Tietokonearitmetiikka

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Tietokonearitmetiikka"

Transkriptio

1 Tietokoneen rakenne Luento 6 Tietokonearitmetiikka Stallings: Ch 9 Kokonaislukuesitys Kokonaislukuaritmetiikka Liukulukuesitys Liukulukuaritmetiikka Luento 6-1

2 ALU: Aritmeettis-Looginen Yksikkö ALU = Aritmetic Logic Unit Suorittava yksikkö, tiedon käsittely u Kokonaisluku ja liukulukuaritmetiikkaa u Vertailut, sivuttaissiirrot u Bittien kopiointi rekisteristä toiseen u Osoitelaskenta: Hypyt, muistiviittaukset Input u Yleensä kaksi operandia sisään u Rekistereistä (ja muistista) Operatio u Usein käskyrekisterin perusteella Output u Rekisteriin/Muistiin/PSW:hen + - *?? ylivuoto? 2 kpl? tulos (Sta06 Fig 9.1) Luento 6-2

3 Tietokoneen rakenne Kokonaislukujen esitys Luento 6-3

4 Kokonaislukuesitys (Integer Representation) Arvo binäärimuodossa, bittijonona Merkin paino määräytyy paikan mukaan 57 = 5* *10 0 = = 1* * * * * *2 0 = = 0x39 = 3* *16 0 heksadesimaaliesitys Eniten merkitsevä bitti / vähiten merkitsevä bitti u MSB, most significant bit u LSB, Least significant bit Luento 6-4

5 Kokonaislukuesitys (Integer Representation) Entä negatiiviset arvot? u Etumerkki-suuruus u 2:n komplemettimuoto -57 = etumerkki Tietokoneet käyttävät 2:n komplementtia -57 = u Ei erikseen +0 ja -0 u Laskuissa ei tarvitse erikseen huomioida etumerkkiä u Vähennyslasku voidaan suorittaa yhteenlaskuna! u Helpompi laitteistolle +2 = = = = = Luento 6-5

6 2:n komplementti Esimerkki u 8-bittinen esitys, esitä arvo = itseisarvo invertoi bitit (1:n komplementti) lisää :n komplementtimuoto u Laajentuu helposti esim. 16-bittiseksi 57 = = = = Hylkää mahd. ylivuotava bitti sign extension Luento 6-6

7 2:n komplementti Arvoalue: -2 n-1 2 n bits: = bits: = Yhteenlaskun ylivuoto helppo havaita u Ei ylivuotoa, jos erimerkkiset yhteenlaskettavat u Ylivuoto, jos samanmerkkiset yhteenlaskettavat ja tuloksen merkki eri kuin yhteenlaskettavien merkki 57 = = = Ylivuoto! Luento 6-7

8 2:n komplementti Vähennyslasku yhteenlaskuna! u Unohda etumerkki, käsittele etumerkittöminä! u Ensin 2:n komplementti vähennettävästä, sitten add u Helppo laitteisto -3 = = = 1110 u Tarkistus Tuliko ylivuoto? = 0011 Merkki = 1, siis negatiivinen Itseisarvo: invertoi bitit ja lisää 1-3 2:n komplementtiesityksessä (Sta06 Table 9.1) Luento 6-8

9 Tietokoneen rakenne Kokonaislukuaritmetiikkaa Negaatio Yhteen/vähennyslasku Kertolasku Jakolasku Luento 6-9

10 Negaatio = 2:n komplementti 1: invertoi kaikki bitit 2: lisää 1 3: tarkista erikoistilanteet u Jätä ylivuotobitti huomiotta u Muuttuiko merkki? Pienimmälle luvulle ei negaatiota Ellei, aiheuta poikkeus Helppo laitteisto -57 = = = Luento 6-10

11 Yhteenlasku (ja vähennyslasku) Normaali binääriyhteenlasku u Jos vähennyslasku, muodosta vähennettävästä ensin komplementti, sitten yhteenlaskuna Ylivuotobitistä ei tarvitse välittää u Tarkkaile sensijaan summan merkkiä Helppo laitetoiminto u 2:n komplementtipiiri ja yhteenlaskupiiri (Sta0 Fig 9.6) Luento 6-11

12 Kokonaislukujen kertolasku Binääriluvuillakin kuten koulussa opittu u Helppo kertoa 0:lla tai 1:llä Laitteistolla? u Monimutkainen u Tarjolla useita algoritmeja Ylivuoto? u 32 b operandit tulos 64 b? Helppo laitteisto, jos etumerkittömiä u Vain monta yhteenlaskua u Tai sivuttaissiirtoa ja yhteenlaskua siirto vasemmalle = kerro 2:lla esim: 5 * => add, shift, shift, add (Sta06 Fig 9.7) Luento 6-12

13 Etumerkittömien lukujen kertolasku kerrottava kertoja (+ tuloksen loppuosa) JosQ 0 =0 vain shift muuten add, shift tulo(s) (Sta06 Fig 9.8a) Luento 6-13

14 Unsigned Multiplication Example (19) (Fig. 8.8 [Stal99]) (Fig. 9.8) Overflow? No. 13 * 11 =??? M 1011 = = = 143 Result on left, multiplier on right! ADD ADD ADD SHIFT SHIFT SHIFT SHIFT C A Q from C take next sumtake next sum result bit from A take skip next next sum sum just do SHIFT Luento 6-14

15 Etumerkittömien lukujen kertolasku (Sta06 Fig 9.9) Luento 6-15

16 Etumerkittömien kertolasku [Sta06 Fig 9.8a] Q * M = 1101 * 1011 = eli 13*11 = 143 (Sta06 Fig 9.8b) Luento 6-16

17 Negatiivisten kertolasku? Ed. algoritmi ei toimi negatiivisille luvuille Voisi tehdä näin u muuta operandit positiivisiksi kokonaisluvuiksi v käytä ed. algoritmia tutki operandien merkki, muuta tulos tarvittaessa komplementtimuotoon Parempia ja nopeampia tapoja olemassa Luento 6-17

18 Boothin Algoritmi Huomio edell. algoritmista u Yhteenlasku vain (aina), kun kertojassa esiintyy 1 Boothin algoritmin idea (tehostus) u Yhdistä vierekkäiset 1:set yhdeksi köntäksi u Tee köntälle yksi yhteenlasku ja yksi vähennyslasku u Esim. 7*x = 8*x +( x) 111*x = 1000*x +(-x) = shift, shift, shift, complement, add 5 * 7 = 0101 * 0111 = 0101 * ( ) = 35 Toimii 2:n komplementtimuodoille, myös negatiivisille! Luento 6-18

19 Boothin Algoritmi 10 = könttä alkoi 11 = könttä jatkuu 01 = könttä loppui Arithmetic Shift Right: = täytä etumerkillä (Sta06 Fig 9.12) Luento 6-19

20 Booth s Algorithm for Twos Complement Multiplication (Fig [Stal99]) Fig operands +/- arithmetic shift right Q -1 result Luento 6-20

21 Booth s Algorithm Example (15) 7 * 3 =? = = 21 M: 0111 Fig [Sta06] +/- A: Arithmetic Arithm Shift Right SHIFT Arithm SHIFT Q: Q -1 sign extended 1 bit of result Carry bit was lost ADD subtract 00 just just SHIFT A-M SHIFT Luento 6-21

22 Boothin Algoritmi, esim. Sta06 Fig 9.12 Q * M = 0011 * 0111 = eli 3*7 = 21 (Sta06 Fig 9.13) Luento 6-22

23 Kokonaislukujen jakolasku Binääriluvuillakin kuten koulussa opittu u Helppo: osamäärään tulee vain 0:ia ja 1:siä (jakaja) osamäärä jaettava Laitteistototeutus vastaavasti kuin kertolaskussa u Siirto vasemmalle = uusi numero mukaan jakojäännös (Sta06 Fig 9.15) Luento 6-23

24 Kokonaislukujen jakolasku Toimii positiivisilla luvuilla, negatiivisille lisävirittelyjä Ks. tarkemmin kirjan esimerkki Fig 9.17 [Sta06 ] A Q Q 0 SHL palauta A ennalleen ja ota uusi numero alas Sta06 Fig 9.16 Luento 6-24

25 Tietokoneen rakenne Liukulukuesitys Luento 6-25

26 Liukulukuesitys Merkitsevät numerot ja suuruusluokka Normeerattu muoto u pistettä edeltävä numero > = * = * = * = * Luento 6-26

27 IEEE 754 Liukulukuformaatit (Sta06 Table 9.3) Luento 6-27

28 32-bittinen liukulukuesitys 1 b etumerkille u 1 = -, 0 = + 8 b exponentille u Ei erikseen etumerkkiä, vaan erillinen nollataso (bias) Esim. Exp=5gtalleta 127+5, Exp=-5gtalleta b mantissalle (significant) u Normeeratussa muodossa binääripistettä edeltävä numero aina 1, ei talleteta (piilobitti, Zuse Z3 1939) Binäärimuodossa esitetyn liukuluvun arvo -1 Sign * 1.Mantissa * 2 Exponent-127 Luento 6-28

29 Esimerkkejä 23.0 = * 2 0 = * 2 4 =? 127+4= sign exponent mantissa 1.0 = * 2 0 =? = sign exponent mantissa Luento 6-29

30 Esimerkkejä sign exponent mantissa X =? X = (-1) 0 * * 2 ( ) = * 2 = (1+ 1/2 + 1/4 + 1/8 + 1/16) * 2 = ( ) * 2 = * 2 = Luento 6-30

31 Liukulukujen tarkkuudesta (32b) Arvoalue u 8 b eksponenttig ~ Tarkkuus u 24 b mantissa g 2 24 ~ 1.7 * 10-7 ~ 6 desimaalia u Parempi tarkkuus pienille luvuille ilman normalisointia Luento 6-31

32 IEEE 754 Erityismerkitykset Not a Number Double Precision vastaavasti (Sta06 Table 9.4) Luento 6-32

33 NaN: Not a Number (Sta06 Table 9.6) Luento 6-33

34 Tietokoneen rakenne Liukulukuaritmetiikkaa IEEE-754 Standardi Yhteen/vähennyslasku Kertolasku Jakolasku Luento 6-34

35 Liukulukuaritmetiikka Laskentaa varten leveämpiä työrekistereitä u Guard bits u Enemmän merkitseviä bittejä mm. mantissalle u Käytetään myös normeeraamattomia muotoja Yhteen- ja vähennyslasku u Enemmän välivaiheita kuin kerto/jakolaskussa u Operandeille ensin sama eksponentti Toisen normeeraus purettava tarkkuutta häviää u Tulos voi vaatia normeerauksen Kerto- ja jakolasku u Mantissa ja eksponentti käsiteltävä erikseen Luento 6-35

36 Liukulukuaritmetiikka (Sta06 Table 9.5) Luento 6-36

37 Yhteen- ja vähennyslasku (Sta06 Fig 9.22) Luento 6-37

38 Erikoistilanteita Eksponentin ylivuoto (Hyvin suuri luku) u Arvoksi tai - vai u Aiheuta poikkeus ohjelmoitava optio Eksponentin alivuoto (Olemattoman pieni luku) u Arvoksi 0 (tai aiheuta poikkeus) ohjelmoitava optio Mantissan ylivuoto u Yhteenlaskun tuloksena mantissa, jossa binääripisteen edellä useita numeroita u Normeeraa! Mantissan alivuoto u Yhteiseen eksponenttiin siirtyminen voi aiheuttaa merkitsevien bittien katoamista (entä, jos kaikki merkitsevät menee?) u Pyöristä? Luento 6-38

39 Pyöristys Esimerkki u Arvo neljän desimaalin tarkkuudella u Esittämiseen käytössä vain 3 desimaalia , u Normaalien pyöristyssääntöjen mukaan lähimpään esitettävissä olevaan u Aina kohti u Aina- kohti u Aina 0 kohti 3.123, , , , Esim. Intel Itanium -laitteisto tukee näitä kaikkia Luento 6-39

40 Kertolasku (Sta06 Fig 9.23) Luento 6-40

41 Jakolasku (Sta06 Fig 9.24) Luento 6-41

42 Kertauskysymyksiä Miksi käytetään 2:n komplementtimuotoa? Miten 2:n komplementtiesitys laajenee suurempaan tilaan (esim. 8b esitys 16 b:n esitys)? Millainen on yksinkertaisen tarkkuuden liukuluvun esitysmuoto? Milloin tulee liukuluvun alivuoto? Luento 6-42

Tietokonearitmetiikka

Tietokonearitmetiikka Luento 6 ALU: Aritmeettis-Looginen Yksikkö Tietokonearitmetiikka Stallings: Ch 9 Kokonaislukuesitys Kokonaislukuaritmetiikka Liukulukuesitys Liukulukuaritmetiikka Luento 6-1 ALU = Aritmetic Logic Unit

Lisätiedot

Tietokonearitmetiikka

Tietokonearitmetiikka Tietokoneen rakenne Luento 6 Tietokonearitmetiikka (Computer Arithmetic) Stallings: Ch 9 Kokonaislukuesitys Kokonaislukuaritmetiikka Liukulukuesitys Liukulukuaritmetiikka Luento 6-1 ALU: Aritmeettis-Looginen

Lisätiedot

Tietokonearitmetiikka

Tietokonearitmetiikka Luento 6 ALU: Aritmeettis-Looginen Yksikkö Tietokonearitmetiikka (Computer Arithmetic) Stallings: Ch 9 Kokonaislukuesitys Kokonaislukuaritmetiikka Liukulukuesitys Liukulukuaritmetiikka Luento 6-1 ALU =

Lisätiedot

Lukujärjestelmät. Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen Fe

Lukujärjestelmät. Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen Fe Digitaalitekniikan matematiikka Luku 9 Sivu 3 (26) Lukujärjestelmät ja lukujen esittäminen.9.2 Fe Lukujärjestelmät Kymmen- eli desimaalijärjestelmä: kantaluku perinteisesti käytetty ja tuttu numerot,,

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

ANSI/IEEE Std

ANSI/IEEE Std Digitaalitekniikan matematiikka Luku 9 Sivu 1 (26) Lukujärjestelmät ja lukujen esittäminen ANSI/IEEE Std 754-2008 0 1 0 1 1 0 0 0 B = Σ B i 2 i Digitaalitekniikan matematiikka Luku 9 Sivu 2 (26) Johdanto

Lisätiedot

Tiedon esitysmuodot. Luento 6 (verkkoluento 6) Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto

Tiedon esitysmuodot. Luento 6 (verkkoluento 6) Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto Luento 6 (verkkoluento 6) Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Äänet, kuvat, muu tieto Ohjelman esitysmuoto Rakenteellinen tieto 1 Tiedon tyypit Kommunikointi

Lisätiedot

Liukulukulaskenta. Pekka Hotokka

Liukulukulaskenta. Pekka Hotokka Liukulukulaskenta Pekka Hotokka pejuhoto@cc.jyu.fi 10.11.2004 Tiivistelmä Liukulukuja tarvitaan, kun joudutaan esittämään reaalilukuja tietokoneella. Niiden esittämistavasta johtuen syntyy laskennassa

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out

C = P Q S = P Q + P Q = P Q. Laskutoimitukset binaariluvuilla P -- Q = P + (-Q) (-Q) P Q C in. C out Digitaalitekniikan matematiikka Luku ivu (2).9.2 Fe C = Aseta Aseta i i = n i > i i i Ei i < i i i Ei i i = Ei i i = i i -- On On On C in > < = CI CO C out -- = + (-) (-) = + = C + Digitaalitekniikan matematiikka

Lisätiedot

SISÄLLYS - DIGITAALITEKNIIKKA

SISÄLLYS - DIGITAALITEKNIIKKA SISÄLLYS - DIGITAALITEKNIIKKA Digitaalitekniikan perusteita...2 Bitti (bit)...2 Tavu (bytes)...2 Sana (word)...2 Yksiköt...2 Binääri järjestelmän laskutapa...2 Esimerkki: Digikuvan siirron kestoaika...2

Lisätiedot

5. Laskutoimitukset eri lukujärjestelmissä

5. Laskutoimitukset eri lukujärjestelmissä 5. Laskutoimitukset eri lukujärjestelmissä Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 5.1. Muunnokset lukujärjestelmien välillä

Lisätiedot

Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) Lukujärjestelmämuunnokset. 2 s s

Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) Lukujärjestelmämuunnokset. 2 s s Digitaalitekniikan matematiikka Luku 10 Sivu 1 (14) k 10 2 10 2 s 10 10 8 10 16 10 2 10 2 s 2 8 8 2 2 16 16 2 Digitaalitekniikan matematiikka Luku 10 Sivu 2 (14) Johdanto Tässä luvussa perustellaan, miksi

Lisätiedot

TIES325 Tietokonejärjestelmä. Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos

TIES325 Tietokonejärjestelmä. Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos TIES325 Tietokonejärjestelmä Jani Kurhinen Jyväskylän yliopisto Tietotekniikan laitos Kevät 2008 Luku 4 Tietokoneen sisäinen toiminta Edellisisää osioiss aon tarkasteltu tietokoneen kehittymistä ja sen

Lisätiedot

Tiedon tyypit Kommunikointi ihmisen kanssa. Luento 6 Tiedon esitysmuodot. Tiedon esitys laitteistossa (4) Suorittimen ymmärtämä tieto (9)

Tiedon tyypit Kommunikointi ihmisen kanssa. Luento 6 Tiedon esitysmuodot. Tiedon esitys laitteistossa (4) Suorittimen ymmärtämä tieto (9) Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) Tiedon tyypit Kommunikointi ihmisen kanssa kuva, ääni, merkit, Laitteiston

Lisätiedot

Luento 6 Tiedon esitysmuodot

Luento 6 Tiedon esitysmuodot Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) 1 Tiedon tyypit (3) Kommunikointi ihmisen kanssa kuva, ääni, merkit, Laitteiston

Lisätiedot

Luento 6 Tiedon esitysmuodot. Tiedon esitys laitteistossa (3)

Luento 6 Tiedon esitysmuodot. Tiedon esitys laitteistossa (3) Tietokoneen toiminta 3.4.24 Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) Tiedon tyypit (3) Kommunikointi ihmisen kanssa

Lisätiedot

Jakso 6 Tiedon esitysmuodot

Jakso 6 Tiedon esitysmuodot Jakso 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) Ohjelman esitysmuoto 1 Tiedon tyypit Kommunikointi ihmisen kanssa kuva, ääni,

Lisätiedot

Luento 6 Tiedon esitysmuodot

Luento 6 Tiedon esitysmuodot Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) 1 Tiedon tyypit (3) Kommunikointi ihmisen kanssa kuva, ääni, merkit, Laitteiston

Lisätiedot

Luento 6 Tiedon esitysmuodot

Luento 6 Tiedon esitysmuodot Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) Tiedon esitys laitteistossa (2) Tietoa siirretään muistiväylää pitkin sanoina

Lisätiedot

Palautteita. Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi

Palautteita. Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi Palautteita Tutoriaalit olivat vaikeat! Totta, tentti on onneksi helpompi 504 Mitä range() tekee? range on funktio, joka palauttaa listan esim. a = range(5,10) Palauttaa listan [5,6,7,8,9] Siis nämä kolme

Lisätiedot

Luento 6 Tiedon esitysmuodot. Tiedon esitys laitteistossa (3)

Luento 6 Tiedon esitysmuodot. Tiedon esitys laitteistossa (3) Tietokoneen toiminta, Kesä 22 4.8.22 Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) Tiedon tyypit (3) Kommunikointi ihmisen

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

Luento 6 Tiedon esitysmuodot. Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?)

Luento 6 Tiedon esitysmuodot. Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) Luento 6 Tiedon esitysmuodot Lukujärjestelmät Kokonaisluvut Liukuluvut Merkit, merkkijonot Totuusarvot Kuvat, äänet, hajut(?) 1 Tiedon tyypit (3) Kommunikointi ihmisen kanssa kuva, ääni, merkit, Laitteiston

Lisätiedot

Luento 6 Tiedon esitysmuodot

Luento 6 Tiedon esitysmuodot Luento 6 Tiedon esitysmuodot Lukujärjestelmät Luvut, merkit, merkkijonot, totuusarvot, oliot Kuvat, äänet, hajut(?) Ohjelmat 1 Tiedon tyypit Kommunikointi ihmisen kanssa kuva, ääni, merkit, Laitteiston

Lisätiedot

Laitteistonläheinen ohjelmointi

Laitteistonläheinen ohjelmointi Laitteistonläheinen ohjelmointi 4 op Luennoija: Pertti Lehtinen Luennot: Perjantai 12-14 TB104 Esitiedot: Mikroprosessorit Perusohjelmointikurssi Kurssin osat: luennot, harjoitustyö, tentti Materiaali:

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

Kappale 20: Kantaluvut

Kappale 20: Kantaluvut Kappale 20: Kantaluvut 20 Johdanto: Kantaluvut... 328 Kantalukujen syöttäminen ja muuntaminen... 329 Matemaattiset toiminnot Hex- ja Bin-luvuilla... 330 Bittien vertaileminen ja manipulointi... 331 Huom!

Lisätiedot

Tietotyypit ja operaattorit

Tietotyypit ja operaattorit Tietotyypit ja operaattorit Luennossa tarkastellaan yksinkertaisten tietotyyppien int, double ja char muunnoksia tyypistä toiseen sekä esitellään uusia operaatioita. Numeeriset tietotyypit ja muunnos Merkkitieto

Lisätiedot

Laitteistonläheinen ohjelmointi

Laitteistonläheinen ohjelmointi Laitteistonläheinen ohjelmointi 4 op Luennoija: Pertti Lehtinen Harjoitustyö: Mikko Vulli Esituedot: Mikroprosessorit Perusohjelmointikurssi Kurssin osat: luennot, harjoitustyö, tentti Materiaali: luentomoniste

Lisätiedot

Kombinatorisen logiikan laitteet

Kombinatorisen logiikan laitteet Kombinatorisen logiikan laitteet Kombinatorinen logiikka tarkoittaa logiikkaa, jossa signaali kulkee suoraan sisääntuloista ulostuloon Sekventiaalisessa logiikassa myös aiemmat syötteet vaikuttavat ulostuloon

Lisätiedot

BL40A1711 Johdanto digitaalielektroniikkaan: Johdanto ja lukujärjestelmät

BL40A1711 Johdanto digitaalielektroniikkaan: Johdanto ja lukujärjestelmät BL40A1711 Johdanto digitaalielektroniikkaan: Johdanto ja lukujärjestelmät Laboratory of Control Engineering and Digital Systems Focus of research and education Energy efficient systems Renewable energy

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 2. Kirsi Valjus. Jyväskylän yliopisto. Luento 2 () Numeeriset menetelmät / 39

Numeeriset menetelmät TIEA381. Luento 2. Kirsi Valjus. Jyväskylän yliopisto. Luento 2 () Numeeriset menetelmät / 39 Numeeriset menetelmät TIEA381 Luento 2 Kirsi Valjus Jyväskylän yliopisto Luento 2 () Numeeriset menetelmät 14.3.2013 1 / 39 Luennon 2 sisältö Luvusta 1: Numeerinen stabiilisuus Liite A: Liukulukuaritmetiikasta

Lisätiedot

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tyyppejä ja vähän muutakin TIEA341 Funktio ohjelmointi 1 Syksy 2005 Viime luennolla... Haskellin alkeita pääasiassa Hello World!... ja muita tutunoloisia ohjelmia Haskellilla Haskellin voima on kuitenkin

Lisätiedot

Negatiiviset luvut ja laskutoimitukset

Negatiiviset luvut ja laskutoimitukset 7.lk matematiikka Negatiiviset luvut ja laskutoimitukset Hatanpään koulu Syksy 2017 Janne Koponen 2 Sisällys 1. Negatiiviset ja positiiviset luvut sekä vertailut... 4 2. Lukujen vertailu... 8 3. Plussien

Lisätiedot

Negatiiviset luvut ja laskutoimitukset

Negatiiviset luvut ja laskutoimitukset 7.lk matematiikka Negatiiviset luvut ja laskutoimitukset Hatanpään koulu Syksy 2017 Janne Koponen 2 Sisällys 1. Negatiiviset ja positiiviset luvut sekä vertailut... 4 2. Lukujen vertailu... 8 3. Plussien

Lisätiedot

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100 Tiedonsiirtokäskyt LOAD LOAD-käsky toimii jälkimmäisestä operandista ensimmäiseen. Ensimmäisen operandin pitää olla rekisteri, toinen voi olla rekisteri, vakio tai muistiosoite (myös muuttujat ovat muistiosoitteita).

Lisätiedot

Käskykannat. Tietokoneen rakenne. Ch [Sta06] Operaatioista Operandeista Osoitustavoista Pentium / PowerPC. Luento 7-1

Käskykannat. Tietokoneen rakenne. Ch [Sta06] Operaatioista Operandeista Osoitustavoista Pentium / PowerPC. Luento 7-1 Tietokoneen rakenne Luento 7 Käskykannat Ch 10-11 [Sta06] Operaatioista Operandeista Osoitustavoista Pentium / PowerPC Luento 7-1 Käskysykli CPU suorittaa ohjelmaa konekielinen käsky kerrallaan Käskyn

Lisätiedot

Luento 7: Käskykannat Tietokoneen rakenne / 2006 / Teemu Kerola 9/25/2006

Luento 7: Käskykannat Tietokoneen rakenne / 2006 / Teemu Kerola 9/25/2006 Tietokoneen rakenne Luento 7 Käskykannat Ch 10-11 [Sta06] Operaatioista Operandeista Osoitustavoista Pentium / PowerPC Luento 7-1 Käskysykli CPU suorittaa ohjelmaa konekielinen käsky kerrallaan Käskyn

Lisätiedot

Ohjelmoijan binaarialgebra ja heksaluvut

Ohjelmoijan binaarialgebra ja heksaluvut Paavo Räisänen Ohjelmoijan binaarialgebra ja heksaluvut www.ohjelmoinaan.net Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa. Kuitenkaan omille nettisivuille opasta

Lisätiedot

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net

Paavo Räisänen. Ohjelmoijan binaarialgebra ja heksaluvut. www.ohjelmoimaan.net Paavo Räisänen Ohjelmoijan binaarialgebra ja heksaluvut www.ohjelmoimaan.net Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa. Kuitenkaan omille nettisivuille opasta

Lisätiedot

Mikrokontrollerit. Mikrokontrolleri

Mikrokontrollerit. Mikrokontrolleri Mikrokontrollerit S-108.2010 Elektroniset mittaukset 18.2.2008 Mikrokontrolleri integrointi säästää tilaa piirilevyllä usein ratkaisu helpompi ja nopeampi toteuttaa ohjelmallisesti prosessori 4-64 bittinen

Lisätiedot

Tietokoneen rakenne Käskysykli CPU suorittaa ohjelmaa konekielinen käsky kerrallaan

Tietokoneen rakenne Käskysykli CPU suorittaa ohjelmaa konekielinen käsky kerrallaan Käskykannat Ch 10-11 [Sta06] Operaatioista Operandeista Osoitustavoista Pentium / PowerPC Luento 7 Käskysykli CPU suorittaa ohjelmaa konekielinen käsky kerrallaan Käskyn suoritus muodostuu vaiheista, joita

Lisätiedot

1. luento. Ohjelmointi (C) T0004 Syksy 2003. 1. luento. 1. luento. 1. luento. 1. luento. kurssin sisältö ja tavoitteet työmuodot.

1. luento. Ohjelmointi (C) T0004 Syksy 2003. 1. luento. 1. luento. 1. luento. 1. luento. kurssin sisältö ja tavoitteet työmuodot. EVTEK Teknillinen ammattikorkeakoulu Ohjelmointi (C) T0004 Syksy 2003 Olli Hämäläinen kurssin sisältö ja tavoitteet työmuodot luennot 1-2/2003 laboratorioharjoitukset 1-2/2003 kotitehtävät, laboratoriokerrat

Lisätiedot

Yksinkertaisin järjestelmä

Yksinkertaisin järjestelmä Digitaalinen Signaalinkäsittely T05 Luento 5 -.04.006 Jarkko.Vuori@evtek.fi Yksinkertaisin järjestelmä Differenssiyhtälö [ n] x[ n] y Lohkokaavio X() Y() Siirtofunktio H ( ) Nolla-napa kuvio Ei nollia

Lisätiedot

Diskreetit rakenteet. Juha Kortelainen

Diskreetit rakenteet. Juha Kortelainen Diskreetit rakenteet 811120P 5 op Juha Kortelainen Syksy 2015 Sisältö 1 Algoritmin käsite 4 1.1 Mitä algoritmi on?........................ 4 1.2 Kontrollirakenteet......................... 6 1.3 Muita

Lisätiedot

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31

7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 7. Laskutoimitukset eri lukujärjestelmissä 1 / 31 Johdanto Lukujen esitykset eri lukujärjestelmissä Muunnokset lukujärjestelmien välillä Laskutoimitukset eri lukujärjestelmissä. 2 / 31 7.1. Muunnokset

Lisätiedot

Perustietotyypit ja laskutoimitukset

Perustietotyypit ja laskutoimitukset Perustietotyypit ja laskutoimitukset 2 Perustietotyypit ja laskutoimitukset Tässä luvussa käsittelemme C++:n perustietotyyppejä, varsinkin sellaisia kuin sinä mitä todennäköisemmin tulet käyttämään omissa

Lisätiedot

Digitaalitekniikan matematiikka Harjoitustehtäviä

Digitaalitekniikan matematiikka Harjoitustehtäviä arjoitustehtäviä Sivu 6 6.3.2 e arjoitustehtäviä uku 3 ytkentäfunktiot ja perusporttipiirit 3. äytäväkytkin on järjestelmä jossa käytävän kummassakin päässä on kytkin ja käytävän keskellä lamppu. amppu

Lisätiedot

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =?

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =? Tehtävät 1 1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? 3. 16 125 250 =? 4. Kirjoita lausekkeeseen sulut siten, että tulos on nolla. 2 + 2 2 2 : 2 + 2 2 2

Lisätiedot

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta 8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä

Lisätiedot

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä 61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o

Lisätiedot

Tiedon esitysmuodot Tiedon muuttumattomuuden tarkistus Järjestelmän sisäinen muisti

Tiedon esitysmuodot Tiedon muuttumattomuuden tarkistus Järjestelmän sisäinen muisti Luentokerta 4 Tiedon esitysmuodot Tiedon muuttumattomuuden tarkistus Järjestelmän sisäinen muisti Lukujärjestelmät Kokonaisluvut, liukuluvut Merkit, merkkijonot Ohjelman esitysmuoto Rakenteellinen tieto

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT:

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT: 1 HUOLTOMATEMATIIKKA 1, SISÄLTÖ 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä

Lisätiedot

Tietokoneen toiminta, K Tavoitteet (4)

Tietokoneen toiminta, K Tavoitteet (4) Jakso 12 Yhteenveto Keskeiset asiat 1 Tavoitteet (4) Ymmärtää tietokonejärjestelmän keskeiset piirteet sillä suoritettavan ohjelman näkökulmasta Miten tietokonejärjestelmä suorittaa sille annettua ohjelmaa?

Lisätiedot

Liukulukujen vaihtoehtoisia esitystapoja

Liukulukujen vaihtoehtoisia esitystapoja Tomi Lundberg Liukulukujen vaihtoehtoisia esitystapoja Tietotekniikan kandidaatintutkielma 16. joulukuuta 2015 Jyväskylän yliopisto Tietotekniikan laitos Tekijä: Tomi Lundberg Yhteystiedot: tomi.t.lundberg@student.jyu.fi

Lisätiedot

Java-kielen perusteet

Java-kielen perusteet Java-kielen perusteet Tunnus, varattu sana, kommentti Muuttuja, alkeistietotyyppi, merkkijono, literaalivakio, nimetty vakio Tiedon merkkipohjainen tulostaminen 1 Tunnus Java tunnus Java-kirjain Java-numero

Lisätiedot

TWEN 131 PD / 1430 PD KÄYTTÖOHJE

TWEN 131 PD / 1430 PD KÄYTTÖOHJE TWEN 131 PD / 1430 PD KÄYTTÖOHJE 1 Virran kytkeminen ja paristonvaihto...3 Ennen virran kytkemistä...3 Virran kytkeminen...3 Varoitus...3 Pariston vaihto...3 2 Värinauhan vaihto...3 3 Kuittinauhan asetus...4

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Javan perusteet. Ohjelman tehtävät: tietojen syöttö, lukeminen prosessointi, halutun informaation tulostaminen tulostus tiedon varastointi

Javan perusteet. Ohjelman tehtävät: tietojen syöttö, lukeminen prosessointi, halutun informaation tulostaminen tulostus tiedon varastointi 1 Javan perusteet Ohjelmointi IPO-malli Java lähdekoodista suoritettavaksi ohjelmaksi Vakio Muuttuja Miten Javalla näytetään tietoa käyttäjälle, miten Javalla luetaan käyttäjän antama syöte Miten Javalla

Lisätiedot

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15)

Luku- ja merkkikoodit. Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) Digitaalitekniikan matematiikka Luku 12 Sivu 1 (15) A = a = i i w i Digitaalitekniikan matematiikka Luku 12 Sivu 2 (15) Johdanto Tässä luvussa esitetään kymmenjärjestelmän lukujen eli BCD-lukujen esitystapoja

Lisätiedot

Luento 2: Viivan toteutus

Luento 2: Viivan toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Viivan toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 GRAAFISTEN PRIMITIIVIEN TOTEUTUS HUOM! Oletuksena on XY-koordinaatisto Suorien viivojen

Lisätiedot

2 j =

2 j = 1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n).

Lisätiedot

Ohjelmointi 1 C#, kevät 2013, 2. tentti

Ohjelmointi 1 C#, kevät 2013, 2. tentti ITKP102 Ohjelmointi 1 C# 15.5.2013 1 / 6 Ohjelmointi 1 C#, kevät 2013, 2. tentti Tentaattori Antti-Jussi Lakanen Tässä tentissä saa olla mukana omia muistiinpanoja yhden arkin verran. Tentin valvojalla

Lisätiedot

Jakso 12 Yhteenveto. Keskeiset asiat Teemu Kerola, K2000

Jakso 12 Yhteenveto. Keskeiset asiat Teemu Kerola, K2000 Jakso 12 Yhteenveto Keskeiset asiat 1 Tavoitteet (4) Ymmärtää tietokonejärjestelmän keskeiset piirteet sillä suoritettavan ohjelman näkökulmasta Miten tietokonejärjestelmä suorittaa sille annettua ohjelmaa?

Lisätiedot

Ohjelmointiharjoituksia Arduino-ympäristössä

Ohjelmointiharjoituksia Arduino-ympäristössä Ohjelmointiharjoituksia Arduino-ympäristössä Yleistä Arduino-sovelluksen rakenne Syntaksi ja käytännöt Esimerkki ohjelman rakenteesta Muuttujat ja tietotyypit Tietotyypit Esimerkkejä tietotyypeistä Ehtolauseet

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

PUHUTAAN NUMEROILLA Murtoluvut Desimaaliluvut tai

PUHUTAAN NUMEROILLA Murtoluvut Desimaaliluvut tai PUHUTAAN NUMEROILLA Murtoluvut 1/2 yksi kahdesosaa (puoli) 2/3 kaksi kolmasosaa 3/4 kolme neljäsosaa 4/5 neljä viidesosaa 5/6 viisi kuudesosaa 6/7 kuusi seitsemäsosaa 7/8 seitsemän kahdeksasosaa 8/9 kahdeksan

Lisätiedot

Numeerinen analyysi 2016

Numeerinen analyysi 2016 Numeerinen analyysi 2016 Sisältö 1 Johdanto 8 2 Numeerinen tehtävä 9 2.1 Numeerinen algoritmi............................ 9 2.2 Esimerkki.................................. 10 2.3 Numeerisen laskennan virheet.......................

Lisätiedot

A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS

A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS K. V Ä I S Ä L Ä A L G E B R A N O P P I - J A E S I M E R K K I K I R J A I KAHDESTOISTA PAINOS PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ Kouluhallituksen hyväksymä WERNER SÖDERSTRÖM OSAKEYHTIÖN KIRJAPAINOSSA

Lisätiedot

Konekielinen ohjelmointi

Konekielinen ohjelmointi Konekielinen ohjelmointi Antti-Juhani Kaijanaho 9. tammikuuta 2007 1 Konekielet Konekielellä tarkoitetaan sitä kieltä, jota tietokone ymmärtää suoraan. Koska kaikki nykytietokoneet perustuvat samaan ideaan

Lisätiedot

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,... Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaFonaaliluvut (Q): kaikki luvut, jotka voidaan esihää kahden

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

NELIÖJUURI. Neliöjuuren laskusääntöjä

NELIÖJUURI. Neliöjuuren laskusääntöjä NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012

OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 OHJ-1010 Tietotekniikan perusteet 4 op Syksy 2012 Luento 6: Tiedon esittäminen tietokoneessa, osa 1 Tekijät: Antti Virtanen, Timo Lehtonen, Matti Kujala, Kirsti Ala-Mutka, Petri M. Gerdt et al. Luennon

Lisätiedot

Diskreetit rakenteet P 5 op

Diskreetit rakenteet P 5 op Diskreetit rakenteet 811120P 5 op Juha Kortelainen Ari Vesanen Syksy 2016 Esipuhe Tämä moniste on pääosin Juha Kortelaisen laatima. Olen muuttanut algoritmien esitystavan ja tehnyt pieniä korjauksia. Ari

Lisätiedot

Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla

Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla Ongelma(t): Miten mikro-ohjelmoitavaa tietokonetta voisi ohjelmoida kirjoittamatta binääristä (mikro)koodia? Voisiko samalla algoritmin esitystavalla ohjelmoida useita komponenteiltaan ja rakenteeltaan

Lisätiedot

Tietokoneen toiminta Copyright Teemu Kerola Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio

Tietokoneen toiminta Copyright Teemu Kerola Tyypit Parametrit Aktivointitietue (AT) AT-pino Rekursio Kertausluento 2 (lu04, lu05, lu06) Aliohjelmien toteutus Suoritin, väylä, tiedon esitys Tyypit, Parametrit Aktivointitietue (AT) AT-pino Käskyjen suoritussykli Suorittimen tilat Poikkeukset ja keskeytykset

Lisätiedot

Luento 4 Aliohjelmien toteutus

Luento 4 Aliohjelmien toteutus Kertausluento 2 (lu04, lu05, lu06) Aliohjelmien toteutus Suoritin, väylä, tiedon esitys Tyypit, Parametrit Aktivointitietue (AT) AT-pino Käskyjen suoritussykli Suorittimen tilat Poikkeukset ja keskeytykset

Lisätiedot

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Matematiikka Huom! Mikäli tehtävällä ei vielä ole molempia teknisiä koodeja, tarkoittaa se sitä, että tehtävä ei ole vielä valmis jaettavaksi käyttöön, vaan

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaConaaliluvut (Q): kaikki luvut, jotka voidaan esieää kahden

Lisätiedot

Sisällys. 6. Muuttujat ja Java. Muuttujien nimeäminen. Muuttujien nimeäminen. salinovi tai syntymapaiva

Sisällys. 6. Muuttujat ja Java. Muuttujien nimeäminen. Muuttujien nimeäminen. salinovi tai syntymapaiva Sisällys 6. Muuttujat ja Java Muuttujien nimeäminen. Muuttujan tyypin määritys. Javan tietotyypit: Kokonais- ja liukuluvut. boolean- ja char-tyypit. Tyyppien yhteensopivuus. Viitetietotyypit ja merkkijonotietotyyppi

Lisätiedot

6. Muuttujat ja Java 6.1

6. Muuttujat ja Java 6.1 6. Muuttujat ja Java 6.1 Sisällys Muuttujien nimeäminen. Muuttujan tyypin määritys. Javan tietotyypit: Kokonais- ja liukuluvut. boolean- ja char-tyypit. Tyyppien yhteensopivuus. Viitetietotyypit ja merkkijonotietotyyppi

Lisätiedot

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI

TEHTÄVIEN KUVAUKSET. 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI TEHTÄVIEN KUVAUKSET 4. luokan opintopolku (Tuhattaituri-kirjasarja) VILLETEAM@UTU.FI WWW.VILLETEAM.FI -TEKSTI- ESSI TAMMINEN -TAITTO- TOMMY JOHANSSON 2015 VILLE TEAM Esipuhe Tämä kirja on kokonaiskatsaus

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

VIII. Osa. Liitteet. Liitteet Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto

VIII. Osa. Liitteet. Liitteet Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto Osa VIII Liitteet Liitteet A B C Suoritusjärjestys Varatut sanat Binääri- ja heksamuoto Osa VIII A. Liite Operaattoreiden suoritusjärjestys On tärkeää ymmärtää, että operaattoreilla on prioriteettinsa,

Lisätiedot

3.5. TYYPIT 43. g(x) muuten. että tämä funktio todella kuuluu funktioalueeseen.

3.5. TYYPIT 43. g(x) muuten. että tämä funktio todella kuuluu funktioalueeseen. 3.5. TYYPIT 43 teydestä. On myös mahdollista ilmaista parametrin alue tyyliin λx : S.E, joka tarkoittaa, että kyseinen funktio kuuluu alueeseen S T jollakin T (T on yleensä johdettavissa E:n rakenteesta).

Lisätiedot

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 2. marraskuuta 2009

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 2. marraskuuta 2009 ja ja TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. marraskuuta 2009 Sisällys ja Sisällys ja Seuraava deadline ja Vaihe D tiistai 10.11. klo 10 välikielen generointi

Lisätiedot

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan

Lisätiedot

Luento 2: 2D Katselu. Sisältö

Luento 2: 2D Katselu. Sisältö Tietokonegrafiikan perusteet T-111.4300 3 op Luento 2: 2D Katselu Lauri Savioja 11/07 2D katselu / 1 Sisältö Ikkuna ja näyttöalue Viivanleikkaus ikkunaan Monikulmion leikkaus ikkunaan Tekstin leikkaus

Lisätiedot

tikra_oppimistavoitteet.doc Sivu 1 / / Teemu Kerola Oppimistavoitteet kurssilla Tietokoneen rakenne Osaa selittää Boolen algebran

tikra_oppimistavoitteet.doc Sivu 1 / / Teemu Kerola Oppimistavoitteet kurssilla Tietokoneen rakenne Osaa selittää Boolen algebran tikra_oppimistavoitteet.doc Sivu 1 / 5 7.8.2006 / Teemu Kerola Oppimistavoitteet kurssilla Tietokoneen rakenne Digitaalilogiikka Tuntee Boolen muuttujan ja totuusarvon käsitteet (Diskr. matem.) Osaa selittää

Lisätiedot

Tietokoneen mysteeri sekventiaalilogiikka

Tietokoneen mysteeri sekventiaalilogiikka 111111111 111111111 1111111 11111111 111111 1111111 Tietokoneen mysteeri sekventiaalilogiikka Petteri Kaski Tietotekniikan laitos Aalto-yliopisto CS-A112 Ohjelmointi 2 1. maaliskuuta 217 111111111 11111111

Lisätiedot

Digitaalilaitteen signaalit

Digitaalilaitteen signaalit Digitaalitekniikan matematiikka Luku 3 Sivu 3 (9) Digitaalilaitteen signaalit Digitaalilaitteeseen tai -piiriin tulee ja siitä lähtee digitaalisia signaaleita yksittäisen signaalin arvo on kunakin hetkenä

Lisätiedot