Diskriminanttianalyysi I

Koko: px
Aloita esitys sivulta:

Download "Diskriminanttianalyysi I"

Transkriptio

1 Diskriminanttianalyysi I Aira Hast

2 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen

3 Johdanto Lineaarinen diskriminanttianalyysi (LDA) yksinkertainen luokittelumenetelmä, joka ei kuitenkaan ole aina riittävä tai sen oletukset eivät toteudu LDA voidaan muotoilla lineaarisena regressio-ongelmana, minkä avulla menetelmä voidaan yleistää paremmaksi FDA:ssa lineaarinen regressio korvataan parametrittomalla regressiolla laajentamalla kantafunktioiden joukkoa.

4 LDA:n kertaus Hyviä puolia Yksinkertainen luokittelija: luokittelee havainnon lähimmän luokan keskipisteen perusteella Bayesin luokittelija, mikäli luokissa sama kovarianssi Päätösrajat lineaarisia (yksinkertaisuus) Usein paras luokittelija yksinkertaisuutensa vuoksi: estimoituihin lineaarisiin päätösrajoihin liittyy pieni varianssi

5 LDA:n kertaus Huonoja puolia Lineaariset päätösrajat eivät aina riittäviä luokkien erottamiseen Luokilla ei usein ole samat kovarianssit Aineiston kuvaaminen luokan keskipisteen ja kovarianssimatriisin perusteella ei ole aina riittävä luokittelua varten LDA soveltuu huonosti tilanteeseen, jossa useita selittäjiä

6 LDA:n yleistäminen LDA:n ongelma muotoillaan uudelleen lineaarisen regression ongelmaksi ja yleistetään regressio parametrittomaksi regressioksi, mikä lisää kantavektorien määrää (FDA) Sovitetaan malli LDA:lla, mutta sakotetaan kertoimet sileiksi (PDA) Luokat esitetään normaalijakaumien sekajakaumana (MDA)

7 LDA:n uudelleenmuotoilu K luokkaa Opetusaineistossa N havaintoa G={1,...,K} kertoo mihin luokkaan havainto kuuluu Opetusaineiston havainnot muotoa (g i,x i ), i=1,2,...,n Funktio θ : G R 1 määrää pisteet luokille

8 LDA:n uudelleenmuotoilu Valitaan θ ja β siten, että Vaaditaan siis, että θ:n määräämä pisteytys on optimaalisesti ennustettu lineaarisella regressiolla. Tällöin voidaan muodostaa yksiulotteinen erottelu luokkien välille.

9 LDA:n uudelleenmuotoilu Yleisemmin: voidaan löytää L ( K-1) itsenäistä funktiota θ l ja näitä vastaavia lineaarisia funktioita n l (X)=X T β l (l=1,...,l), jotka optimaalisia moniulotteisessa regressiossa. Valitaan θ ja β siten, että keskimääräinen jäännösneliösumma minimoituu

10 LDA ja kanoninen korrelaatio LDA on ekvivalentti kanonisen korrelaatioanalyysin kanssa: lineaariset selittäjät muodostavat yhden joukon ja luokkaan kuulumista kuvaavat muuttujat toisen joukon Kanonisen korrelaation avulla voidaan löytää optimaaliset β l ASR:n ratkaisusta voidaan johtaa Mahalanobis-etäisyydet luokan keskipisteeseen

11 LDA ja FDA LDA voidaan suorittaa lineaaristen regressioiden avulla luokittelemalla havainnot soviteavaruudessa lähimmän luokan keskipisteen perusteella. Yleisempi luokittelu voidaan muodostaa korvaamalla lineaariset regressiot parametrittomilla sovitteilla (esim. splinit, kernelit)

12 FDA Regressio-ongelman yleisempi muoto tällöin ASR{ k, k } 1 K N K 2 k 1 ( k ( gi) k ( xi )) J( k ) N k 1 i 1 J riippuu käytetystä parametrittomasta regressiosta (esim. splinit, MARS) ja sen avulla voidaan muokata yleinen kaava tarkoituksenmukaiseksi (välttää ylisovittaminen)

13 Esimerkki (1/2) Käytetään regressiossa jokaiselle n l toisen asteen polynomia. Tällöin FDA:lla saadut päätösrajat ovat neliöllisiä. Neliölliset päätösrajat saataisiin LDA:lla, jos laajennetaan alkuperäisten selittäjien joukko neliöillä ja ristitermeillä. Tällöin LDA:n antamat päätösrajat ovat lineaarisia laajennetussa avaruudessa, mutta neliöllisiä alkuperäisessä avaruudessa.

14 Esimerkki (2/2)

15 FDA ja muut menetelmät Verrataan eri menetelmien tuloksia puheentunnistusesimerkissä. K=11 (vastaa esimerkissä vokaaliäännettä) p=10 (selittäjiä, jotka tunnistettu puheesta)

16 FDA ja muut menetelmät

17 FDA ja muut menetelmät

18 FDA:n estimaattien laskeminen Y on indikaattorimatriisi, siten että y ik =1, kun g i =k, muuten y ik =0. Algoritmi: 1. Y:n moniulotteinen adaptiivinen ja parametrittoman regression sovite X:ssä on Ŷ. S λ lineaarinen operaattori (Ŷ=S λ Y) ja η * (x) sovitettujen regressiofunktioiden vektori.

19 FDA:n estimaattien laskeminen 2. Optimaalinen pisteytys: tehdään ominaisarvohajotelma: missä ominaisvektorit Ө on normalisoitu s.e. missä D π =Y T Y/N (estimoidut luokkaprioritodennäköisyydet)

20 FDA:n estimaattien laskeminen 3. Päivitetään malli askeleesta 1 alkaen optimaalisia pisteitä käyttäen FDA:ssa vältytään LDA:ssa esiintyvältä peittymiseltä

21 Yhteenveto LDA:n alkuoletukset eivät aina täyty ja luokittelu lineaaristen päätösrajojen avulla ei ole aina riittävä ->yleistäminen FDA:ssa palautetaan LDA:n ongelma lineaarisen regression ongelmaksi, joka korvataan parametrittomalla regressiolla

22 Kiitos! Kysymyksiä?

23 Tehtävä Vertaile LDA:ta ja FDA:ta (oletukset, mitä etuja ja mitä haittoja menetelmillä, millaiset päätösrajat saadaan yms.)

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Tämän luvun sisältö. Luku 6. Hahmontunnistuksen perusteita. Luokittelu (2) Luokittelu

Tämän luvun sisältö. Luku 6. Hahmontunnistuksen perusteita. Luokittelu (2) Luokittelu Tämän luvun sisältö Luku 6. T-6. Datasta tietoon, syksy professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 7.. Tämä luku käydään kahdella luennolla: ensimmäisellä luokittelu ja toisella

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3. Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.2009 Tietosuoja - lähtökohdat! Periaatteena on estää yksiköiden suora

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ] Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

SSL syysseminaari 29.10.2013 Juha Hyssälä

SSL syysseminaari 29.10.2013 Juha Hyssälä SSL syysseminaari 29.10.2013 Juha Hyssälä Lääketieteellisessä tutkimuksessa on perinteisesti käytetty elinaika-analyysissä Coxin suhteellisen vaaran mallia ja/tai tämän johdannaisia. Kyseinen malli kuitenkin

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

Lineaarisen ohjelman määritelmä. Joonas Vanninen

Lineaarisen ohjelman määritelmä. Joonas Vanninen Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen

Lisätiedot

12.5. Vertailua. Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 12.8. luonnehtii vaihtoehtoja.

12.5. Vertailua. Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 12.8. luonnehtii vaihtoehtoja. 1.5. Vertailua Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 1.8. luonnehtii vaihtoehtoja. (1)Esisuodatus äärettömästi näytteitä pikseliä kohti Lasketaan projisoidun kohteen palojen

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Aki Taanila AIKASARJAENNUSTAMINEN

Aki Taanila AIKASARJAENNUSTAMINEN Aki Taanila AIKASARJAENNUSTAMINEN 26.4.2011 SISÄLLYS JOHDANTO... 1 1 AIKASARJA ILMAN SYSTEMAATTISTA VAIHTELUA... 2 1.1 Liukuvan keskiarvon menetelmä... 2 1.2 Eksponentiaalinen tasoitus... 3 2 AIKASARJASSA

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Kotiloiden luokittelu - neuroverkkojen ja multinomiaalisen logistisen regression sovellus

Kotiloiden luokittelu - neuroverkkojen ja multinomiaalisen logistisen regression sovellus Tilastotieteen pro gradu -tutkielma Kotiloiden luokittelu - neuroverkkojen ja multinomiaalisen logistisen regression sovellus Atte Lintilä Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos 12.

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

73125 MATEMAATTINEN OPTIMOINTITEORIA 2

73125 MATEMAATTINEN OPTIMOINTITEORIA 2 73125 MATEMAATTINEN OPTIMOINTITEORIA 2 Risto Silvennoinen Tampereen teknillinen yliopisto, kevät 2004 1. Peruskäsitteet Optimointiteoria on sovelletun matematiikan osa-alue, jossa tutkitaan funktioiden

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

1 Johdanto 2. 2 Työkansion asettaminen 3. 3 Aineistojen lukeminen 3 3.1 DAT-tiedosto... 3 3.2 SPSS-tiedosto... 3 3.3 Excel... 3

1 Johdanto 2. 2 Työkansion asettaminen 3. 3 Aineistojen lukeminen 3 3.1 DAT-tiedosto... 3 3.2 SPSS-tiedosto... 3 3.3 Excel... 3 Sisältö 1 Johdanto 2 2 Työkansion asettaminen 3 3 Aineistojen lukeminen 3 3.1 DAT-tiedosto........................... 3 3.2 SPSS-tiedosto........................... 3 3.3 Excel................................

Lisätiedot

Aki Taanila LINEAARISET REGRESSIOMALLIT

Aki Taanila LINEAARISET REGRESSIOMALLIT Aki Taanila LINEAARISET REGRESSIOMALLIT 17.6.2010 SISÄLLYSLUETTELO 0 Johdanto... 1 1 Keskiarvo ennustemallina... 2 2 Yhden selittävän muuttujan malli... 3 3 Useamman selittävän muuttujan malli... 6 4 Excel

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä 7 Osa 7: Pidempiä esimerkkejä R:n käytöstä R:n pääasiallinen käyttö monelle on tilastollisten menetelmien suorittaminen. Käydään nyt läpi joitain esimerkkitilanteita, alkaen aineiston luvusta ja päättyen

Lisätiedot

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama.

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarjat Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarja on laajassa mielessä stationäärinen (wide sense stationary, WSS), jos odotusarvo

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 29-31.10.2008. 1 Tällä viikolla 1. Käytännön järjestelyistä 2. Kurssin sisällöstä ja aikataulusta 3. Johdantoa Mitä koneoppiminen

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

5 Osa 5: Ohjelmointikielen perusteita

5 Osa 5: Ohjelmointikielen perusteita 5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 NSGA-II Non-dominated Sorting Genetic Algorithm (NSGA) Ehkä tunnetuin EMO-menetelmä

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä:

Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä: Mittausten virheet Jos havaitaan päivän ylin lämpötila, mittaustuloksissa voi esiintyä seuraavantyyppisiä virheitä: 1. Luemme lämpömittarin vain asteen tarkkuudella. Ehkä kyseessä on digitaalimittari,

Lisätiedot

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat: Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

1, kun m = 0 ja n = 0, 0, muulloin.

1, kun m = 0 ja n = 0, 0, muulloin. Luku 1 Digitaalinen kuvankäsittely Tässä kappaleessa luodaan lyhyt katsaus digitaaliseen kuvankäsittelyyn ja joihinkin sen sovelluksiin. Yksinkertaisimmillaan kuvankäsittelyä voidaan pitää perusmenetelmien

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset 30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään

Lisätiedot

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa

Lisätiedot

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma Polynomimatriisit Antti Lindberg Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2014 Tiivistelmä: Antti Lindberg, Polynomimatriisit, Matematiikan pro

Lisätiedot

Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla

Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla Ari Nikula Metsäntutkimuslaitos Rovaniemen toimintayksikkö Ari.Nikula@metla.fi / Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Sijoitus integraaliin

Sijoitus integraaliin 1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi

Lisätiedot

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002.

Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons, 2002. Dynamiikan hallinta Lähde: Zölzer. Digital audio signal processing. Wiley & Sons, 2008. Zölzer (ed. DAFX Digital Audio Effects. Wiley & Sons, 2002. Sisältö:! Johdanto!! Ajallinen käyttäytyminen! oteutus!

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

Todennäköisyysjakaumien mallintaminen Matlabohjelmalla

Todennäköisyysjakaumien mallintaminen Matlabohjelmalla Todennäköisyysjakaumien mallintaminen Matlabohjelmalla Tekijä: 55354J timo.nordlund@hut.fi Ohjaaja: Ilkka Mellin Jätetty: 13.8.2003 Sisällysluettelo 1. JOHDANTO... 3 2. OHJELMAKOODI... 4 2.1. RAKENNE...

Lisätiedot

PRO GRADU -TUTKIELMA. Rauno Paukkeri. Tilastolliset oppimisyhdistelmät asiakasvaihtuvuuden ennustamisessa

PRO GRADU -TUTKIELMA. Rauno Paukkeri. Tilastolliset oppimisyhdistelmät asiakasvaihtuvuuden ennustamisessa PRO GRADU -TUTKIELMA Rauno Paukkeri Tilastolliset oppimisyhdistelmät asiakasvaihtuvuuden ennustamisessa TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Tilastotiede Joulukuu 2013 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

Mittausjärjestelmän kalibrointi ja mittausepävarmuus Mittausjärjestelmän kalibrointi ja mittausepävarmuus Kalibrointi kalibroinnin merkitys kansainvälinen ja kansallinen mittanormaalijärjestelmä kalibroinnin määritelmä mittausjärjestelmän kalibrointivaihtoehdot

Lisätiedot

ENFORMAATIOTEORIA fysikaalinen vitalismi. Heikki Hyötyniemi Esitys Jyväskylässä 26.4.2013 Esitys Helsingissä 6.5.2013

ENFORMAATIOTEORIA fysikaalinen vitalismi. Heikki Hyötyniemi Esitys Jyväskylässä 26.4.2013 Esitys Helsingissä 6.5.2013 ENFORMAATIOTEORIA fysikaalinen vitalismi Heikki Hyötyniemi Esitys Jyväskylässä 26.4.2013 Esitys Helsingissä 6.5.2013 Heikki Hyötyniemi Automaatiotekniikan professori Teknillisellä korkeakoululla 2001 2009

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

Sosiaali- ja terveydenhuollon tarvetekijät ja valtionosuusjärjestelmän uudistaminen

Sosiaali- ja terveydenhuollon tarvetekijät ja valtionosuusjärjestelmän uudistaminen Sosiaali- ja terveydenhuollon tarvetekijät ja valtionosuusjärjestelmän uudistaminen Unto Häkkinen ja Maria Vaalavuo 19.12.2013 19.12.2013 Unto Häkkinen 1 Tutkimuksen tavoite Tutkimukseen perustuvat kriteerit

Lisätiedot

3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä

3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä 3D animaatio: liikekäyrät ja interpolointi Tommi Tykkälä Läpivienti Keyframe-animaatio Lineaarisesta interpoloinnista TCB-splineihin Bezier-käyrät Rotaatioiden interpolointi Kameran animointi Skenegraafit

Lisätiedot

Moniulotteiset aikasarjat

Moniulotteiset aikasarjat Moniulotteiset aikasarjat Pentti Saikkonen Syksy 2011 Päivitetty versio 17.1.2016 Sisältö 1. Johdanto 1 1.1. Taustaa 1 1.2. Stokastinen prosessi 2 2. Stationaariset prosessit 4 2.1. Määritelmiä 4 2.2.

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

naaraat < read.table('http://cs.joensuu.fi/pages/whamalai/dm13/naaraatvalikoitu.csv', head=t, sep=',')

naaraat < read.table('http://cs.joensuu.fi/pages/whamalai/dm13/naaraatvalikoitu.csv', head=t, sep=',') naaraat < read.table('http://cs.joensuu.fi/pages/whamalai/dm13/naaraatvalikoitu.csv', head=t, sep=',') printf < function(...) { print(sprintf(...)) c_by_method < NULL # Listataan ne muuttujaparit, joilla

Lisätiedot

Lapsen pituuden selittäminen lineaarisella regressiomallilla

Lapsen pituuden selittäminen lineaarisella regressiomallilla Lapsen pituuden selittäminen lineaarisella regressiomallilla Tuomas Reiterä 013759335 Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos Tilastotiede Kandidaatintutkielma

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Uudelleenkäytön jako kahteen

Uudelleenkäytön jako kahteen Uudelleenkäyttö Yleistä On pyritty pääsemään vakiokomponenttien käyttöön Kuitenkin vakiokomponentit yleistyneet vain rajallisilla osa-alueilla (esim. windows-käyttöliittymä) On arvioitu, että 60-80% ohjelmistosta

Lisätiedot

PLS-REGRESSIO KEMOMETRIAN KALIBROINTIONGELMASSA

PLS-REGRESSIO KEMOMETRIAN KALIBROINTIONGELMASSA AB Mat-.08 Sovelletun matematiikan erikoistyöt PLS-REGRESSIO KEMOMETRIAN KALIBROINTIONGELMASSA Teppo-Heikki Saari, 58096R 9. helmikuuta 008 TEKNILLINEN KORKEAKOULU Teknillisen fysiikan ja matematiikan

Lisätiedot

TYYPIN 1 DIABETEKSEN MATEMAATTISISTA ENNUSTAMISMENETELMISTÄ. Perttu Markula. Pro gradu -tutkielma Helmikuu 2005

TYYPIN 1 DIABETEKSEN MATEMAATTISISTA ENNUSTAMISMENETELMISTÄ. Perttu Markula. Pro gradu -tutkielma Helmikuu 2005 TYYPIN 1 DIABETEKSEN MATEMAATTISISTA ENNUSTAMISMENETELMISTÄ Perttu Markula Pro gradu -tutkielma Helmikuu 2005 UNIVERSITY OF TURKU DEPARTMENT OF MATHEMATICS FIN-20014 TURKU FINLAND TURUN YLIOPISTO Sovelletun

Lisätiedot

LINEAARIALGEBRA, osat a ja b

LINEAARIALGEBRA, osat a ja b LINEAARIALGEBRA, osat a ja b Martti E. Pesonen Epsilon ry. huhtikuuta 06 LUKIJALLE Lineaarialgebran kursseja edeltäviksi opinnoiksi suositellaan jotain lukion matematiikkaa teoreettiselta kannalta täydentävää

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti Tehtävä 1. Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti a) 1 4 b) 1 4 a) - kuvio, annetaan 1,5 p - ympyrä täyttyy neljänneksen kerrallaan, annetaan 1,5 p b) -

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Rahastosalkun faktorimallin rakentaminen

Rahastosalkun faktorimallin rakentaminen Teknillinen korkeakoulu Mat 2.177 Operaatiotutkimuksen projektityöseminaari Kevät 2007 Evli Pankki Oyj Väliraportti 28.3.2007 Kristian Nikinmaa Markus Ehrnrooth Matti Ollila Richard Nordström Ville Niskanen

Lisätiedot