkoholijuomien hinnat ja kulutus VILLE VEHKASALO Virosta tulee näillä näkymin EU:n jäsen vuoden 2004 vappuna. Tämän jälkeen kuka tahansa voi tuoda omaan käyttöönsä edullista alkoholia Virosta vaikka pakettiautolla.

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Aikasarjamallit. Pekka Hjelt

Aikasarjamallit. Pekka Hjelt Pekka Hjelt Aikasarjamallit Aikasarja koostuu järjestyksessä olevista havainnoista, ja yleensä se on tasavälinen ja diskreetti eli havaintopisteet ovat erillisiä. Lisäksi aikasarjassa on yleensä autokorrelaatiota

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Aki Taanila AIKASARJAENNUSTAMINEN

Aki Taanila AIKASARJAENNUSTAMINEN Aki Taanila AIKASARJAENNUSTAMINEN 26.4.2011 SISÄLLYS JOHDANTO... 1 1 AIKASARJA ILMAN SYSTEMAATTISTA VAIHTELUA... 2 1.1 Liukuvan keskiarvon menetelmä... 2 1.2 Eksponentiaalinen tasoitus... 3 2 AIKASARJASSA

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla

Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Työvoiman tarpeen ennustaminen SARIMA-aikasarjamallilla Kandidaatintyö 27.5.2015 Touko Väänänen Työn saa

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä: Matriisi ja vektori laskennan ohjelmisto edellyttää

Lisätiedot

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2007) 1 Yhteensopivuuden, homogeenisuuden ja riippumattomuuden

Lisätiedot

Aki Taanila LINEAARISET REGRESSIOMALLIT

Aki Taanila LINEAARISET REGRESSIOMALLIT Aki Taanila LINEAARISET REGRESSIOMALLIT 17.6.2010 SISÄLLYSLUETTELO 0 Johdanto... 1 1 Keskiarvo ennustemallina... 2 2 Yhden selittävän muuttujan malli... 3 3 Useamman selittävän muuttujan malli... 6 4 Excel

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi

Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi PRO GRADU -TUTKIELMA Ilkka Keskiväli Kiinan energiankäytön aikasarja-analysointi TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Tilastotiede Joulukuu 2012 2 Tampereen yliopisto Informaatiotieteiden yksikkö

Lisätiedot

Kysynnän ennustaminen muuttuvassa maailmassa

Kysynnän ennustaminen muuttuvassa maailmassa make connections share ideas be inspired Kysynnän ennustaminen muuttuvassa maailmassa Nina Survo ja Antti Leskinen SAS Institute Mitä on kysynnän ennustaminen? Ennakoiva lähestymistapa, jolla pyritään

Lisätiedot

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat: Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään

Lisätiedot

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä

Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus. Intelin osakekurssi. (Pörssi-) päivä n = 20 Intel_Volume. Auringonpilkkujen määrä MS-C2128 Ennustaminen ja aikasarja-analyysi 4. harjoitukset / Tehtävät Kotitehtävät: 3, 5 Aihe: ARMA-mallit Tehtävä 4.1. Tutustu seuraaviin aikasarjoihin: Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

ARTIKKELEITA. 1. Johdanto. 2. Regressiomalli ja ennustaminen. Mikael Linden VTT, kansantaloustieteen professori Joensuun yliopisto

ARTIKKELEITA. 1. Johdanto. 2. Regressiomalli ja ennustaminen. Mikael Linden VTT, kansantaloustieteen professori Joensuun yliopisto Kansantaloudellinen aikakauskirja 100. vsk. 4/2004 ARTIKKELEITA Vuoden 2004 alkoholiverotuksen muutoksen kulutusennusteet vuosille 2004 2012 Mikael Linden VTT, kansantaloustieteen professori Joensuun yliopisto

Lisätiedot

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Taloustieteiden tiedekunta Opiskelijavalinta 07.06.2005 1 2 3 4 5 YHT Henkilötunnus

Taloustieteiden tiedekunta Opiskelijavalinta 07.06.2005 1 2 3 4 5 YHT Henkilötunnus 1 2 3 4 5 YHT 1. Selitä lyhyesti, mitä seuraavat käsitteet kohdissa a) e) tarkoittavat ja vastaa kohtaan f) a) Työllisyysaste (2 p) b) Oligopoli (2 p) c) Inferiorinen hyödyke (2 p) d) Kuluttajahintaindeksi

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS

LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS Helsinki 26..200 4 2 5 Seminaari 26..200 Mikko Hakola Laskentatoimen osaaminen Testatut tahot Selvittäjiä Yrittäjiä KLT-kirjanpitäjiä Virallisen

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja

Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja MS-C2128 Ennustaminen ja aikasarja-analyysi 6. harjoitukset / Tehtävät Kotitehtävä: 4 Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

Faktoreiden identifiointi ja rahastotuottojen analysointi Eurooppalaisille Large Cap osakerahastoille

Faktoreiden identifiointi ja rahastotuottojen analysointi Eurooppalaisille Large Cap osakerahastoille Faktoreiden identifiointi ja rahastotuottojen analysointi Eurooppalaisille Large Cap osakerahastoille Mat 2.77 Operaatiotutkimuksen projektityöseminaari Kristian Nikinmaa (projektipäällikkö) Markus Ehrnrooth

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 KOE 2: Ympäristöekonomia KANSANTALOUSTIEDE JA MATEMATIIKKA Sekä A- että B-osasta tulee saada vähintään 10 pistettä. Mikäli A-osan pistemäärä on vähemmän

Lisätiedot

Lapsen pituuden selittäminen lineaarisella regressiomallilla

Lapsen pituuden selittäminen lineaarisella regressiomallilla Lapsen pituuden selittäminen lineaarisella regressiomallilla Tuomas Reiterä 013759335 Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos Tilastotiede Kandidaatintutkielma

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

SELVITTÄJÄN KOMPETENSSISTA

SELVITTÄJÄN KOMPETENSSISTA OTM, KTM, Mikko Hakola, Vaasan yliopisto, Laskentatoimen ja rahoituksen laitos Helsinki 20.11.200, Helsingin kauppakorkeakoulu Projekti: Yrityksen maksukyky ja strateginen johtaminen SELVITTÄJÄN KOMPETENSSISTA

Lisätiedot

Aki Taanila AIKASARJOJEN ESITTÄMINEN

Aki Taanila AIKASARJOJEN ESITTÄMINEN Aki Taanila AIKASARJOJEN ESITTÄMINEN 4.12.2012 Viivakaavio Excelissä voit toteuttaa viivakaavion kaaviolajilla Line (Viiva). Viivakaavio onnistuu varmimmin, jos taulukon ensimmäisessä sarakkeessa ovat

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

ASIAKASKOHTAINEN SUHDANNEPALVELU. Lappeenranta 1.10.2008. - Nopeat alueelliset ja toimialoittaiset suhdannetiedot

ASIAKASKOHTAINEN SUHDANNEPALVELU. Lappeenranta 1.10.2008. - Nopeat alueelliset ja toimialoittaiset suhdannetiedot ASIAKASKOHTAINEN SUHDANNEPALVELU - Nopeat alueelliset ja toimialoittaiset suhdannetiedot Tiina Karppanen (09) 1734 2656 palvelut.suhdanne@tilastokeskus.fi Lappeenranta 1.10.2008 1.10.2008 A 1 Mihin suhdannetietoja

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Ilkka Mellin Aikasarja-analyysi Aikasarjat

Ilkka Mellin Aikasarja-analyysi Aikasarjat Ilkka Mellin Aikasarja-analyysi Aikasarjat TKK (c) Ilkka Mellin (2007) 1 Aikasarjat >> Aikasarjat: Johdanto Aikasarjojen esikäsittely Aikasarjojen dekomponointi TKK (c) Ilkka Mellin (2007) 2 Aikasarjat:

Lisätiedot

Kansantalouden kuvioharjoitus

Kansantalouden kuvioharjoitus Kansantalouden kuvioharjoitus Huom: Tämän sarjan tehtävät liittyvät sovellustiivistelmässä annettuihin kansantalouden kuvioharjoituksiin. 1. Kuvioon nro 1 on piirretty BKT:n määrän muutoksia neljännesvuosittain

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti

Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti 16.5.2012/1(6)/tp Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti Pysyvät kuormat ovat riippumattomia, mutta ne yhdistetään nykyisissä rakennesuunnittelunormeissa aina riippuvasti 1. Pysyvä ja

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama.

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarjat Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarja on laajassa mielessä stationäärinen (wide sense stationary, WSS), jos odotusarvo

Lisätiedot

Pientalojen radonpitoisuuksien tilastollinen analyysi

Pientalojen radonpitoisuuksien tilastollinen analyysi Pientalojen radonpitoisuuksien tilastollinen analyysi (Valmiin työn esittely) 11.4.2011 Ohjaaja: DI Jirka Poropudas Valvoja: Prof. Raimo Hämäläinen Sisältö 1. Tausta 2. Tavoitteet 3. Menetelmät 4. Tulokset

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

(1) Katetuottolaskelma

(1) Katetuottolaskelma (1) Katetuottolaskelma Katetuottolaskelmalla tarkastellaan yrityksen kannattavuutta myyntituotto - muuttuvat kustannukset (mukut) = katetuotto katetuotto - kiinteät kustannukset (kikut) = tulos (voitto

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Excel syventävät harjoitukset 31.8.2015

Excel syventävät harjoitukset 31.8.2015 Yleistä Excel on taulukkolaskentaohjelma. Tämä tarkoittaa sitä että sillä voi laskea laajoja, paljon laskentatehoa vaativia asioita, esimerkiksi fysiikan laboratoriotöiden koetuloksia. Excel-ohjelmalla

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

ARVIOINTIPERIAATTEET

ARVIOINTIPERIAATTEET PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Tarkasteluja lähtötason merkityksestä opintomenestykseen. MAMK:n tekniikassa

Tarkasteluja lähtötason merkityksestä opintomenestykseen. MAMK:n tekniikassa 1 Tarkasteluja lähtötason merkityksestä opintomenestykseen MAMK:n tekniikassa 2 1. Tutkimuksen perusteita Tekniikan alalle otetaan opiskelijoita kolmesta eri lähteestä : -ammattitutkinnon suorittaneet

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Ilkka Mellin Aikasarja-analyysi ARMA-mallit

Ilkka Mellin Aikasarja-analyysi ARMA-mallit Ilkka Mellin Aikasarja-analyysi ARMA-mallit TKK (c) Ilkka Mellin (007) 1 ARMA-mallit >> ARMA-mallit ja niiden ominaisuudet ARMA-mallien auto- ja osittaisautokorrelaatiofunktiot ARMA-mallien spektri ARMA-mallien

Lisätiedot

Rahastosalkun faktorimallin rakentaminen

Rahastosalkun faktorimallin rakentaminen Teknillinen korkeakoulu Mat 2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2007 Evli Pankki Oyj Väliraportti 28.3.2007 Kristian Nikinmaa Markus Ehrnrooth Matti Ollila Richard Nordström Ville Niskanen

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon

ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon TAMPEREEN YLIOPISTO Pro gradu -tutkielma Laura Lizana Bister ARIMA- ja GARCH-mallit sekä mallin sovittaminen osakeaineistoon Informaatiotieteiden laitos Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI Mikko Kylliäinen Insinööritoimisto Heikki Helimäki Oy Dagmarinkatu 8 B 18, 00100 Helsinki kylliainen@kotiposti.net 1 JOHDANTO Suomen rakentamismääräyskokoelman

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot