C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out

Koko: px
Aloita esitys sivulta:

Download "C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out"

Transkriptio

1 Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe C = Aseta Aseta i i = n i > i i i Ei i < i i i Ei i i = Ei i i = i i -- On On On C in > < = CI CO C out -- = + (-) (-) = + = C +

2 Digitaalitekniikan matematiikka Luku ivu 2 (2).9.2 Fe Johdanto Tässä luvussa käsitellään peruslaskutoimitukset yksi- ja monibittisillä etumerkittömillä binaariluvuilla esitellään aritmeettiset peruspiirit esitetään etumerkittömien binaarilukujen vertailu ja vertailupiirit käsitellään kahden komplementtimuotoisten lukujen yhteen- ja vähennyslasku esitetään binaariluvun kertominen kahden potenssilla Luvun tavoitteena on oppia laskemaan yhteen-, vähennys- ja kertolaskuja etumerkittömillä ja kahden komplementtimuotoisilla binaariluvuilla perehtyä aritmeettisiin piireihin ja vertailupiireihin sekä niiden käyttöön

3 Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe Laskutoimitukset yksibittisillä binaariluvuilla eriaatteessa kuten kymmenjärjestelmän numeroilla Laskutaulukot: Yhteenlasku + Vähennyslasku - Kertolasku C B D R R =D Muistibitti (carry bit) Muistibitti (borrow bit)

4 Digitaalitekniikan matematiikka Luku ivu 4 (2).9.2 Fe uolisummain uolisummain (half adder) muodostaa kahden yksibittisen luvun summabitin ja muistibitin Totuustaulu C Kytkentäfunktiot = + = C = iirikaavio ½ iirrosmerkki Muistibitti ummabitti = C CO C

5 Digitaalitekniikan matematiikka Luku ivu 5 (2).9.2 Fe Monibittisten binaarilukujen yhteen- ja vähennyslasku Monibittisillä luvuilla tuleva muistibitti on otettava huomioon Bittipositiossa i laskennassa ovat mukana yhteenlaskettavien tai vähennettävien bitit i ja i tuleva muistibitti C i tai B i summabitti i tai erotusbitti D i lähtevä muistibitti C i+ tai B i+ C tai B tai D umma i + i + C i Erotus i - i - B i + i i i C i i C i i+ i+ i i i i i B i i B i i+ D i+ i i - i = D i

6 Digitaalitekniikan matematiikka Luku ivu 6 (2).9.2 Fe Kokosummain Kokosummain (full adder) ottaa huomioon myös yhteenlaskun tulevan muistibitin euraavassa jätetty signaalinimistä pois indeksi i Tuleva muistibitti on C in ja lähtevä C out Totuustaulu C in C in out out Kytkentäfunktiot = C in + C in + C in + C in = C in C out = + C in + C in = + C in ( )

7 Digitaalitekniikan matematiikka Luku ivu 7 (2).9.2 Fe Kokosummain 2 iirikaavio C in = = iirrosmerkki C out C in CI CO C out iirikaavio 2 C in CO CO C out

8 Digitaalitekniikan matematiikka Luku ivu 8 (2).9.2 Fe Monibittiset binaarisummaimet 4-bittinen rinnakkaismuotoinen summain saatavilla erillispiirinä 4-bittisen rinnakkaismuotoisen summaimen periaatteellinen toteutus Esittele binaarisummain 2 2 CI CO C CI CO C 2 2 CI CO C CI CO C 4 Heikkoutena hitaus: muistibitti etenee ketjussa summaimesta seuraavaan Todellisessa summaimessa muistibitin kulkua on nopeutettu tähän voidaan käyttää muistibitin kurkistuspiiriä kurkistussummaimessa viive ei riipu n yhteenlaskettavien bittimäärästä nopein summain saadaan kahden tason piirinä

9 Nelibittinen binaarisummain Digitaalitekniikan matematiikka Luku ivu 9 (2).9.2 Fe Kurkistussummaimen piirikaavio Lisä 2 2 iirrosmerkki 2 = C = C g 2 2 C g C p C g2 C p2 C 2 C = = = = 2 C in CI CO C out C g = = C p 4 C 4

10 Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe? Laskutoimituksia etumerkittömillä binaariluvuilla 2 Yhteenlasku Ylivuoto, väärä tulos Muistibitti + umma Muistibitti + umma Muistibitti + umma + Vähennyslasku Ylivuoto, väärä tulos Muistibitti - Erotus - Muistibitti - Erotus Muistibitti - Erotus Kertolasku Osatulot Tulo Osatulot Tulo

11 Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe Etumerkittömien binaarilukujen vertailu Yhtäsuuruuden vertailu Verrataan yksittäisiä bittejä EHDOTON TAI -portilla Yhdistetään bittikohtaiset vertailutulokset TAI-EI-portilla Esimerkki: nelibittinen yhtäsuuruuden vertailupiiri = iirikaavio iirrosmerkki 2 2 = = = = Y 2 2 COM = Y

12 Digitaalitekniikan matematiikka Luku ivu 2 (2).9.2 Fe Etumerkittömien binaarilukujen vertailu 2 Keskinäisen suuruuden vertailu elvitetään, kumpi luvuista on suurempi vai ovatko ne yhtä suuret Vertailualgoritmi Kahdeksanbittinen vertailupiiri > = < Aseta i = n i > i Ei i < i Ei i = Ei i = i - On On On > < = 2 2 > = < COM > = < > = < COM > = < Y

13 Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe? 2 Kahden komplementtimuotoisten binaarilukujen yhteenlasku Yksinkertainen algoritmi laske luvut merkkibitteineen yhteen unohda merkkibiteistä muodostunut muistibitti Esimerkkejä: 2 s ja positiivisia, samoin C + negatiivinen, positiivinen, positiivinen C + negatiivinen, negatiivinen, positiivinen! Ylivuoto! C + Eri arvo

14 Digitaalitekniikan matematiikka Luku ivu 4 (2).9.2 Fe Kahden komplementtimuotoisten binaarilukujen vähennyslasku Tehdään vastaluvun yhteenlaskuna: - = + (-) Kahden komplementtimuodossa esitetyn luvun vastaluku saadaan komplementoimalla luku merkkibitteineen - = + (-) - = kompl ()

15 Digitaalitekniikan matematiikka Luku ivu 5 (2).9.2 Fe Kahden komplementtimuotoisten binaarilukujen vähennyslasku? Esimerkki:, ja R ovat kahden komplementtimuotoisia lukuja, =, =, R = Laske -, - R ja - R Muodostetaan ensin komplementoimalla - ja -R. = - = R = -R = Merkkibitti mukaan komplementointiin 2 s C - + positiivinen, - negatiivinen, positiivinen C -R + positiivinen, -R positiivinen, negatiivinen! Ylivuoto! C -R + positiivinen, -R positiivinen, positiivinen

16 Digitaalitekniikan matematiikka Luku ivu 6 (2).9.2 Fe Kahden koplementtimuotoisten binaarilukujen yhteen- ja vähennyslaskupiiri Lisä Yhteenlasku binaarisummaimella (VAH = ) Vähennyslasku vastaluvun yhteenlaskuna samalla summaimella (VAH = ) Vastaluvun muodostus EHDOTON TAI -porteilla ja tulevalla muistibitillä Esimerkki: nelibittinen summain-vähennin 2 = 2 = = 2 = CI CO C 4 VAH

17 Digitaalitekniikan matematiikka Luku ivu 7 (2).9.2 Fe Aritmeettis-looginen yksikkö ALU Käytetään tietokoneen keskusyksikössä Tekee aritmeettisia ja loogisia operaatioita 2 C ALU [T] 2 M 7 OVR CI CO OVR C 4 F 2 F F F Toiminnan määrittely taulukossa OVR = ylivuoto T Tulot Toiminta Lähdöt 2 F Nollaus Vähennys Vähennys ummaus plus EHDOTON TAI TAI + JA Asetus Lisä

18 Digitaalitekniikan matematiikka Luku ivu 8 (2).9.2 Fe Binaariluvun kertominen kahden potenssilla Kahden potenssilla kertominen = binaaripilkun siirto eksponentin osoittamalla määrällä oikealle, jos eksponentti on positiivinen (kertolasku) vasemmalle, jos eksponentti on negatiivinen (jakolasku) Kiinteän pilkun esityksessä pilkkua ei voida siirtää siirretään itse lukua vasemmalle, jos eksponentti on positiivinen (kertolasku) oikealle, jos eksponentti on negatiivinen (jakolasku) iirrettäessä merkkibitti ei saa muuttua Vasemmalle siirrettäessä kertolaskun tuloksen pitää edelleen mahtua käytettävään sananpituuteen luvun perään lisätään nollia Oikealle siirrettäessä syntyy katkaisuvirhe, jos yksikin poistuva bitti on ykkönen luvun alkuun lisätään merkkibittejä x 2 n : 2 n

19 Digitaalitekniikan matematiikka Luku ivu 9 (2).9.2 Fe Kahden komplementtimuotoisen binaariluvun kertominen kahden potenssilla Esimerkki: kerrotaan 2 :lla ositiivinen luku x 2 n (+4 )? 4 iirretty vasemmalle Lisätty nollia (+252 ) Negatiivinen luku iirretty vasemmalle Lisätty nollia (-4 ) (-252 )

20 Digitaalitekniikan matematiikka Luku ivu 2 (2).9.2 Fe? 5 Kahden komplementtimuotoisen binaariluvun jakaminen kahden potenssilla Esimerkki: jaetaan 2 :lla ositiivinen luku Lisätty nollia Negatiivinen luku Lisätty ykkösiä iirretty oikealle iirretty oikealle : 2 n (+4 ) (+9 ) (-4 ) (-4 )

21 Digitaalitekniikan matematiikka Luku ivu 2 (2).9.2 Fe Yhteenveto Yksi- Yksi- ja ja monibittisten binaarilukujen laskutoimitukset määritellään laskutaulukoilla Ne Ne toteutetaan aritmeettisilla piireillä puoli-, puoli-, koko- koko- ja ja monibittisillä binaarisummaimilla yhteen- ja ja vähennyslaskupiireillä Etumerkittömien binaarilukujen vertailu vertailu tehdään yhtäsuuruuden vertailupiirillä keskinäisen suuruuden vertailupiirillä Kahden komplementtimuotoisten binaarilukujen yhteen- ja ja vähennyslasku ovat ovat yksinkertaisia Kahden komplementtimuotoisen binaariluvun kertominen tai tai jakaminen kahden potenssilla tehdään siirtämällä lukua lukua vasemmalle tai tai oikealle

Digitaalitekniikan matematiikka Harjoitustehtäviä

Digitaalitekniikan matematiikka Harjoitustehtäviä arjoitustehtäviä Sivu 6 6.3.2 e arjoitustehtäviä uku 3 ytkentäfunktiot ja perusporttipiirit 3. äytäväkytkin on järjestelmä jossa käytävän kummassakin päässä on kytkin ja käytävän keskellä lamppu. amppu

Lisätiedot

Yhden bitin tiedot. Binaariluvun arvon laskeminen. Koodin bittimäärä ja vaihtoehdot ? 1

Yhden bitin tiedot. Binaariluvun arvon laskeminen. Koodin bittimäärä ja vaihtoehdot ? 1 Luku Digitaalitekniikan matematiikka Täsmätehtävät.9. Fe Digitaalitekniikan matematiikka Täsmätehtävät.9. Fe Opetuskerta Sivu Luku Opetuskerta Sivu Yhden bitin tiedot Luettele esimerkkejä yhden bitin tiedoista.

Lisätiedot

Kombinatorisen logiikan laitteet

Kombinatorisen logiikan laitteet Kombinatorisen logiikan laitteet Kombinatorinen logiikka tarkoittaa logiikkaa, jossa signaali kulkee suoraan sisääntuloista ulostuloon Sekventiaalisessa logiikassa myös aiemmat syötteet vaikuttavat ulostuloon

Lisätiedot

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen

Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen Ongelma(t): Mistä loogisista lausekkeista ja niitä käytännössä toteuttavista loogisista piireistä olisi hyötyä tietojenkäsittelyssä ja tietokoneen rakentamisessa? 2012-2013 Lasse Lensu 2 Transistori yhdessä

Lisätiedot

Yhden bitin tiedot. Digitaalitekniikan matematiikka Luku 1 Täsmätehtävä Tehtävä 1. Luettele esimerkkejä yhden bitin tiedoista.

Yhden bitin tiedot. Digitaalitekniikan matematiikka Luku 1 Täsmätehtävä Tehtävä 1. Luettele esimerkkejä yhden bitin tiedoista. Digitaalitekniikan matematiikka Luku Täsmätehtävä Tehtävä Yhden bitin tiedot Luettele esimerkkejä yhden bitin tiedoista. Ovi auki - ovi kiinni Virta kulkee - virta ei kulje Lamppu palaa - lamppu ei pala

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net Paavo Räisänen Ohjelmoijan binaarialgebra ja heksaluvut www.ohjelmoimaan.net Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa. Kuitenkaan omille nettisivuille opasta

Lisätiedot

Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: JA-EI-portti A B. TAI-EI-portti A B = 1

Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: JA-EI-portti A B. TAI-EI-portti A B = 1 Digitaalitekniikan matematiikka Luku 6 Sivu () Kombinaatiopiirit.9. Fe J-EI- (NND) ja TI-EI- (NOR) -portit Peruspiirejä yhdistelemällä saadaan seuraavat uudet porttipiirit: NND? B B & B B = & B + B + B

Lisätiedot

SISÄLLYS - DIGITAALITEKNIIKKA

SISÄLLYS - DIGITAALITEKNIIKKA SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2

Lisätiedot

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 Johdanto Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 2 / 31 7.1. Muunnokset

Lisätiedot

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä 61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o

Lisätiedot

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Mikrotietokone Moderni tietokone Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Sen käyttötarkoitus on yleensä työnteko, kissavideoiden katselu internetistä tai pelien pelaaminen. Tietokoneen

Lisätiedot

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 Luento 6: Tiedon esittäminen tietokoneessa, osa 1 Tekijät: Antti Virtanen, Timo Lehtonen, Matti Kujala, Kirsti Ala-Mutka, Petri M. Gerdt et al. Luennon

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

Elektroniikan laboratorio Lisätehtävät 17.9.2003. Mallivastauksia

Elektroniikan laboratorio Lisätehtävät 17.9.2003. Mallivastauksia OULUN YLIOPISTO IGITLITEKNIIKK I Elektroniikan laboratorio Lisätehtävät 7.9. Mallivastauksia. Mitkä loogiset operaatiot oheiset kytkennät toteuttavat? Vihje: kytkin johtaa, kun ohjaava signaali =. Käytä

Lisätiedot

Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Virheen havaitseminen ja korjaus

Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Virheen havaitseminen ja korjaus Digitaalitekniikan matematiikka Luku 13 Sivu 1 (10) Digitaalitekniikan matematiikka Luku 13 Sivu 2 (10) Johdanto Tässä luvussa esitetään virheen havaitsevien ja korjaavien koodaustapojen perusteet ja käyttösovelluksia

Lisätiedot

Kappale 20: Kantaluvut

Kappale 20: Kantaluvut Kappale 20: Kantaluvut 20 Johdanto: Kantaluvut... 328 Kantalukujen syöttäminen ja muuntaminen... 329 Matemaattiset toiminnot Hex- ja Bin-luvuilla... 330 Bittien vertaileminen ja manipulointi... 331 Huom!

Lisätiedot

Seguinin lauta A: 11-19

Seguinin lauta A: 11-19 Lukujen syventäminen Kun lapsi ryhtyy montessorileikkikoulussa syventämään tietouttaan lukualueesta 1-1000, uutena montessorimateriaalina tulevat värihelmet. Värihelmet johdattavat lasta mm. laskutoimituksiin,

Lisätiedot

A. Mikä on 10-järjestelmä eli 10-kertaisia lukuja ja niiden 10:s osia

A. Mikä on 10-järjestelmä eli 10-kertaisia lukuja ja niiden 10:s osia 1(10) A. Mikä on 10-järjestelmä eli 10-kertaisia lukuja ja niiden 10:s osia Ensimmäinen oppilas rakentaa luvun 1 paikka-alustalle ja toinen oppilas piirtää sen olevalle paikka-alustalle. Toinen oppilas

Lisätiedot

Diskreetit rakenteet. Juha Kortelainen

Diskreetit rakenteet. Juha Kortelainen Diskreetit rakenteet 811120P 5 op Juha Kortelainen Syksy 2015 Sisältö 1 Algoritmin käsite 4 1.1 Mitä algoritmi on?........................ 4 1.2 Kontrollirakenteet......................... 6 1.3 Muita

Lisätiedot

KAAVAT. Sisällysluettelo

KAAVAT. Sisällysluettelo Excel 2013 Kaavat Sisällysluettelo KAAVAT KAAVAT... 1 Kaavan tekeminen... 2 Kaavan tekeminen osoittamalla... 2 Kaavan kopioiminen... 3 Kaavan kirjoittaminen... 3 Summa-funktion lisääminen... 4 Suorat eli

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

BL40A1711 Johdanto digitaalielektroniikkaan: Johdanto ja lukujärjestelmät

BL40A1711 Johdanto digitaalielektroniikkaan: Johdanto ja lukujärjestelmät BL40A1711 Johdanto digitaalielektroniikkaan: Johdanto ja lukujärjestelmät Laboratory of Control Engineering and Digital Systems Focus of research and education Energy efficient systems Renewable energy

Lisätiedot

TEHTÄVIEN KUVAUKSET. 3. luokan opintopolku (Laskutaito-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 3. luokan opintopolku (Laskutaito-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 3. luokan opintopolku (Laskutaito-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan! Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

TWEN 131 PD / 1430 PD KÄYTTÖOHJE

TWEN 131 PD / 1430 PD KÄYTTÖOHJE TWEN 131 PD / 1430 PD KÄYTTÖOHJE 1 Virran kytkeminen ja paristonvaihto...3 Ennen virran kytkemistä...3 Virran kytkeminen...3 Varoitus...3 Pariston vaihto...3 2 Värinauhan vaihto...3 3 Kuittinauhan asetus...4

Lisätiedot

VIII. Osa. Liitteet. Liitteet Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto

VIII. Osa. Liitteet. Liitteet Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto Osa VIII Liitteet Liitteet A B C Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto Osa VIII A. Liite Operaattoreiden suoritusjärjestys On tärkeää ymmärtää, että operaattoreilla on prioriteettinsa,

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja Sivu (52) 27.2.2 Fe Johdatus digitaalitekniikkaan - Luettele erilaisia tekstitiedon ja liikkumattoman kuvan ilmenemismuotoja (esimerkiksi oppikirjan teksti ja valokuva). Miten niitä voidaan tallettaa,

Lisätiedot

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

TIES325 Tietokonejärjestelmä. Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos

TIES325 Tietokonejärjestelmä. Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos TIES325 Tietokonejärjestelmä Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos Kevät 2008 Luku 4 Tietokoneen sisäinen toiminta Edellisisää osioiss aon tarkasteltu tietokoneen kehittymistä ja sen

Lisätiedot

Mikrokontrollerit. Mikrokontrolleri

Mikrokontrollerit. Mikrokontrolleri Mikrokontrollerit S-108.2010 Elektroniset mittaukset 18.2.2008 Mikrokontrolleri integrointi säästää tilaa piirilevyllä usein ratkaisu helpompi ja nopeampi toteuttaa ohjelmallisesti prosessori 4-64 bittinen

Lisätiedot

Desimaaliluvut, mitä ne oikeastaan ovat?

Desimaaliluvut, mitä ne oikeastaan ovat? Desimaaliluvut, mitä ne oikeastaan ovat? Matti Lehtinen Desimaaliluvut ovat niin jokapäiväisiä ja niillä laskemiseen niin totuttu, ettei yleensä tule miettineeksi, mitä ne oikeastaan ovat. Joskus kauan

Lisätiedot

Excel syventävät harjoitukset 31.8.2015

Excel syventävät harjoitukset 31.8.2015 Yleistä Excel on taulukkolaskentaohjelma. Tämä tarkoittaa sitä että sillä voi laskea laajoja, paljon laskentatehoa vaativia asioita, esimerkiksi fysiikan laboratoriotöiden koetuloksia. Excel-ohjelmalla

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

LUMA Suomi kehittämisohjelma 8.10.2015 14:53 Joustava yhtälönratkaisu Matemaattinen Ohjelmointi ja Yhtälönratkaisu

LUMA Suomi kehittämisohjelma 8.10.2015 14:53 Joustava yhtälönratkaisu Matemaattinen Ohjelmointi ja Yhtälönratkaisu (MOJYR) Sisällysluettelo (MOJYR)... 1 1. Taustaa... 1 2. MOJYR-ohjelma... 2 2.1 Ohjelman asentaminen... 2 2.2 Käyttöliittymä... 2 3. Puumalli... 3 4. MOJYR-ohjelman ominaisuudet... 5 4.1 Yhtälön muodostaminen...

Lisätiedot

Successive approximation AD-muunnin

Successive approximation AD-muunnin AD-muunnin Koostuu neljästä osasta: näytteenotto- ja pitopiiristä, (sample and hold S/H) komparaattorista, digitaali-analogiamuuntimesta (DAC) ja siirtorekisteristä. (successive approximation register

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

strategia, 1-20 strategia, 1-20, lyhennetty versio edellisestä strategia, 1-20 strategia, 1-20 nopeus, 1-20 ja strategia, 1-20

strategia, 1-20 strategia, 1-20, lyhennetty versio edellisestä strategia, 1-20 strategia, 1-20 nopeus, 1-20 ja strategia, 1-20 NEUREN TEHTÄVÄKUVAUKSET esi- ja alkuopetukseen Arviointi TAITO TEHTÄVÄ TAVOITE LK. TEHTÄVÄN SIJAINTI LASKEMISEN TAIDOT Lukujonon luetteleminen Lukujonotaitojen arviointi, 1-50 Lukujono eteenpäin 1-50 Puutuvan

Lisätiedot

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100 Tiedonsiirtokäskyt LOAD LOAD-käsky toimii jälkimmäisestä operandista ensimmäiseen. Ensimmäisen operandin pitää olla rekisteri, toinen voi olla rekisteri, vakio tai muistiosoite (myös muuttujat ovat muistiosoitteita).

Lisätiedot

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

Käytännön logiikkapiirit ja piirrosmerkit

Käytännön logiikkapiirit ja piirrosmerkit Digitaalitekniikan matematiikka Luku 7 Sivu (27) EN 2 EN X/Y X/Y 0 2 3 2 EN X/Y X/Y 0 2 3 Digitaalitekniikan matematiikka Luku 7 Sivu 2 (27) Johdanto Tässä luvussa esitellään käsitteet logiikkaperhe ja

Lisätiedot

A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS

A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS K. V Ä I S Ä L Ä A L G E B R A N O P P I - J A E S I M E R K K I K I R J A I KAHDESTOISTA PAINOS PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ Kouluhallituksen hyväksymä WERNER SÖDERSTRÖM OSAKEYHTIÖN KIRJAPAINOSSA

Lisätiedot

Perustietotyypit ja laskutoimitukset

Perustietotyypit ja laskutoimitukset Perustietotyypit ja laskutoimitukset 2 Perustietotyypit ja laskutoimitukset Tässä luvussa käsittelemme C++:n perustietotyyppejä, varsinkin sellaisia kuin sinä mitä todennäköisemmin tulet käyttämään omissa

Lisätiedot

tietokoneiden kanssa?

tietokoneiden kanssa? 1/21 1/21 Mitä tekemistä logaritmeilla on tietokoneiden kanssa? Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen ja sovelletun matematiikan laitos Eräs opiskelija kysyi pitämälläni Algoritmien

Lisätiedot

Lukujono eteenpain 1-50 Puuttuvan luvun taydentaminen, 1-50 1. LukiMat/Arviointi/Laskemisen taidot

Lukujono eteenpain 1-50 Puuttuvan luvun taydentaminen, 1-50 1. LukiMat/Arviointi/Laskemisen taidot NEUREN TEHTAVAKUVAUKSET kaikki vuosiluokat Arviointi TAITO TEHTAVA TAVOITE LK. TEHTAVAN SIJAINTI LASKEMISEN TAIDOT Lukujonon luetteleminen Lukujonotaitojen arviointi1-50 Puuttuvan luvun taydentaminen on,

Lisätiedot

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Matematiikka Huom! Mikäli tehtävällä ei vielä ole molempia teknisiä koodeja, tarkoittaa se sitä, että tehtävä ei ole vielä valmis jaettavaksi käyttöön, vaan

Lisätiedot

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta 8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä

Lisätiedot

Luvuilla laskeminen. Esim. 1 Laske 6 21 7

Luvuilla laskeminen. Esim. 1 Laske 6 21 7 Luvuilla laskeminen TI-84 Plus käyttää laskujen suorittamiseen ns. yhtälönkäsittelyjärjestelmää (EOS TM, Equation Operating System), jonka avulla lausekkeiden syöttö tapahtuu matemaattisessa kirjoitusjärjestyksessä.

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

A/D-muuntimia. Flash ADC

A/D-muuntimia. Flash ADC A/D-muuntimia A/D-muuntimen valintakriteerit: - bittien lukumäärä instrumentointi 6 16 audio/video/kommunikointi/ym. 16 18 erikoissovellukset 20 22 - Tarvittava nopeus hidas > 100 μs (

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9

1 Laskutoimituksia 3. Peruslaskutoimitukset luvuilla 3. Peruslaskutoimitukset polynomeilla 5. Prosentti 7. Prosenteilla vertaaminen 9 Sisällysluettelo 1 Laskutoimituksia 3 Peruslaskutoimitukset luvuilla 3 Peruslaskutoimitukset polynomeilla 5 Prosentti 7 Prosenteilla vertaaminen 9 Kuvaaminen koordinaatistossa 11 2 Lausekkeesta yhtälöksi

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. Assembly ja konekieli TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op Assembly ja konekieli Tietokoneen ja ohjelmiston rakenne Loogisilla piireillä ja komponenteilla rakennetaan prosessori ja muistit Prosessorin rakenne

Lisätiedot

Lukujen uusi maailma: p-adiset luvut

Lukujen uusi maailma: p-adiset luvut Solmu 3/2008 1 Lukujen uusi maailma: p-adiset luvut Tauno Metsänkylä Matematiikan laitos, Turun yliopisto Kun kokonaislukujen 0,1,2,... joukkoa laajennetaan vaiheittain ottamalla mukaan negatiiviset kokonaisluvut,

Lisätiedot

17/20: Keittokirja IV

17/20: Keittokirja IV Ohjelmointi 1 / syksy 2007 17/20: Keittokirja IV Paavo Nieminen nieminen@jyu.fi Tietotekniikan laitos Informaatioteknologian tiedekunta Jyväskylän yliopisto Ohjelmointi 1 / syksy 2007 p.1/10 Tavoitteita

Lisätiedot

MABK1 Kurssimateriaali. Eiran aikuislukio 2005

MABK1 Kurssimateriaali. Eiran aikuislukio 2005 MABK1 Kurssimateriaali Eiran aikuislukio 2005 Sisältö 1 Sanasto 1 2 Luvut ja laskutoimitukset 5 2.1 Lukujoukot................................ 5 2.2 Peruslaskutoimitukset.......................... 6 2.3

Lisätiedot

Tietotyypit ja operaattorit

Tietotyypit ja operaattorit Tietotyypit ja operaattorit Luennossa tarkastellaan yksinkertaisten tietotyyppien int, double ja char muunnoksia tyypistä toiseen sekä esitellään uusia operaatioita. Numeeriset tietotyypit ja muunnos Merkkitieto

Lisätiedot

1. Muutamia erityisongelmia murtolukujen käsitteen oppimisessa

1. Muutamia erityisongelmia murtolukujen käsitteen oppimisessa 1. Muutamia erityisongelmia murtolukujen käsitteen oppimisessa (Lähde: Lamon, S. 1999. Teaching fractions and ratios for understanding. New Jersey: Lawrence Erlbaum Publishers.) Murtolukujen alueelle siirryttäessä

Lisätiedot

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla 1. Tehtävänanto Pohdi kuinka opettaisit yläasteen oppilaille murtolukujen peruslaskutoimitukset { +, -, *, / } Cuisenairen lukusauvoja apuna

Lisätiedot

Antti Vähälummukka 2010

Antti Vähälummukka 2010 Antti Vähälummukka 2010 TCP/IP (Transmission Control Protocol / Internet Protocol) on usean Internet-liikennöinnissä käytettävän tietoverkkoprotokollan yhdistelmä. IP-protokolla on alemman tason protokolla,

Lisätiedot

Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla

Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla ohjelmoida useita komponenteiltaan ja rakenteeltaan

Lisätiedot

Katsaus LukiMatiin. ITK2013, 10.-12.4.2013 Hämeenlinna. S Johanna Manninen, Niilo Mäki Instituutti

Katsaus LukiMatiin. ITK2013, 10.-12.4.2013 Hämeenlinna. S Johanna Manninen, Niilo Mäki Instituutti Katsaus LukiMatiin ITK2013, 10.-12.4.2013 Hämeenlinna S 11.4.2013 1 LukiMat verkkopalvelu www.lukimat.fi S Hanketta rahoittaa Opetus- ja kulttuuriministeriö (I-vaihe 2007-2009, II-vaihe 2010-2011 ja III-vaihe

Lisätiedot

Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku

Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Pasi Leppäniemi OuLUMA, sivu 1 POLYNOMIPELI Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Luokkataso: 8-9 lk Välineet: pelilauta, polynomikortit, monomikortit, tuloskortit,

Lisätiedot

1.1 Yhtälön sieventäminen

1.1 Yhtälön sieventäminen 1.1 Yhtälön sieventäminen Lausekkeeksi voidaan kutsua jokaista merkittyä laskutoimitusta. Sellaisia matema-tiikan tehtäviä on vähän, joita suorittaessaan ei joutuisi sieventämään lausekkeita, millä tarkoitetaan

Lisätiedot

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1)

Luokka 0-1. Vertailua (Luokka 0-1) Lukukäsite ja luvut 0-10 (Luokka 0-1) Yhteen- ja vähennyslasku 0-5 (Luokka 0-1) Lasku-Lassin maatila - Harjoituslista Sivu 1 / 20 Luokka 0-1 Vertailua (Luokka 0-1) 1. Etsi erilainen Kuvavalinta 2. Mikä ei kuulu joukkoon? Kuvavalinta 3. Pitempi, lyhyempi Kuvavalinta 4. Mikä ei kuulu

Lisätiedot

Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python

Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python Tähtitieteen käytännön menetelmiä Kevät 2009 Luento 4: Ohjelmointi, skriptaus ja Python 31. tammikuuta 2009 Ohjelmointi Perusteet Pythonin alkeet Esittely Esimerkkejä Muuttujat Peruskäsitteitä Käsittely

Lisätiedot

Flash AD-muunnin. suurin kaistanleveys muista muuntimista (gigahertsejä) pieni resoluutio (max 8) kalliita

Flash AD-muunnin. suurin kaistanleveys muista muuntimista (gigahertsejä) pieni resoluutio (max 8) kalliita Flash AD-muunnin Flash AD-muunnin koostuu monesta peräkkäisestä komparaattorista, joista jokainen vertaa muunnettavaa signaalia omaan referenssijännitteeseensä. Referenssijännite aikaansaadaan jännitteenjaolla:

Lisätiedot

Sähkötekniikan perusteet

Sähkötekniikan perusteet Sähkötekniikan perusteet 1) Resistanssien rinnankytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden sarjakytkentä 2) Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

Ohjausjärjestelmien jatkokurssi. Visual Basic vinkkejä ohjelmointiin

Ohjausjärjestelmien jatkokurssi. Visual Basic vinkkejä ohjelmointiin Ohjausjärjestelmien jatkokurssi Visual Basic vinkkejä ohjelmointiin http://www.techsoft.fi/oskillaattoripiirit.htm http://www.mol.fi/paikat/job.do?lang=fi&jobid=7852109&index=240&anchor=7852109 Yksiköt

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Päivölän matematiikan kesäleiri. Matemaattista viihdettä lapsukaisille viime vuosituhannelta asti

Päivölän matematiikan kesäleiri. Matemaattista viihdettä lapsukaisille viime vuosituhannelta asti Päivölän matematiikan kesäleiri Matemaattista viihdettä lapsukaisille viime vuosituhannelta asti Kesäleiri pähkinänkuoressa Viikon rutistus maanantaista klo12 perjantaihin klo14, opetusta päivittäin 9-21

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

TÄRVELIKÖ PORTAIKKO JAKOLASKUN ELI ONKO KAADETTU TEE HERKULLISEMPI

TÄRVELIKÖ PORTAIKKO JAKOLASKUN ELI ONKO KAADETTU TEE HERKULLISEMPI Kuisma Lappalainen TÄRVELIKÖ PORTAIKKO JAKOLASKUN ELI ONKO KAADETTU TEE HERKULLISEMPI Tämä kirja on lisensoitu avoimella CC-BY 3.0 -lisenssillä. Voit: - Jakaa kopioida, levittää, näyttää ja esittää teosta

Lisätiedot

Talousmatematiikan perusteet, L2

Talousmatematiikan perusteet, L2 Talousmatematiikan perusteet, L2 orms.1030 EPKY / kevät 2011 Toisen Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat (alkaen sisältä ulospäin) 2. potenssit ja juuri 3. kerto-

Lisätiedot

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi)

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Vektorit Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Sisällys Vektorit Nimeäminen Vektorien kertolasku Vektorien yhteenlasku Suuntasopimus Esimerkki: laivan nopeus Vektorit Vektoreilla

Lisätiedot

Ohjelmointitaito (ict1td002, 12 op) Kevät 2008. 1. Java-ohjelmoinnin alkeita. Tietokoneohjelma. Raine Kauppinen raine.kauppinen@haaga-helia.

Ohjelmointitaito (ict1td002, 12 op) Kevät 2008. 1. Java-ohjelmoinnin alkeita. Tietokoneohjelma. Raine Kauppinen raine.kauppinen@haaga-helia. Ohjelmointitaito (ict1td002, 12 op) Kevät 2008 Raine Kauppinen raine.kauppinen@haaga-helia.fi 1. Java-ohjelmoinnin alkeita Tietokoneohjelma Java-kieli ja Eclipse-ympäristö Java-ohjelma ja ohjelmaluokka

Lisätiedot

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen? LASKUTOIMITUKSET Nimi: ) Muista laskutoimituksissa käytettävät nimet. a) Mikä on lukujen 650 ja 70 summa erotus b) Kun vähenevä on 000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava

Lisätiedot

TEHTÄVIEN KUVAUKSET. 2. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 2. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 2. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein

Lisätiedot

Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008

Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008 Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008 Kilpailijan nimi: 1) Oheisen kytkennän kokonaisresistanssi on n. 33 Ohm 150 Ohm a) 70 Ohmia b) 100 Ohmia c) 120 Ohmia 120 Ohm 2) Oheisen kytkennän

Lisätiedot

7 Matematiikka. 3. luokka

7 Matematiikka. 3. luokka 7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.

Lisätiedot

Verilogvs. VHDL. Janne Koljonen University of Vaasa

Verilogvs. VHDL. Janne Koljonen University of Vaasa Verilogvs. VHDL Janne Koljonen University of Vaasa Sälää Huom! Verilogistauseita versioita: 1995, 2001 ja 2005. Kommentit Javasta tutut // ja /* */ ovat kommenttimerkkejä. Case sensitivity Isot ja pienet

Lisätiedot

Java-kielen perusteet

Java-kielen perusteet Java-kielen perusteet Tunnus, varattu sana, kommentti Muuttuja, alkeistietotyyppi, merkkijono, Vakio Tiedon merkkipohjainen tulostaminen Ohjelmointi (ict1tx006) Tunnus (5.3) Javan tunnus Java-kirjain Java-numero

Lisätiedot

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 2) Kahdesta rinnankytketystä sähkölähteestä a) kuormittuu enemmän se, kummalla on

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

matematiikkaa maahanmuuttajille Eeva Rinne

matematiikkaa maahanmuuttajille Eeva Rinne matematiikkaa maahanmuuttajille Eeva Rinne 1 Turun kristillisen opiston oppimateriaaleja -sarja Tekijä: Eeva Rinne Julkaisija: Turun kristillisen opiston säätiö, Lustokatu 7, 20380 Turku. www.tk-opisto.fi

Lisätiedot

Matematiikan itsenäisiä tehtäviä

Matematiikan itsenäisiä tehtäviä Matematiikan itsenäisiä tehtäviä Luvut ja niiden nimet suomeksi Laskutoimitusten nimiä suomeksi Perustehtävät Luvut ja niiden nimet suomeksi 1. Kirjoita luvut suomeksi. a) 155 sadat kymmenet ykköset b)

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Sulautettujen järjestelmien skaala on niin laaja, että on erittäin vaikea antaa yleispätevää kuvausta siitä millainen on sulautettu järjestelmä.

Sulautettujen järjestelmien skaala on niin laaja, että on erittäin vaikea antaa yleispätevää kuvausta siitä millainen on sulautettu järjestelmä. Sulautettujen järjestelmien skaala on niin laaja, että on erittäin vaikea antaa yleispätevää kuvausta siitä millainen on sulautettu järjestelmä. On arvioitu, että maailmassa on tällä hetkellä enemmän sulautettuja

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot