TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
|
|
- Johannes Ahola
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011
2 Sisällys
3 Sisällys
4 Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava automaatti äärellinen pino lineaarirajoitettu Turingin kone
5 Minkälaisia ovat säännölliset kielet? 1 Säännöllinen kieli on määritelmän mukaan kieli, jonka jokin DFA tunnistaa. Merkitään jatkossa L(M):llä kieltä, jonka automaatti M tunnistaa. Jos A Σ on säännöllinen kieli, onko Σ A säännöllinen kieli? Jos A ja B ovat säännöllisiä kieliä, ovatko seuraavat kielet säännöllisiä? A B AB = { vw v A w B } ((kielten) yhdistäminen) A 0 = {ε} A n+1 = A n A A + = n=1 A n (Kleenen plus) A = n=0 A n (Kleenen tähti) 1 Tätä kalvoa on jälkikäteen korjattu. Korjaukset on merkitty näin.
6 Todistustekniikka Kaikille edellisen kalvon kysymyksille on yhteistä muoto jos jotkin kielet ovat säännöllisiä, niin eräs kieli on säännöllinen. Määritelmällisesti tämä on sama kuin jos joillekin kielille on kunkin tunnistava äärellinen automaatti, niin eräälle kielellä on sen tunnistava äärellinen automaatti. Todistusstrategia on luonnollisimmin: esitetään menetelmä, jolla annetuista automaateista voidaan rakentaa halutunlainen koostettu automaatti.
7 Sisällys
8 Todistettava lause Oletukset 1. Σ on aakkosto 2. A, B Σ ovat säännöllisiä kieliä. Väite Σ on säännöllinen kieli.
9 Todistuksen idea On olemassa DFA:t M A ja M B, joille pätee L(M A ) = A ja L(M B ) = B. Rakennetaan DFA M, jolle pätee L(M) = käyttäen hyväksi koneita M A ja M B. M simuloi M A :ta ja M B :tä rinnakkain. M hyväksyy, jos jompi kumpi hyväksyy. Pohdittavaksi: miksi rinnakkain, miksi ei peräkkäin? M:llä on tila kutakin paria (a, b) kohti, missä a on M A :n tila ja b on M B :n tila.
10 Matemaatikon tarkkuudella? Annetaan tarkka konstruktio M:lle. Tarkkaan todistukseen kuuluu myös Osoitetaan, että M:n konstruktio täyttää deterministisen äärellisen automaatin vaatimukset. Osoitetaan, että L(M) =. mutta nämä ovat tässä tapauksessa selkeitä, joten matemaatikon tarkkuudella ne jätetään lukijalle harjoitustehtäväksi. Tehdään taululla.
11 Sisällys
12 Eikö olisi helpompi yhdistää M A ja M B luomalla uusi alkutila, josta automaatti siirtyisi maagisesti oikeaan osa-automaattiin? Tällainen M ei ole DFA mutta se on eli epädeterministinen äärellinen automaatti. on kuin DFA kolmella erolla: samasta tilasta saa olla useampi kuin yksi siirtymä samalla merkillä tilasta ei tarvitse olla siirtymää kaikilla merkeillä tilasta voi olla ns. ε-siirtymä toiseen tilaan
13 matemaattisesti Määritelmä Viisikko (Q, Σ, δ, q 0, F) on epädeterministinen äärellinen automaatti (), jos Q on äärellinen (tilojen) joukko, Σ on äärellinen, epätyhjä joukko, joka ei sisällä tyhjän merkkijonon merkkinä käytettyä merkkiä ε (merkistö), δ : Q (Σ {ε}) P(Q) pätee (siirtymäfunktio), q 0 Q pätee (alkutila) ja F Q pätee (hyväksyvät tilat).
14 :n ε-sulkeuma 2 Määritelmä Olkoon M = (Q, Σ, δ, q 0, F). Määritellään kaikille n N funktiot E n : Q P(Q) seuraavasti: E 0 : q {q} E n+1 : q q E n (q) δ(q, ε) Määritellään nyt M:n ε-sulkeumafunktio E : Q P(Q) seuraavasti: E : q E i. i N E(q) sisältää q:n sekä kaikki tilat, joihin q:sta pääsee ε-siirtymiä seuraamalla. 2 Tämä kalvo on jälkikäteen lisätty.
15 :n toiminta formaalisti 3 Olkoon M = (Q, Σ, δ, q 0, F) epädeterministinen äärellinen automaatti. Se hyväksyy merkkijonon c 0 c n 1 Σ, jos on olemassa tilat q 1,..., q n 1 Q ja q n Q, joille pätee i {0,..., n 1} : q E(qi ) : q i+1 δ(q, c i ) ja q n F. Muuten se hylkää kyseisen merkkijonon. Niiden merkkijonojen, jotka hyväksyy, joukkoa sanotaan sen (tunnistamaksi) kieleksi, L(M). 3 Tätä kalvoa on jälkikäteen korjattu. Korjauksia ei ole merkitty.
16 Epädeterminismi Epädeterminismi tarkoittaa laskentaa, jossa mahdollisia etenemistapoja on useita, joista valitaan joku. :n epädeterminismi on hyväntahtoista, koska valitsee aina hyväksyntään johtavan tavan, jos sellainen on olemassa. Epädeterministinen laskenta voidaan kuvata päätöspuuna. Tarkastellaan taululla seuraavaa automaattia: a a 0 a 1 b 2 a 3 b b ja merkkijonoa aababa.
17 ja Olkoot M A = (Q A, Σ A, δ A, q A, F A ) M B = (Q B, Σ B, δ B, q B, F B ) :t, joille pätee L(M A ) = A ja L(M B ) = B. WLOG 4 oletetaan, että Q A Q B = ja 0 Q A Q B. Konstruoidaan M = (Q A Q B {0}, Σ A Σ B, δ, 0, F A F B ) δ : (Q A Q B ) (Σ A Σ B {ε}) P(Q A Q B ) {q A, q B } jos q = 0 ja c = ε δ A (q, c) jos q Q A ja c Σ A {ε} δ : (q, c) δ B (q, c) jos q Q B ja c Σ B {ε} muuten 4 Without Loss of Generality
18 Riittääkö? Edellisen kalvon konstruktiosta on helppo nähdä, että L(M) =. Todistaako tämä, että on säännöllinen kieli? Säännöllisen kielen määritelmässä puhutaan DFA:sta, ei :sta. Tarvitaan... Lause Jokaiselle :lle M on olemassa DFA M, jolle pätee L(M) = L( M). Todistus Taululla.
19 Sisällys
20 Tehdään taululla AB A +
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
LisätiedotSäännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti
LisätiedotDFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015
ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:
LisätiedotPinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
LisätiedotPinoautomaatit. Pois kontekstittomuudesta
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino
LisätiedotTuringin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen
LisätiedotTäydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka
LisätiedotPinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
.. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013
TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen
LisätiedotSäännöllisten operaattoreiden täydentäviä muistiinpanoja
Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä
Lisätiedotvaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015
TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e
Lisätiedot1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters
LisätiedotAutomaatit. Muodolliset kielet
Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten
LisätiedotLaskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 4, ratkaisuja 1. Esitä tilakaaviona NFA N = (Q, Σ, δ, q 0, F ), missä Q = { q 0, q 1, q 2, q 3, q 4, q 5, q 6, q 7 }, Σ = { a, b, c }, F = { q 4 } ja δ on
LisätiedotRajoittamattomat kieliopit
Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet
LisätiedotÄärellisten automaattien ja säännöllisten kielten ekvivalenssi
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää
LisätiedotMuunnelmia Turingin koneista sekä muita vaihtoehtoisia malleja
sekä muita TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton
LisätiedotYllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen
Yllä osoitettiin, että säännöllisten kielten joukko on suljettu yhdisteen suhteen, eli jos kielet A ja B ovat säännöllisiä, niin myös A B on. Tätä voi havainnollistaa seuraavalla kuvalla: P(Σ ) Säännölliset
LisätiedotTäydentäviä muistiinpanoja laskennan rajoista
Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen
LisätiedotKertausta 1. kurssikokeeseen
Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.
LisätiedotSäännöllisten kielten sulkeumaominaisuudet
Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on
LisätiedotM = (Q, Σ, Γ, δ, q 0, q acc, q rej )
6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012
TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.
LisätiedotLaskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko
LisätiedotTuringin koneen laajennuksia
Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k
LisätiedotHahmon etsiminen syotteesta (johdatteleva esimerkki)
Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/
LisätiedotChomskyn hierarkia ja yhteysherkät kieliopit
Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien
LisätiedotJos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).
Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja
LisätiedotYhteydettömän kieliopin jäsennysongelma
Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 20. lokakuuta 2016
.. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. lokakuuta 2016 Sisällys. Turingin koneiden pysähtymisongelma. Lause Päätösongelma Pysähtyykö standardimallinen
LisätiedotRekursiiviset palautukset [HMU 9.3.1]
Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle
Lisätiedotuv n, v 1, ja uv i w A kaikilla
2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko
LisätiedotTarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.
Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen
LisätiedotTietojenkäsittelyteorian alkeet, osa 2
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016
TIEA24 Automaatit ja kieliopit, syksy 206 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. lokakuuta 206 Sisällys Kolme laskennan mallia kuvitteellisia (abstrakteja) koneita eli automaatteja lukevat syötteen
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.
LisätiedotTodistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.
Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,
Lisätiedoton rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
LisätiedotAlgoritmin määritelmä [Sipser luku 3.3]
Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:
LisätiedotRajoittamattomat kieliopit (Unrestricted Grammars)
Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys Harjoitustehtävät loppukurssilla luentojen 14 18 harjoitustehtävistä on tehtävä yksi
Lisätiedot(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3
T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w
LisätiedotTestaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin
Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.
Lisätiedot5.3 Ratkeavia ongelmia
153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,
LisätiedotEpädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,
Lisätiedotδ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.
42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)
Lisätiedot1. Universaaleja laskennan malleja
1. Universaaleja laskennan malleja Esimerkkinä universaalista laskennan mallista tarkastellaan Turingin konetta muunnelmineen. Lyhyesti esitellään myös muita malleja. Tämän luvun jälkeen opiskelija tuntee
LisätiedotTuringin koneet. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 7. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 7. joulukuuta 2015 Sisällys Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/
LisätiedotKielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }
135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. toukokuuta 2011 Sisällys engl. random-access machines, RAM yksinkertaistettu nykyaikaisen (ei-rinnakkaisen)
LisätiedotRekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää
Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää S AB CA... A CB...... ja kutsua Derives(S, abcde), niin kutsu Derives(B,
LisätiedotLaskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja
582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta
LisätiedotICS-C2000 Tietojenkäsittelyteoria. Tähän mennessä: säännölliset kielet. Säännöllisten kielten pumppauslemma M :=
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun
Lisätiedot4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:
T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone
LisätiedotLisää pysähtymisaiheisia ongelmia
Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti
Lisätiedot6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli. H = {c M w M pysähtyy syötteellä w}
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = {c w pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
LisätiedotPysähtymisongelman ratkeavuus [Sipser luku 4.2]
Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,
LisätiedotICS-C2000 Tietojenkäsittelyteoria
ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen
LisätiedotSäännöllisen kielen tunnistavat Turingin koneet
186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen
Lisätiedot2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:
2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:
LisätiedotM =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)
Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.
LisätiedotLaskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016
lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet
Lisätiedot2. Laskettavuusteoriaa
2. Laskettavuusteoriaa Käymme läpi ratkeamattomuuteen liittyviä ja perustuloksia ja -tekniikoita [HMU luku 9]. Tämän luvun jälkeen opiskelija tuntee joukon keskeisiä ratkeamattomuustuloksia osaa esittää
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 26. kesäkuuta 2013
ja ja TIEA241 Automaatit ja kieliopit, kesä 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. kesäkuuta 2013 Sisällys ja ja on yksi vanhimmista tavoista yrittää mallittaa mekaanista laskentaa. Kurt
LisätiedotRekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä
Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,
LisätiedotS BAB ABA A aas bba B bbs c
T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama
LisätiedotEsimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $:
Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $: a, ε d b, d ε ε, ε $ b, d ε 1 2 3 6 c, ε e c, ε e c,
LisätiedotÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI. 1. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on
ÄÄRELLISTEN AUTOMAATTIEN MINIMOINTI MIKKO KANGASMÄKI. Äärelliset automaatit Äärellinen automaatti (DFA = deterministic finite automaton) on viisikko (Q, Σ, s, δ, F ), missä Q on äärellinen joukko tiloja
LisätiedotMatemaattisten työvälineiden täydentäviä muistiinpanoja
Matemaattisten työvälineiden täydentäviä muistiinpanoja Antti-Juhani Kaijanaho 7 maaliskuuta 0 Deduktiivinen ja induktiivinen päättely Deduktiivisessa päättelyssä johtopäätös seuraa aukottomasti premisseistä
LisätiedotAttribuuttikieliopit
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. toukokuuta 2011 Sisällys t Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
LisätiedotTKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut
TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut Pisteytys on ilmoitettu välikoevaihtoehdon mukaan (joko tehtävät 1, 2 ja 3 välikokeen 1 uusintana tai tehtävät 4, 5 ja 6 välikokeen 2 uusintana).
LisätiedotFormalisoimme nyt edellä kuvatun laskennan.
Formalisoimme nyt edellä kuvatun laskennan. Jos M = (Q, Σ, δ, q, F ) on äärellinen automaatti ja w = w... w n on n merkkiä pitkä aakkoston Σ merkkijono, niin automaatti M hyväksyy merkkijonon w, jos on
LisätiedotT Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut
T-79.1001 Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut Lemma (Säännöllisten kielten pumppauslemma). Olkoon A säännöllinen kieli. Tällöin on olemassa n 1
LisätiedotT Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut
T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama
Lisätiedot9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko
9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
Lisätiedot3. Turingin koneet. osaa esittää yksinkertaisia algoritmeja täsmällisesti käyttäen Turingin konetta ja sen muunnelmia
3. Turingin koneet Turingin kone on alkuaan matemaattisen logiikan tarpeisiin kehitelty laskennan malli. Tarkoituksena oli vangita mahdollisimman laajasti, millaisia asioita voidaan (periaatteessa) laskea
LisätiedotAutomaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:
2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:
LisätiedotMuita universaaleja laskennan malleja
Muita universaaleja laskennan malleja Tällä kurssilla Turingin kone on valittu algoritmikäsitteen formalisoinniksi. Toisin sanoen tulkitsemme, että laskentaongelmalle on olemassa algoritmi, jos ja vain
LisätiedotChomskyn hierarkia. tyyppi 0 on juuri esitelty (ja esitellään kohta lisää) tyypit 2 ja 3 kurssilla Ohjelmoinnin ja laskennan perusmallit
Chomskyn hierarkia Noam Chomskyn vuonna 1956 esittämä luokittelu kieliopeille niiden ilmaisuvoiman mukaan tyyppi kieli kielioppi tunnistaminen 0 rekurs. lueteltava rajoittamaton Turingin kone 1 kontekstinen
LisätiedotOlkoon G = (V,Σ,P,S) yhteydetön kielioppi. Välike A V Σ on tyhjentyvä, jos A. NULL := {A V Σ A ε on G:n produktio};
3.6 Cocke-Younger-Kasami -jäsennysalgoritmi Osittava jäsentäminen on selkeä ja tehokas jäsennysmenetelmä LL(1)-kieliopeille: n merkin mittaisen syötemerkkijonon käsittely sujuu ajassa O(n). LL(1)-kieliopit
LisätiedotTäydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista
Täydentäviä muistiinpnoj epädeterministisistä äärellisistä utomteist Antti-Juhni Kijnho 2. mrrsuut 25 NFA Trstelln seurv NFA:t. 2 3 Sen toimint merijonoll voidn esittää päätöspuun: 3 3 2 2 3 3 TIEA24 Automtit
Lisätiedotjäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. marraskuuta 2015 Sisällys Rekursiivisesti etenevä engl. recursive descent parsing Tehdään kustakin välikesymbolista
LisätiedotOutput. Input Automaton
16 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite
Lisätiedot