Digitaalitekniikan matematiikka Harjoitustehtäviä

Koko: px
Aloita esitys sivulta:

Download "Digitaalitekniikan matematiikka Harjoitustehtäviä"

Transkriptio

1 arjoitustehtäviä Sivu e arjoitustehtäviä uku 3 ytkentäfunktiot ja perusporttipiirit 3. äytäväkytkin on järjestelmä jossa käytävän kummassakin päässä on kytkin ja käytävän keskellä lamppu. amppu voidaan sytyttää ja sammuttaa kummastakin kytkimestä riippumatta toisen kytkimen asennosta. eksi lampun ohjaussignaalille ja kummastakin kytkimestä saatavalle signaalille muistikas ja määrittele sanallisesti lampun ohjaussignaalin kytkentäfunktio. 3.2 aadi tehtävän 3. lampun ohjaussignaalin totuustaulu. 3.3 Piirrä kytkentäfunktioiden ja G toteutus J- ja T- porteilla ja inverttereillä. a b G 3.4 janhetkellä t moottori ei saa sähköä eikä pyöri. janhetkellä t ms moottoriin kytketään sähkö ja siitä ms:n kuluttua moottori alkaa pyöriä. janhetkellä t 5 ms alkaa ms mittainen sähkökatko jona aikana moottori ei kuitenkaan pysähdy. janhetkellä t ms moottorin sähkö katkaistaan ja se pysähtyy 3 ms:n kuluttua. aadi opetuskalvoissa esitettyjen loogisten signaalien MPOW MRUN ja MNGE aikakaavio. uku 4 ytkentäalgebra 4. Etsi seuraavista lausekkeista minimi- ja maksimitermit: a b G 4.2 Millä muuttujien ja D arvoyhdistelmällä minimitermi m2 saa arvon? Millä maksimitermi M8 saa arvon? 4.3 Muodosta seuraavien kytkentäfunktioiden totuustaulut: a b G 4.4 Muodosta seuraavien kytkentäfunktioiden kanoniset SOP- ja POS-lausekkeet: a b G äytä apuna tehtävän 4.3 totuustauluja. Esitä lausekkeet kaikilla kolmella esitystavalla.

2 arjoitustehtäviä Sivu e uku 5 ausekkeiden sieventäminen 5. lla on esitetty kytkentäfunktion totuustaulu. D a Piirrä :n arnaugh n kartta. b Esitä :n yksinkertaisin tulojen summamuotoinen SOP ja summien tulomuotoinen POS esitys. c Toteuta kahden tason piirinä J-T-toteutuksena ja T-J-toteutuksena. äytä mahdollisimman vähän portteja. 5.2 lla on esitetty epätäydellisesti määritellyn funktion PQ R S totuustaulu. Määrittele funktio P a minimitermien avulla b maksimitermien avulla. Q R S P uku 6 ombinaatiopiirit 6. Sievennä kytkentäfunktio ja toteuta sievennetty funktio J-E-porteilla. Oletetaan että muuttujat ovat käytettävissä sekä sellaisinaan että invertoituina. Vihje: Piirrä suoraan arnaugh n kartta ja merkitse siihen ykköset lausekkeen kutakin tulotermiä vastaavaan ryhmään. D D D

3 arjoitustehtäviä Sivu e 6.2 Sievennä seuraavat kytkentäfunktiot ja toteuta sievennetyt funktiot J-E-porteilla. Oletetaan että muuttujat ovat käytettävissä sekä sellaisinaan että invertoituina. Vihje: Piirrä suoraan arnaugh n kartta ja merkitse siihen ykköset lausekkeen kutakin tulotermiä vastaavaan ryhmään. a G D D D b D D D D 6.3 Toteuta tehtävän 6. funktio mahdollisimman pienellä määrällä T-E-portteja. Oletetaan että muuttujat ovat käytettävissä sekä sellaisinaan että invertoituina. 6.4 Toteuta tehtävän 6.2 funktiot mahdollisimman pienellä määrällä T-E-portteja. Oletetaan että muuttujat ovat käytettävissä sekä sellaisinaan että invertoituina. 6.5 Tehtävän 3. lampun ohjaussignaalin lauseke on ON UP 2UP UP 2UP. Muodosta sen komplementin SOP-muotoinen lauseke. uku 7 äytännön logiikkapiirit ja piirrosmerkit 7. Etsi WWW:stä MOS-piirin 74V datalehti ja vastaa sen avulla seuraaviin kysymyksiin. Voit lähteä liikkeelle esimerkiksi NP:n kotisivusta a Mikä on piirin maksimikäyttöjännite ja maksimitulojännite? b Mikä on piirille sallittu käyttölämpötila-alue? c Mikä on piirille suositeltu käyttöjännitealue? d Mitkä ovat tyypilliset ja minimi- ja maksimijännitearvot loogisille tasoille ja piirin tulossa ja lähdössä 3 V:n käyttöjännitteellä kun lämpötila-alue on º? e Mitkä ovat piirin minimi- tyypilliset ja maksimiviiveet 3 V:n käyttöjännitteellä kun lämpötilaalue on º? 7.2 Piirin 74V datalehdessä on esitetty piirille seuraava toimintataulukko: nputs Output Y aadi piirin totuustaulu erikseen positiiviselle ja negatiiviselle logiikkasopimukselle. Minkä funktion piiri toteuttaa eri tapauksissa? Opastus: merkintä toimintataulukon rivillä tarkoittaa sitä että kun :n looginen taso on Y:n looginen taso on riippumatta :n loogisesta tasosta.

4 arjoitustehtäviä Sivu e 7.3 Eräälle kaksituloiselle MOS-J-E-piirille on ilmoitettu etenemisviiveeksi 5 ns ja muutosajaksi 8 ns. umpikin on muutoksen suunnasta riippumaton. U 5 V ja U V. Piirin tulot ja tulevat vastaavan piirin lähdöistä. ummankin arvo on aluksi. janhetkellä t ns :n arvo alkaa muuttua :sta :ksi ja ajanhetkellä t 4 ns takaisin :stä :ksi. Piirrä signaalien ja Y aikakaavio aikana t 8 ns. Y on piirin lähtösignaali. Voit olettaa että kaikki signaalimuutokset tapahtuvat ajan mukana lineaarisesti. 7.4 Piirrä nelituloisen J-E-portin neljä piirrosmerkkiä: kaksi käyttäen negaatiomerkintää ja kaksi käyttäen napaisuusmerkintää. 7.5 Miten tulkitset alla olevan piirrosmerkin mukaisen piirin toiminnan? aadi piirin toteuttaman funktion totuustaulu. 2 uku 8 ombinaatiopiirielimet 8. Suunnittele vertailupiiri joka vertaa kahta nelibittistä lukua 3 2 ja 3 2. Piirin lähtö kun ja. ina muulloin. äytettävissä on J-E- T-E- ja EDOTON T -portteja. 8.2 Myös dekooderi on eräänlainen yleislogiikkapiiri koska se muodostaa kaikki muuttujien minimitermit. Muodostamalla näistä T-portilla annetun funktion mukainen looginen summa voidaan toteuttaa mielivaltainen kytkentäfunktio. Ykkösten määrän laskentapiiriin tulee neljä tulosignaalia: S S S2 ja S3. Piirin lähtösignaalit ovat N N4 ja ne on määritelty seuraavasti: N saa arvon kun tulosignaaleista yksikään ei ole ykkönen ja arvon muulloin N saa arvon kun tulosignaaleista yksi mikä tahansa on ykkönen ja arvon muulloin N2 saa arvon kun tulosignaaleista kaksi mitkä tahansa ovat ykkösiä ja arvon muulloin N3 saa arvon kun tulosignaaleista kolme mitkä tahansa ovat ykkösiä ja arvon muulloin N4 saa arvon kun kaikki neljä tulosignaalia ovat ykkösiä ja arvon muulloin. aadi signaalien N N4 totuustaulut ja toteuta ykkösten määrän laskentapiiri dekooderilla ja Tporteilla. Millainen dekooderi tarvitaan? 8.3 Toteuta funktio D Σ m tulovalitsimella. äytä mahdollisimman pientä valitsinpiiriä. uku 9 ukujärjestelmät ja lukujen esittäminen 9. Mitkä seuraavista eri lukujärjestelmissä esitetyistä luvuista ovat oikeita ja mitkä virheellisiä? a Merkintä alaindeksillä luvun perässä:

5 arjoitustehtäviä Sivu e E 6 6 b Merkintä kirjaimella luvun perässä: Q 222 D 9D 2 c Merkintä kuten Java- ja -ohjelmointikielissä: 825 x23fed x 9.2 aske seuraavien etumerkittömien lukujen arvo kymmenjärjestelmässä. äytä kantaluvun merkintään samaa tapaa kuin tehtävässä. a 2 b c 34 8 d 27653Q e 28 6 f Muodosta seuraavien binaarilukujen kahden komplementit: a b c d e 9.4 Muunna seuraavat etumerkki-itseisarvomuotoiset binaariluvut kahden komplementtimuotoon: a

6 arjoitustehtäviä Sivu e b c d e uku ukujärjestelmämuunnokset. Muunna seuraavat kymmenjärjestelmän luvut kahden komplementtimuotoisiksi 6-bittisiksi binaariluvuiksi. uvun kokonaisosaan käytetään 2 bittiä. a 595 b c d -.2 Seuraavassa taulukossa on esitetty kokonaisluvut ja. Täydennä taulukko. inaarilukujen sananpituus on kahdeksan bittiä. inaariluvut muutetaan oktaali- ja heksadesimaaliluvuiksi merkkibitteineen. -järjestelmä -25 ahden komplementti 8-järjestelmä 6-järjestelmä uku askutoimitukset binaariluvuilla. Piirrä sellaisen piirin piirikaavio joka antaa yhtä aikaa kahden yksibittisen luvun summabitin yhteenlaskun muistibitin erotusbitin vähennyslaskun muistibitin ja tulon. Toteuta piiri porteilla ja invertterillä..2 Seuraavassa taulukossa on esitetty luvut ja. Täydennä taulukko merkitsemällä sen jokaiseen ruutuun luku vasemmassa laidassa esitetyssä järjestelmässä. inaariluvut esitetään kahdeksalla bitillä. inaariluvut muutetaan oktaali- ja heksadesimaaliluvuiksi merkkibitteineen. - -järjestelmä 2 ahden komplementti 8-järjestelmä 6-järjestelmä

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja igitaalitekniikan matematiikka arjoitustehtävien ratkaisuja Sivu (22) 6.3.2 e arjoitustehtävien ratkaisuja uku 3 ytkentäfunktiot ja perusporttipiirit 3. äytäväkytkin on järjestelmä, jossa käytävän kummassakin

Lisätiedot

Yhden bitin tiedot. Digitaalitekniikan matematiikka Luku 1 Täsmätehtävä Tehtävä 1. Luettele esimerkkejä yhden bitin tiedoista.

Yhden bitin tiedot. Digitaalitekniikan matematiikka Luku 1 Täsmätehtävä Tehtävä 1. Luettele esimerkkejä yhden bitin tiedoista. Digitaalitekniikan matematiikka Luku Täsmätehtävä Tehtävä Yhden bitin tiedot Luettele esimerkkejä yhden bitin tiedoista. Ovi auki - ovi kiinni Virta kulkee - virta ei kulje Lamppu palaa - lamppu ei pala

Lisätiedot

Yhden bitin tiedot. Binaariluvun arvon laskeminen. Koodin bittimäärä ja vaihtoehdot ? 1

Yhden bitin tiedot. Binaariluvun arvon laskeminen. Koodin bittimäärä ja vaihtoehdot ? 1 Luku Digitaalitekniikan matematiikka Täsmätehtävät.9. Fe Digitaalitekniikan matematiikka Täsmätehtävät.9. Fe Opetuskerta Sivu Luku Opetuskerta Sivu Yhden bitin tiedot Luettele esimerkkejä yhden bitin tiedoista.

Lisätiedot

Digitaalitekniikan matematiikka Luku 8 Sivu 1 (23) Kombinaatiopiirielimet MUX X/Y 2 EN

Digitaalitekniikan matematiikka Luku 8 Sivu 1 (23) Kombinaatiopiirielimet MUX X/Y 2 EN Digitaalitekniikan matematiikka Luku 8 Sivu ().9. Fe DX G = G EN X/Y Digitaalitekniikan matematiikka Luku 8 Sivu ().9. Fe Johdanto Tässä luvussa esitetään keskeisiä kombinaatiopiirielimiä ne ovat perusporttipiirejä

Lisätiedot

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe C = Aseta Aseta i i = n i > i i i Ei i < i i i Ei i i = Ei i i = i i -- On On On C in > < = CI CO C out -- = + (-) (-) = + = C + Digitaalitekniikan matematiikka

Lisätiedot

Digitaalitekniikan matematiikka Luku 3 Sivu 1 (19) Kytkentäfunktiot ja perusporttipiirit

Digitaalitekniikan matematiikka Luku 3 Sivu 1 (19) Kytkentäfunktiot ja perusporttipiirit Digitaalitekniikan matematiikka Luku 3 Sivu (9) && Digitaalitekniikan matematiikka Luku 3 Sivu 2 (9) Johdanto Tässä luvussa esitetään digitaalilaitteen signaalit ja digitaalipiirien perustyypit esitellään

Lisätiedot

Digitaalitekniikan matematiikka Luku 5 Sivu 1 (22) Lausekkeiden sieventäminen F C F = B + A C. Espresso F = A (A + B) = A A + A B = A B

Digitaalitekniikan matematiikka Luku 5 Sivu 1 (22) Lausekkeiden sieventäminen F C F = B + A C. Espresso F = A (A + B) = A A + A B = A B igitaalitekniikan matematiikka Luku 5 Sivu (22).9.2 e = + = ( + ) = + = Espresso igitaalitekniikan matematiikka Luku 5 Sivu 2 (22).9.2 e Johdanto Tässä luvussa esitetään perusteet lausekemuodossa esitettyjen

Lisätiedot

Lukujärjestelmät. Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen Fe

Lukujärjestelmät. Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen Fe Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen.9.2 Fe Lukujärjestelmät Kymmen- eli desimaalijärjestelmä: kantaluku perinteisesti käytetty ja tuttu numerot,,

Lisätiedot

Digitaalitekniikan matematiikka Luku 4 Sivu 1 (15) Kytkentäalgebra A + 1 = 1 A = A A + B C = (A + B) (A + C) A 0 = 0. Maksimitermi.

Digitaalitekniikan matematiikka Luku 4 Sivu 1 (15) Kytkentäalgebra A + 1 = 1 A = A A + B C = (A + B) (A + C) A 0 = 0. Maksimitermi. Digitaalitekniikan matematiikka Luku 4 Sivu 1 (15) A + 1 = 1 A + B C = (A + B) (A + C) F(A, B, C) = Σ m (2, 3, 5, 7) Maksimitermi A = A m0 A 0 = 0 M7 A + B = A B Minimitermi Digitaalitekniikan matematiikka

Lisätiedot

Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) Lukujärjestelmämuunnokset. 2 s s

Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) Lukujärjestelmämuunnokset. 2 s s Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) k 10 2 10 2 s 10 10 8 10 16 10 2 10 2 s 2 8 8 2 2 16 16 2 Digitaalitekniikan matematiikka Luku 10 Sivu 2 (14) Johdanto Tässä luvussa perustellaan, miksi

Lisätiedot

Digitaalitekniikan matematiikka Luku 6 Sivu 1 (20) Kombinaatiopiirit & & A B A + B

Digitaalitekniikan matematiikka Luku 6 Sivu 1 (20) Kombinaatiopiirit & & A B A + B igitaalitekniikan matematiikka Luku 6 Sivu (20).9.20 e 0 0 0 0 0 + 0 0 0 0 0 0 0 igitaalitekniikan matematiikka Luku 6 Sivu 2 (20).9.20 e Johdanto Tässä luvussa esitellään porttipiirityypit J-EI ja TI-EI

Lisätiedot

Harjoitustehtävien ratkaisut

Harjoitustehtävien ratkaisut Sivu (22) 29.8.2 Fe/Ko Luku Sekvenssipiirit. Tutki luentokalvo- ja opetusmonisteessa esitettyä esimerkkiä synkronisesta sekvenssipiiristä. a) Montako tilaa piirissä on? Koska piirissä on kaksi tilasignaalia,

Lisätiedot

F = AB AC AB C C Tarkistus:

F = AB AC AB C C Tarkistus: Digitaalitekniikka I, tenttitehtäviä ratkaisuineen I 3..995 2. c) esitä seuraava funktio kanonisten summien tulona f(,,) = + Sovelletaan DeMorganin teoreemaa (työläs). Teoriaminimointia ei ole käytetty!

Lisätiedot

Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: JA-EI-portti A B. TAI-EI-portti A B = 1

Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: JA-EI-portti A B. TAI-EI-portti A B = 1 Digitaalitekniikan matematiikka Luku 6 Sivu () Kombinaatiopiirit.9. Fe J-EI- (NND) ja TI-EI- (NOR) -portit Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: NND? B B & B B = & B + B + B

Lisätiedot

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen rakentamisessa? 2012-2013 Lasse Lensu 2 Transistori yhdessä

Lisätiedot

ANSI/IEEE Std

ANSI/IEEE Std Digitaalitekniikan matematiikka Luku 9 Sivu 1 (26) Lukujärjestelmät ja lukujen esittäminen ANSI/IEEE Std 754-2008 0 1 0 1 1 0 0 0 B = Σ B i 2 i Digitaalitekniikan matematiikka Luku 9 Sivu 2 (26) Johdanto

Lisätiedot

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen rakentamisessa? 2013-2014 Lasse Lensu 2 Transistori yhdessä

Lisätiedot

c) loogiset funktiot tulojen summana B 1 = d) AND- ja EXOR-porteille sopivat yhtälöt

c) loogiset funktiot tulojen summana B 1 = d) AND- ja EXOR-porteille sopivat yhtälöt IGITLITEKNIIKK I 5 Tentti:.. ELEKTRONIIKN LORTORIO Henkilötunnus - KT Σ. Kaksituloisen multiplekserin toimintaa kuvaa looginen funktio = +. Esitä a) :n toiminta K-kartalla (,5 p) b) minimoituna summien

Lisätiedot

Elektroniikan laboratorio Lisätehtävät 17.9.2003. Mallivastauksia

Elektroniikan laboratorio Lisätehtävät 17.9.2003. Mallivastauksia OULUN YLIOPISTO IGITLITEKNIIKK I Elektroniikan laboratorio Lisätehtävät 7.9. Mallivastauksia. Mitkä loogiset operaatiot oheiset kytkennät toteuttavat? Vihje: kytkin johtaa, kun ohjaava signaali =. Käytä

Lisätiedot

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 Luento 6: Tiedon esittäminen tietokoneessa, osa 1 Tekijät: Antti Virtanen, Timo Lehtonen, Matti Kujala, Kirsti Ala-Mutka, Petri M. Gerdt et al. Luennon

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

Käytännön logiikkapiirit ja piirrosmerkit

Käytännön logiikkapiirit ja piirrosmerkit Digitaalitekniikan matematiikka Luku 7 Sivu (27) EN 2 EN X/Y X/Y 0 2 3 2 EN X/Y X/Y 0 2 3 Digitaalitekniikan matematiikka Luku 7 Sivu 2 (27) Johdanto Tässä luvussa esitellään käsitteet logiikkaperhe ja

Lisätiedot

DIGITAALISTEN KOMBINAATIO- PIIRIEN LABORATORIOTÖIDEN SUUNNITTELU

DIGITAALISTEN KOMBINAATIO- PIIRIEN LABORATORIOTÖIDEN SUUNNITTELU OPINNÄYTETYÖ - AMMATTIKORKEAKOULUTUTKINTO TEKNIIKAN JA LIIKENTEEN ALA DIGITAALISTEN KOMBINAATIO- PIIRIEN LABORATORIOTÖIDEN SUUNNITTELU T E K I J Ä : Toni Halonen SAVONIA-AMMATTIKORKEAKOULU OPINNÄYTETYÖ

Lisätiedot

c) loogiset funktiot tulojen summana B 1 = C 2 C 1 +C 1 C 0 +C 2 C 1 C 0 e) logiikkakaavio

c) loogiset funktiot tulojen summana B 1 = C 2 C 1 +C 1 C 0 +C 2 C 1 C 0 e) logiikkakaavio IGITLITEKNIIKK I 5 Tentti:.. ntti Mäntyniemi ELEKTONIIKN LOTOIO Henkilötunnus - KT Σ. Kaksituloisen multiplekserin toimintaa kuvaa looginen funktio = +. Esitä a) :n toiminta K-kartalla (,5 p) ykkösten

Lisätiedot

ELEC-C3240 Elektroniikka 2

ELEC-C3240 Elektroniikka 2 ELEC-C324 Elektroniikka 2 Marko Kosunen Marko.kosunen@aalto.fi Digitaalielektroniikka Tilakoneet Materiaali perustuu kurssiins-88. Digitaalitekniikan perusteet, laatinut Antti Ojapelto Luennon oppimistavoite

Lisätiedot

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Mikrotietokone Moderni tietokone Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Sen käyttötarkoitus on yleensä työnteko, kissavideoiden katselu internetistä tai pelien pelaaminen. Tietokoneen

Lisätiedot

Sekvenssipiirin tilat

Sekvenssipiirin tilat igitaalitekniikka (piirit) Luku Täsmätehtävä Tehtävä Sekvenssipiirin tilat Montako tilaa vähintään tarvitaan seuraavissa sekvenssipiireissä: Painikkeella ohjattava lampun sytytys ja sammutus. Näyttöä ohjaava

Lisätiedot

5. Laskutoimitukset eri lukujärjestelmissä

5. Laskutoimitukset eri lukujärjestelmissä 5. Laskutoimitukset eri lukujärjestelmissä Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 5.1. Muunnokset lukujärjestelmien välillä

Lisätiedot

Oppikirjan harjoitustehtävien ratkaisuja

Oppikirjan harjoitustehtävien ratkaisuja Sivu (27) 26.2.2 e 7 Muistipiirit 7- Tietokoneen muistin koko on 256 K 6 b. Montako sanaa muistissa on? Mikä on sen sananpituus? Montako muistialkiota muistissa on? Muistissa on 256 kibisanaa eli 262 44

Lisätiedot

SISÄLLYS - DIGITAALITEKNIIKKA

SISÄLLYS - DIGITAALITEKNIIKKA SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2

Lisätiedot

Digitaalitekniikka (piirit) Luku 15 Sivu 1 (17) Salvat ja kiikut 1D C1 C1 1T 1J C1 1K S R

Digitaalitekniikka (piirit) Luku 15 Sivu 1 (17) Salvat ja kiikut 1D C1 C1 1T 1J C1 1K S R igitaalitekniikka (piirit) Luku 5 ivu (7).8.24 Fe/AKo C J C K C T C C J C K igitaalitekniikka (piirit) Luku 5 ivu 2 (7).8.24 Fe/AKo Johdanto Tässä luvussa esitetään salpapiirit, jotka ovat yksinkertaisimpia

Lisätiedot

Synkronisten sekvenssipiirien suunnittelu

Synkronisten sekvenssipiirien suunnittelu Digitaalitekniikka (piirit) Luku 6 Sivu (5) Synkronisten sekvenssipiirien suunnittelu.8.24 Fe/AKo Synkronisten sekvenssipiirien suunnittelu Digitaalitekniikka (piirit) Luku 6 Sivu 2 (5) Synkronisten sekvenssipiirien

Lisätiedot

Kappale 20: Kantaluvut

Kappale 20: Kantaluvut Kappale 20: Kantaluvut 20 Johdanto: Kantaluvut... 328 Kantalukujen syöttäminen ja muuntaminen... 329 Matemaattiset toiminnot Hex- ja Bin-luvuilla... 330 Bittien vertaileminen ja manipulointi... 331 Huom!

Lisätiedot

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan Digitaalitekniikan matematiikka Luku Sivu (9) Johdatus digitaalitekniikkaan.9.2 Fe Johdatus digitaalitekniikkaan Digitaalitekniikan matematiikka Luku Sivu 2 (9) Johdatus digitaalitekniikkaan.9.2 Fe Johdanto

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja Sivu (52) 27.2.2 Fe Johdatus digitaalitekniikkaan - Luettele erilaisia tekstitiedon ja liikkumattoman kuvan ilmenemismuotoja (esimerkiksi oppikirjan teksti ja valokuva). Miten niitä voidaan tallettaa,

Lisätiedot

Tervetuloa opiskelemaan DIGITAALI- TEKNIIKKAA!

Tervetuloa opiskelemaan DIGITAALI- TEKNIIKKAA! igitaalitekniikan matematiikka Luku Sivu (9) Opintojakson esittely.9. e igitaalitekniikan matematiikka Luku Sivu (9) Opintojakson esittely.9. e Yleistä opintojaksosta Laajuus op = 8 h, kokonaan syyslukukauden

Lisätiedot

Johdatus digitaalitekniikkaan

Johdatus digitaalitekniikkaan Digitaalitekniikan matematiikka Luku Sivu (9) Johdatus digitaalitekniikkaan.9. e Digitaalitekniikan matematiikka Luku Sivu (9) Johdatus digitaalitekniikkaan.9. e Johdatus digitaalitekniikkaan Johdanto

Lisätiedot

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 2) Kahdesta rinnankytketystä sähkölähteestä a) kuormittuu enemmän se, kummalla on

Lisätiedot

Esimerkkitentin ratkaisut ja arvostelu

Esimerkkitentin ratkaisut ja arvostelu Sivu (5) 2.2.2 Fe Seuraavassa on esitetty tenttitehtävien malliratkaisut ja tehtäväkohtainen arvostelu. Osassa tehtävistä on muitakin hyväksyttäviä ratkaisuja kuin malliratkaisu. 2 Tehtävät on esitetty

Lisätiedot

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net Paavo Räisänen Ohjelmoijan binaarialgebra ja heksaluvut www.ohjelmoimaan.net Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa. Kuitenkaan omille nettisivuille opasta

Lisätiedot

LUKUJÄRJESTELMÄT. Kymmenjärjestelmä eli desimaalijärjestelmä. Binäärilukujärjestelmä

LUKUJÄRJESTELMÄT. Kymmenjärjestelmä eli desimaalijärjestelmä. Binäärilukujärjestelmä Ammatti-Instituutti Lukujärjestelmistä Sivu 1 (5) LUKUJÄRJESTELMÄT Kymmenjärjestelmä eli desimaalijärjestelmä Kymmenjärjestemä on meille se tutuin järjestelmä jonka tunnemme x Siinä on (10) kymmenen numeroa,

Lisätiedot

Harjoitustehtäväkierros 1

Harjoitustehtäväkierros 1 T-06.50 kurssihenkilökunta deadline Tiistai 20.0.2009 2:5 Johdanto Tämä tehtäväkierros käsittelee pääasiassa toisen luennon sisältöä. Harjoituksia saa tehdä yksin tai yhdessä. Yhdessä tekeminen on suositeltavaa,

Lisätiedot

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 Johdanto Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 2 / 31 7.1. Muunnokset

Lisätiedot

Kombinatorisen logiikan laitteet

Kombinatorisen logiikan laitteet Kombinatorisen logiikan laitteet Kombinatorinen logiikka tarkoittaa logiikkaa, jossa signaali kulkee suoraan sisääntuloista ulostuloon Sekventiaalisessa logiikassa myös aiemmat syötteet vaikuttavat ulostuloon

Lisätiedot

Sähkötekniikan perusteet

Sähkötekniikan perusteet Sähkötekniikan perusteet 1) Resistanssien rinnankytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden sarjakytkentä 2) Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

Harjoitustyön 2 aiheiden kuvaukset

Harjoitustyön 2 aiheiden kuvaukset Sivu 1 (5) 1 Raitiovaunun oven avaamis- ja sulkemispiiri Raitiovaunun oven vieressä on matkustajan avauspainike. Kun vaunu on paikallaan, matkustajan avauspainikkeen painaminen antaa signaalin, joka avaa

Lisätiedot

Digitaalitekniikka (piirit) Luku 14 Sivu 1 (16) Sekvenssipiirit. Kombinaatiopiiri. Tilarekisteri

Digitaalitekniikka (piirit) Luku 14 Sivu 1 (16) Sekvenssipiirit. Kombinaatiopiiri. Tilarekisteri Digitaalitekniikka (piirit) Luku 4 Sivu (6).8.24 Fe/AKo Tilarekisteri Kombinaatiopiiri Digitaalitekniikka (piirit) Luku 4 Sivu 2 (6).8.24 Fe/AKo Johdanto Tässä luvussa todetaan esimerkin avulla kombinaatiopiirien

Lisätiedot

Palautteita. Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi

Palautteita. Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi Palautteita Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi 504 Mitä range() tekee? range on funktio, joka palauttaa listan esim. a = range(5,10) Palauttaa listan [5,6,7,8,9] Siis nämä kolme

Lisätiedot

Tietokonearitmetiikka

Tietokonearitmetiikka Luento 6 ALU: Aritmeettis-Looginen Yksikkö Tietokonearitmetiikka Stallings: Ch 9 Kokonaislukuesitys Kokonaislukuaritmetiikka Liukulukuesitys Liukulukuaritmetiikka Luento 6-1 ALU = Aritmetic Logic Unit

Lisätiedot

Digitaalitekniikan perusteet

Digitaalitekniikan perusteet HAMK Riihimäki Versio 1.0 Väinö Suhonen Digitaalitekniikan perusteet Loogiset funktiot ja portit Kombinaatiologiikan elimiä Rekisterilogiikan perusteet Rekisteri- ja sekvenssilogiikan elimiä ena up/ down

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.

Lisätiedot

ELEKTRONIIKAN PERUSTEET T700504

ELEKTRONIIKAN PERUSTEET T700504 ELEKTRONIIKAN PERUSTEET T700504 syksyllä 2014 OSA 2 Veijo Korhonen 4. Bipolaaritransistorit Toiminta Pienellä kantavirralla voidaan ohjata suurempaa kollektorivirtaa (kerroin β), toimii vahvistimena -

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

PM10OUT2A-kortti. Ohje

PM10OUT2A-kortti. Ohje PM10OUT2A-kortti Ohje Dokumentin ID 6903 V3 13.4.2015 Sisällysluettelo Sisällysluettelo... 2 Esittely... 3 Kortti ja rekisterit... 3 Lähtöviestit... 4 Signaalien kytkeminen... 4 Käyttö... 4 Asetusten tekeminen...

Lisätiedot

Sähkötekniikan perusteet

Sähkötekniikan perusteet Sähkötekniikan perusteet 1) Resistanssien rinnankytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden sarjakytkentä 2) Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä

Lisätiedot

kwc Nirni: Nimen selvennys : ELEKTRONIIKAN PERUSTEET 1 Tentti La / Matti Ilmonen / Vastaukset kysymyspapereille. 0pisk.

kwc Nirni: Nimen selvennys : ELEKTRONIIKAN PERUSTEET 1 Tentti La / Matti Ilmonen / Vastaukset kysymyspapereille. 0pisk. Tentti La 20.01.2001 / Matti Ilmonen / Vastaukset kysymyspapereille. Nirni: Nimen selvennys : 1 2 3 4 5 z -.. 0pisk.no: ARVOSANA 1. Selvita lyhyesti seuraavat kiitteet ( kohdat a... j ) a) Kokosummain?

Lisätiedot

Ohjelmoijan binaarialgebra ja heksaluvut

Ohjelmoijan binaarialgebra ja heksaluvut Paavo Räisänen Ohjelmoijan binaarialgebra ja heksaluvut www.ohjelmoinaan.net Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa. Kuitenkaan omille nettisivuille opasta

Lisätiedot

TIES325 Tietokonejärjestelmä. Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos

TIES325 Tietokonejärjestelmä. Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos TIES325 Tietokonejärjestelmä Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos Kevät 2008 Luku 4 Tietokoneen sisäinen toiminta Edellisisää osioiss aon tarkasteltu tietokoneen kehittymistä ja sen

Lisätiedot

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R): Diskreetti matematiikka, sks 2010 Harjoitus 2, ratkaisuista 1. Seuraavassa on kuvattu kolme virtapiiriä, joissa on paristo, sopiva lamppu L ja katkaisimia P, Q, R, joiden läpi virta kulkee (1) tai ei kulje

Lisätiedot

Tietokonearitmetiikka

Tietokonearitmetiikka Tietokoneen rakenne Luento 6 Tietokonearitmetiikka Stallings: Ch 9 Kokonaislukuesitys Kokonaislukuaritmetiikka Liukulukuesitys Liukulukuaritmetiikka Luento 6-1 ALU: Aritmeettis-Looginen Yksikkö ALU = Aritmetic

Lisätiedot

Digitaalitekniikka (piirit) Opetusmoniste

Digitaalitekniikka (piirit) Opetusmoniste Sivu (35) 3.2.2 Fe Esko T. Rautanen Digitaalitekniikka (piirit) Sisällysluettelo Sivu Synkroniset sekvenssipiirit 2. Opettavainen tarina 2.2 Digitaalisten piirien ryhmittely 3.3 Synkronisen sekvenssipiirin

Lisätiedot

Negatiiviset luvut ja laskutoimitukset

Negatiiviset luvut ja laskutoimitukset 7.lk matematiikka Negatiiviset luvut ja laskutoimitukset Hatanpään koulu Syksy 2017 Janne Koponen Negatiiviset luvut ja laskutoimitukset 2 Negatiiviset luvut ja laskutoimitukset Sisällys 1. Negatiiviset

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op FT Ari Viinikainen Tietokoneen rakenne Keskusyksikkö, CPU Keskusmuisti Aritmeettislooginen yksikkö I/O-laitteet Kontrolliyksikkö Tyypillinen Von Neumann

Lisätiedot

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua.

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua. A Lista Aikaraja: 1 s Uolevi sai käsiinsä listan kokonaislukuja. Hän päätti laskea listan luvuista yhden luvun käyttäen seuraavaa algoritmia: 1. Jos listalla on vain yksi luku, pysäytä algoritmi. 2. Jos

Lisätiedot

BL40A1711 Johdanto digitaaleketroniikkaan: Sekvenssilogiikka, pitopiirit ja kiikut

BL40A1711 Johdanto digitaaleketroniikkaan: Sekvenssilogiikka, pitopiirit ja kiikut BL40A1711 Johdanto digitaaleketroniikkaan: Sekvenssilogiikka, pitopiirit ja kiikut Sekvenssilogiikka Kombinatooristen logiikkapiirien lähtömuuttujien nykyiset tilat y i (n) ovat pelkästään riippuvaisia

Lisätiedot

ELEC-A4010 Sähköpaja Arduinon ohjelmointi. Jukka Helle

ELEC-A4010 Sähköpaja Arduinon ohjelmointi. Jukka Helle ELEC-A4010 Sähköpaja Arduinon ohjelmointi Jukka Helle Arduino UNO R3 6-20VDC 5VDC muunnin 16 MHz kideoskillaattori USB-sarjamuunnin (ATmega16U2) ATmega328 -mikro-ohjain 14 digitaalista I/O väylää 6 kpl

Lisätiedot

Harjoitustyön 2 aiheiden kuvaukset

Harjoitustyön 2 aiheiden kuvaukset Sivu 1 (6) 1 Jouluvalojen vilkutin Jouluvalojen vilkuttimessa on neljä sisäkkäistä lamppukehää ja kaksi kytkintä, joilla valitaan vilkuttimen toimintasekvenssi. Kummastakin kytkimestä saadaan yksi valintasignaali.

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko 9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ

Lisätiedot

Kirjoita, tallenna, käännä ja suorita alla esitelty ohjelma, joka tervehtii käyttäjäänsä.

Kirjoita, tallenna, käännä ja suorita alla esitelty ohjelma, joka tervehtii käyttäjäänsä. Tehtävä 1. Kirjoita, tallenna, käännä ja suorita alla esitelty ohjelma, joka tervehtii käyttäjäänsä. #include /* mm. I/O-funktiot */ #include /* mm. EXIT_SUCCESS */ /*main-funktio,

Lisätiedot

Tässä riisinjyvien määrät jokaisessa ruudussa on laskettava yhteen. Tällöin tuloksena on

Tässä riisinjyvien määrät jokaisessa ruudussa on laskettava yhteen. Tällöin tuloksena on 8. Luvut 8.1 Suuret luvut, summa ja kertoma Aloittakaamme shakkipelin keksimiseen liittyvällä tunnetulla tarinalla. Intian hallitsija innostui kovasti shakkipelistä, jonka yksi palatsin viisaista miehistä

Lisätiedot

Kompleksilukujen kunnan konstruointi

Kompleksilukujen kunnan konstruointi Kompleksilukujen kunnan konstruointi Seuraava esitys osoittaa, miten kompleksilukujoukko voidaan määritellä tunnetuista reaalisista käsitteistä lähtien. Määrittelyjen jälkeen on helppoa osoittaa Mathematican

Lisätiedot

AUTO3030 Digitaalitekniikan jatkokurssi, harjoitus 2, ratkaisuja

AUTO3030 Digitaalitekniikan jatkokurssi, harjoitus 2, ratkaisuja AUTO3030 Digitaalitekniikan jatkokurssi, harjoitus 2, ratkaisuja s2009 1. D-kiikku Toteuta DE2:lla synkroninen laskukone, jossa lasketaan kaksi nelibittistä lukua yhteen. Tulos esitetään ledeillä vasta,

Lisätiedot

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta

Lisätiedot

Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti

Perusteet. Pasi Sarolahti Aalto University School of Electrical Engineering. C-ohjelmointi Kevät Pasi Sarolahti C! Perusteet 19.1.2017 Palautteesta (1. kierros toistaiseksi) (Erittäin) helppoa Miksi vain puolet pisteistä? Vaikeinta oli ohjelmointiympäristön asennus ja käyttö Ei selvää että main funktion pitikin

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Tietokonearitmetiikka

Tietokonearitmetiikka Tietokoneen rakenne Luento 6 Tietokonearitmetiikka (Computer Arithmetic) Stallings: Ch 9 Kokonaislukuesitys Kokonaislukuaritmetiikka Liukulukuesitys Liukulukuaritmetiikka Luento 6-1 ALU: Aritmeettis-Looginen

Lisätiedot

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin

Mediaanisuodattimet. Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että. niiden ominaisuudet tunnetaan hyvin Mediaanisuodattimet Tähän asti käsitellyt suodattimet ovat olleet lineaarisia. Niille on tyypillistä, että niiden ominaisuudet tunnetaan hyvin niiden analysointiin on olemassa vakiintuneita menetelmiä

Lisätiedot

Tietokonearitmetiikka

Tietokonearitmetiikka Luento 6 ALU: Aritmeettis-Looginen Yksikkö Tietokonearitmetiikka (Computer Arithmetic) Stallings: Ch 9 Kokonaislukuesitys Kokonaislukuaritmetiikka Liukulukuesitys Liukulukuaritmetiikka Luento 6-1 ALU =

Lisätiedot

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset

Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/+^ 3 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen 3/ +^ 3 Liiku matematiikka alueella nuolinäppäimin. Kokeile

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15)

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) A = a = i i w i Digitaalitekniikan matematiikka Luku 12 Sivu 2 (15) Johdanto Tässä luvussa esitetään kymmenjärjestelmän lukujen eli BCD-lukujen esitystapoja

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

Java-kielen perusteet

Java-kielen perusteet Java-kielen perusteet Tunnus, varattu sana, kommentti Muuttuja, alkeistietotyyppi, merkkijono, literaalivakio, nimetty vakio Tiedon merkkipohjainen tulostaminen 1 Tunnus Java tunnus Java-kirjain Java-numero

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Perustietotyypit ja laskutoimitukset

Perustietotyypit ja laskutoimitukset Perustietotyypit ja laskutoimitukset 2 Perustietotyypit ja laskutoimitukset Tässä luvussa käsittelemme C++:n perustietotyyppejä, varsinkin sellaisia kuin sinä mitä todennäköisemmin tulet käyttämään omissa

Lisätiedot

17/20: Keittokirja IV

17/20: Keittokirja IV Ohjelmointi 1 / syksy 2007 17/20: Keittokirja IV Paavo Nieminen nieminen@jyu.fi Tietotekniikan laitos Informaatioteknologian tiedekunta Jyväskylän yliopisto Ohjelmointi 1 / syksy 2007 p.1/10 Tavoitteita

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/4+^2 3 4+ 2 Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +^2 3 + 4 2 Kopioi

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä

Lisätiedot

Diskreetit rakenteet P 5 op

Diskreetit rakenteet P 5 op Diskreetit rakenteet 811120P 5 op Juha Kortelainen Ari Vesanen Syksy 2016 Esipuhe Tämä moniste on pääosin Juha Kortelaisen laatima. Olen muuttanut algoritmien esitystavan ja tehnyt pieniä korjauksia. Ari

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot