MS-A0401 Diskreetin matematiikan perusteet

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MS-A0401 Diskreetin matematiikan perusteet"

Transkriptio

1 MS-A0401 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto

2 Ryhmät ja permutaatiot

3 Väritysongelma Jos meillä on 6 palloa, monellako tavalla voimme värittää 2 niistä vihreiksi ja muut valkoisiksi? Jos pallot ovat identtiset on vain yksi tapa, 2 väritetään vihreiksi ja 4 valkoisiksi. Jos pallot on numeroitu, niin on ( 6 2) = 15 tapaa valita ne, jotka väritetään vihreiksi, ja loput valkoisiksi. Jos pallot ovat säännöllisen 6-kulmion kulmissa ja tätä 6-kulmiota voi kiertää ja kääntää, niin on 3 vaihtoehtoa: Mutta miten ratkaistaan monimutkaisemmat tämäntyyppiset ongelmat? 1 / 42 R. Kangaslampi MS-A0401

4 Permutaatio (kertaus) Määritelmä 1 Äärellisen joukon A permutaatio on bijektio A A. Kun A = {1,..., n}, niin joukon A kaikkien permutaatioiden joukkoa merkitään S n. Huomaa S n = n!. Kahdelle permutaatiolle f, g S n määritellään kertolasku asettamalla fg = f g. Huom. (fg)(x) = f ( g(x) ) eli kertominen tapahtuu oikealta vasemmalle. 2 / 42 R. Kangaslampi MS-A0401

5 Permutaatio (kertaus) Esimerkki 2 (matriisiesitys) Joukon {1, 2, 3} permutaatioille ( ) f = ( ) ja g = pätee Lisäksi tässä ( ) ( ) gf =, fg = f 1 = f ja g 1 = g, mutta tällainen ei päde yleisesti, esimerkiksi yllä (fg) 1 fg. 3 / 42 R. Kangaslampi MS-A0401

6 Permutaatio Permutaatiot voidaan esittää myös syklinotaatiolla. Esimerkki 3 ( ) α = Nyt ( näemme, ) että ja tästä saamme syklin Koska α(5) = 5, saamme syklin (5), joskin yhden pituista sykliä tosin ei ole tapana ottaa merkintään mukaan. ( ) Lopuksi näemme, että joten saamme syklin 6 7. Syklinotaatiolla voimme nyt kirjoittaa ( ) ( ) α = On myös ( muita ) ( esitystapoja ) syklien tuloina, esim. α = / 42 R. Kangaslampi MS-A0401

7 Ryhmä Ryhmä on pari [G, ] missä G on joukko ja on funktio G G G, jolla on seuraavat ominaisuudet: Sulkeutuneisuus: a b G jos a ja b G. Liitännäisyys: (a b) c = a (b c) jos a, b ja c G. Neutraalialkio: On olemassa alkio e G siten, että e a = a e = a jos a G. Käänteisalkio: Jos a G, niin on olemassa alkio a 1 G siten, että a a 1 = a 1 a = e. 5 / 42 R. Kangaslampi MS-A0401

8 Ryhmä Esimerkki 4 Joukko S n varustettuna permutaatioiden kertolaskulla toteuttaa ryhmäaksioomat: sulkeutuneisuus: jos f, g S n, niin fg S n liitännäisyys: (fg)h = f (gh) pätee kaikille f, g, h S n neutraalialkion ( ) olemassaolo: identtiselle permutaatiolle e := pätee ef = fe = f kaikille f S n käänteisalkion olemassaolo: kaikilla f S n löytyy käänteisalkio g S n, jolle fg = gf = e. 6 / 42 R. Kangaslampi MS-A0401

9 Ryhmä Huomioita Käänteisalkion yksikäsitteisyys todistetaan kuten joukossa Z m. Siten on oikeutettua merkitä f :n käänteisalkiota f 1 :llä. Kun p on alkuluku, niin joukko (Z p \ {0}, ) eli Z p \ {0} varustettuna kertolaskulla on ryhmä, neutraalialkio on 1. Joukko (Z m, +) eli Z m varustettuna yhteenlaskulla on ryhmä kaikilla m N +, neutraalialkio on 0. Permutaatioiden ryhmä S n on ryhmistä tärkein, sillä voidaan osoittaa (Cayleyn lause), että jokainen äärellinen ryhmä on miellettävissä permutaatioryhmänä tai sellaisen aliryhmänä. 7 / 42 R. Kangaslampi MS-A0401

10 Ryhmän toiminta Esimerkki 5 Tarkastellaan tasasivuista kolmiota M kolmiulotteisessa avaruudessa. Kolmiota M voidaan kiertää kuudella eri tavalla siten, että M:n asento ei muutu: / 42 R. Kangaslampi MS-A0401

11 Ryhmän toiminta Esimerkki 5 (jatkuu) Merkitään kiertoja seuraavasti: e = ei tehdä mitään r = kierretään kulman 2π/3 (120 ) verran vastapäivään sen akselin ympäri, joka on kohtisuorassa kolmion tasoa vastaan ja kulkee kolmion keskipisteen kautta s = kierretään kulman π (180 ) verran sen akselin ympäri, joka on kolmion tasossa ja puolittaa kulman paikassa 1. 9 / 42 R. Kangaslampi MS-A0401

12 Ryhmän toiminta Esimerkki 5 (jatkuu) e 2 3 r 2 3 r s 2 3 rs 2 3 r 2 s 10 / 42 R. Kangaslampi MS-A0401

13 Ryhmän toiminta Esimerkki 5 (jatkuu) Edellä siis: Kiertojen kertolasku tapahtuu suorittamalla kierrot peräkkäin (merkinnöissä oikealta vasemmalle). Valitut kaksi kiertoakselia pysyvät avaruudessa paikallaan. Kolmion kierrot voidaan samaistaa joukon {1, 2, 3} permutaatioihin. Esimerkiksi permutaatio (1)(23) tulkitaan siten, että kolmion kärki avaruuden paikassa numero 1 pysyy paikallaan ja kärjet paikoissa 2 ja 3 vaihtavat paikkaa. 11 / 42 R. Kangaslampi MS-A0401

14 Ryhmän toiminta Edellä sanotaan, että ryhmä S 3 toimii kolmiossa M. Jokainen ryhmän S 3 permutaatio voidaan tulkita kolmion symmetrian säilyttäväksi kierroksi kolmiulotteisessa avaruudessa. Sama ei päde neliölle, esimerkiksi permutaatio (123)(4) rikkoisi neliön eikä siten olisi kierto. Säännöllisen n-kulmion kaikkien kiertojen ryhmää sanotaan diedriryhmäksi ja merkitään D n. 12 / 42 R. Kangaslampi MS-A0401

15 Ryhmän toiminta Diedriryhmässä on 2n alkiota (taululla n = 4): Merkitään r:llä kiertoa kulman 2π/n verran sen akselin ympäri, joka on kohtisuorassa monikulmion tasoa vastaan ja kulkee monikulmion keskipisteen kautta. Tällöin r n = e ja kierron r monikertoja on n kappaletta: e, r, r 2,..., r n 1. Lisäksi voidaan kiertää kulman π verran minkä tahansa monikulmion lävistäjän tai sivun kohtisuoran puolittajan suhteen, näin saadaan n kiertoa lisää. Osoittautuu, että jälkimmäiset n kiertoa saadaan, kun valitaan vain yksi lävistäjä tai puolittaja (mikä tahansa) ja merkitään π-kiertoa sen suhteen s; sen jälkeen muut n 1 ovat rs, r 2 s,..., r n 1 s. Pätee myös rs = sr / 42 R. Kangaslampi MS-A0401

16 Ryhmän toiminta Diedriryhmä voidaan samaistaa permutaatioryhmän S n aliryhmän kanssa. (Lisää hetken kuluttua.) D n generoituu kierroista r ja s, ts D n = {r j s k : j, k Z}, merkitään D n = r, s. Yllä s 2 = e ja r n = e eli joukossa D n on 2n alkiota. 14 / 42 R. Kangaslampi MS-A0401

17 Aliryhmät ja Lagrangen lause Neliön kiertoryhmä (taululla, s on lävistäjä 1 3, pysyy avaruudessa paikallaan): D 4 = r, s = {e, r, r 2, r 3, s, rs, r 2 s, r 3 s}. Jos samaistetaan ryhmän D 4 alkiot joukon {1, 2, 3, 4} permutaatioihin, niin D 4 = { (1)(2)(3)(4), ( ), (1 3)(2 4), ( ), (1)(3)(2 4), (1 2)(3 4), (1 3)(2)(4), (1 4)(3 2) }. Tämä on joukon S 4 aliryhmä, sillä D 4 S 4 ja D 4 muodostaa itsessään ryhmän, jolla on sama neutraalialkio kuin S 4 :llä. 15 / 42 R. Kangaslampi MS-A0401

18 Aliryhmät ja Lagrangen lause Lause 6 (Lagrange) Jos G on äärellinen ryhmä ja H on sen aliryhmä, niin H on G :n tekijä. Esimerkiksi S 4 = 24 ja D 4 = 8, joka on 24:n tekijä. Todistus. Määritellään alkion g G sivuluokka: gh = {gh : h H} G. Voidaan osoittaa (osoittamalla, että funktio H gh, h gh on bijektio), että sivuluokat ovat yhtäsuuria; lisäksi ne jakavat G:n erillisiin osiin. Siten, koska eh = H on yksi sivuluokka, niin G :n on oltava H :n monikerta. 16 / 42 R. Kangaslampi MS-A0401

19 Rata Määritelmä 7 Olkoon G S n ryhmä, joka toimii joukossa M (esim. kolmion kärjet). Pisteen x M rata on [x] G := {g(x) : g G} M. Usein merkitään vain [x]. Voidaan osoittaa, että joukon M relaatio x y x [y] G on ekvivalenssi, joten radat jakavat M:n erillisiin luokkiin. Esimerkki 8 Jos M = {1, 2,..., 6}, f = (1 2)( ) S 6 ja G = f, niin G:n määräämät radat joukossa M ovat [1] = [2] = {1, 2} ja [3] = [4] = [5] = [6] = {3, 4, 5, 6}. 17 / 42 R. Kangaslampi MS-A0401

20 Kiinnittäjäaliryhmä Määritelmä 9 Jos ryhmä G toimii joukossa M ja jos x M, niin pisteen x kiinnittäjäaliryhmä on G x := {g G : g(x) = x} G. Kiinnittäjä todellakin on aliryhmä, joten Lagrangen lauseen nojalla G x jakaa G :n kaikilla x M. 18 / 42 R. Kangaslampi MS-A0401

21 Kiinnittäjäaliryhmä Esimerkki 10 (jatkoa edelliseen) Jos M = {1, 2,..., 6}, f = (1 2)( ) S 6 ja G = f = { e, f, f 2, f 3} = { e, f, (1)(2)(3 5)(4 6), (1 2)( ) }, niin kiinnittäjäaliryhmät ovat ovat G 1 = G 2 = {e, f 2 } ja G 3 = G 4 = G 5 = G 6 = {e}. Näiden koot (2 ja 1) jakavat luvun G = / 42 R. Kangaslampi MS-A0401

22 Kiintopistejoukko Määritelmä 11 Jos ryhmä G toimii joukossa M ja jos g G, niin permutaation g kiintopistejoukko on M g := {x M : g(x) = x} M. Esimerkki 12 (jatkoa edelliseen) Jos M = {1, 2,..., 6}, f = (1 2)( ) S 6 ja G = f = { e, f, f 2, f 3} = { e, f, (1)(2)(3 5)(4 6), (1 2)( ) }, niin kiintopistejoukot ovat M e = M, M f = M f 3 = ja M f 2 = {1, 2}. 20 / 42 R. Kangaslampi MS-A0401

23 Radan koko Lause 13 Jos ryhmä G toimii joukossa M ja jos x M, niin radan [x] koko saadaan laskettua kaavasta [x] = G / G x. Todistus. Merkitään G x = H (aliryhmä) ja merkitään kaikkien H:n sivuluokkien joukkoa G/H. Tällöin funktio G/H [x] G, gh gx on bijektio, joten joukon [x] G koko on sama kuin sivuluokkien lukumäärä, joka puolestaan saadaan jakamalla G:n koko H:n koolla (kaikki sivuluokat olivat yhtä suuria). 21 / 42 R. Kangaslampi MS-A0401

24 Radan koko Esimerkki 14 (jatkoa edelliseen) Jos M = {1, 2,..., 6}, f = (1 2)( ) S 6 ja G = f = { e, f, f 2, f 3} = { e, f, (1)(2)(3 5)(4 6), (1 2)( ) }, niin aiemmin saimme radoiksi [1] = [2] = {1, 2} ja [3] = [4] = [5] = [6] = {3, 4, 5, 6} ja kiinnittäjäaliryhmiksi G 1 = G 2 = {e, f 2 } ja G 3 = G 4 = G 5 = G 6 = {e}. Lause toimii; esimerkiksi [1] = G / G / 42 R. Kangaslampi MS-A0401

25 Ratojen lukumäärä Lause 15 (Burnsiden lemma) Jos ryhmä G toimii joukossa M, niin ratojen lukumäärä on kiintopistejoukkojen kokojen keskiarvo: 1 M g. G g G Tämän avulla voidaan laskea esim. monitahokkaan olennaisesti erilaisten väritysten määriä. Ensin kuitenkin todistus: 23 / 42 R. Kangaslampi MS-A0401

26 Ratojen lukumäärä Todistus Merkitään n = { (g, x) G M : gx = x }. Permutaatiota g G vastaavien parien (g, x) lukumäärä on M g, joten n = M g. g G Toisaalta alkiota x M vastaavien parien (g, x) lukumäärä on G x, joten n = G x, x M 24 / 42 R. Kangaslampi MS-A0401

27 Ratojen lukumäärä Todistus (jatkuu) saadaan M g = G x. g G x M Radan [x] G koko on G / G x ja rata on sama kaikille y [x] G, joten G y = [x] G G x = G. y [x] G Merkitään ratojen lukumäärää k:lla, jolloin ylläolevan nojalla G x = k G, x M ja jakamalla G :llä ollaan valmiita. 25 / 42 R. Kangaslampi MS-A0401

28 Ratojen lukumäärä Esimerkki 16 (jatkoa edelliseen) Jos M = {1, 2,..., 6}, f = (1 2)( ) S 6 ja G = f = { e, f, f 2, f 3} = { e, f, (1)(2)(3 5)(4 6), (1 2)( ) }, niin aiemmin saimme radoiksi {1, 2}, {3, 4, 5, 6} ja kiintopistejoukoiksi M e = M, M f = M f 3 =, M f 2 = {1, 2}. Kiintopistejoukkojen kokojen keskiarvo on 1 4 ( M e + M f + M f 2 + M f 3 ) = 1 ( ) = 2 4 eli sama kuin ratojen lukumäärä. 26 / 42 R. Kangaslampi MS-A0401

29 Väritysten lukumäärä Lause 17 Jos ryhmä G S n toimii joukossa M = {1, 2,..., n} ja jos M:n värittämiseen on käytössä q väriä, niin olennaisesti erilaisten (eli kiertoekvivalenssi huomioiden erilaisten) väritysten lukumäärä on 1 q k(g), G g G missä k(g) on g:n syklien lukumäärä. 27 / 42 R. Kangaslampi MS-A0401

30 Väritysten lukumäärä Todistus Väritys on funktio M {1, 2,..., q}. Merkitään kaikkien väritysten joukkoa M:llä. Nyt g G, f M pätee f g M, eli G voidaan mieltää toiminnaksi joukossa M. Tällöin haluttu vastauksemme on tämän toiminnan ratojen määrä eli Burnsiden lemman mukaan 1 G M g. g G 28 / 42 R. Kangaslampi MS-A0401

31 Väritysten lukumäärä Todistus (jatkuu) Edelleen, jos permutaation g sykliesityksessä on k sykliä, niin M g = q k, sillä M g = {f M; f g = f } ja kukin sykli voidaan värittää millä tahansa värillä. 29 / 42 R. Kangaslampi MS-A0401

32 Väritysten lukumäärä Esimerkki 18 Monellako olennaisesti eri tavalla neliön kärjet voidaan värittää, kun käytössä on kaksi väriä ja neliötä saa käännellä kolmiulotteisessa avaruudessa? Vastaus: kuudella. Ratkaisu taululla, idea: Neliön symmetriaryhmä D n = {(1)(2)(3)(4), (1234), (13)(24), (1432), (1)(3)(24), (12)(34), (13)(2)(4), (14)(32)}, joten syklien lukumäärät ovat 4,1,2,1,3,2,3,2 ja vastaus on keskiarvo 1 8 ( ) = / 42 R. Kangaslampi MS-A0401

33 Sykli-indeksi

34 Sykli-indeksi Jos a on joukon X permutaatio niin a:n sykli-indeksi on monomi ζ a,x (t 1,..., t n ) = t j 1 1 t j tn jn missä j k on a:n k-pituisten ratojen lukumäärä. Jos G on ryhmä joukon X permutaatiota niin G:n sykli-indeksi on ζ G,X (t 1,..., t n ) = 1 G ζ a,x (t 1,..., t n ). a G 31 / 42 R. Kangaslampi MS-A0401

35 Sykli-indeksi Esimerkki 19 Olkoon G ryhmä, joka muodostuu kaikista alla olevan verkon solmujen sellaisista permutaatioista f, että jos solmujen a ja b välillä on linkki, niin myös solmujen f (a) ja f (b) välillä on linkki Koska solmuilla 3 ja 4 on 3 naapuria niin joko f (3) = 3 ja f (4) = 4 tai f (3) = 4 ja f (4) = 3. Solmut 1 ja 2 kuvautuvat solmun f (3) naapureille ja samoin solmut 5 ja 6 kuvautuvat solmun f (4) naapureille. 32 / 42 R. Kangaslampi MS-A0401

36 Sykli-indeksi Esimerkki Näin ollen kyseiset permutaatiot ovat: (1), (1 2), (5 6), (1 2)(5 6), (3 4)(1 5)(2 6), (3 4)(1 6)(2 5), (3 4)( ) ja (3 4)( ). Seuraavaksi on laskettava näiden permutaatioiden ratojen pituudet: 33 / 42 R. Kangaslampi MS-A0401

37 Sykli-indeksi Esimerkki 19 (jatkuu) (1) : 6 rataa, joissa on 1 alkio. (1 2), (5 6) : 4 rataa, joissa on 1 alkio, 1 rata, jossa on 2 alkiota. (1 2)(5 6) : 2 rataa, joissa on 1 alkio, 2 rataa, joissa on 2 alkiota. (3 4)(1 5)(2 6), (3 4)(1 6)(2 5) : 3 rataa, joissa on 2 alkiota. (3 4)( ), (3 4)( ) : 1 rata, jossa on 2 alkiota, 1 rata, jossa on 4 alkiota. Näin ollen sykli-indeksi on ζ G,X (t 1, t 2, t 3, t 4 ) = 1 ) (t1 6 + t 2 8 1t t1t t t 2 t 4 34 / 42 R. Kangaslampi MS-A0401

38 Pólyan värityslause

39 Pólyan värityslause Olkoon G ryhmä joukon X permutaatioita ja olkoon K = {v 1, v 2,..., v r } joukko värejä, joilla X :n alkioita väritetään. Silloin termin v i 1 1 v i v r ir, kerroin polynomissa ζ G,X (v v 1 r, v v 2 r,..., v n v n r ) on niiden X :n väritysten lukumäärä, joissa väriä v j käytetään täsmälleen i j kertaa ja jotka eivät ole ekvivalentteja G:n toiminnassa. Jos käytetään r väriä mutta, muita rajoituksia ei ole, niin ζ G,X (r, r,..., r) on niiden X :n väritysten lukumäärä, jotka eivät ole ekvivalentteja G:n toiminnassa. 35 / 42 R. Kangaslampi MS-A0401

40 Pólyan värityslause Esimerkki 20 (Nelikulmion symmetriat) Olkoon X = {0, 1, 2, 3} ja tarkastellaan yo. nelikulmion symmetrioita. Meillä on siis seuraavat permutaatiot syklinotaatiolla: (0)(1)(2)(3), (0)(1 3)(2), ( ), (0 1)(2 3), (0 2)(1 3), (0 2)(1)(3), ( ) ja (0 3)(1 2), joista 4 on rotaatioita ja 4 peilauksia. Näiden permutaatioiden muodostama ryhmähän on diedriryhmä D / 42 R. Kangaslampi MS-A0401

41 Pólyan värityslause Esimerkki 20 (Nelikulmion symmetriat jatkuu) Monellako tavalla voidaan värittää solmut niin, että yksi on musta, yksi valkoinen ja kaksi punaista? Kaksi väritystä ovat samoja, jos rotaatiolla ja/tai peilauksella saadaan toinen toisesta. Ryhmän D 4 sykli-indeksi saadaan permutaatioiden sykli-indeksien keskiarvona, ja permutaation sykli-indeksi on t j 1 1 t j tn jn jos permutaatiolla on j k rataa, joiden pituus on k, k = 1, 2,..., n. Tässä tapauksessa sykli-indeksiksi tulee ζ D4,X (t 1, t 2, t 3, t 4 ) = 1 8 ( t t1t t 4 + t2 2 + t2 2 + t1t t 4 + t2 2 ). 37 / 42 R. Kangaslampi MS-A0401

42 Pólyan värityslause Esimerkki 20 (Nelikulmion symmetriat jatkuu) Erilaisten väritysten lukumäärä on nyt termin mvp 2 (m=musta, v=valkoinen, p=punainen, näitä kaksi) kerroin polynomissa ζ D4,X (m + v + p, m 2 + v 2 + p 2, m 3 + v 3 + p 3, m 4 + v 4 + p 4 ) = 1 8 (m + v + p) (m + v + p)2 (m 2 + v 2 + p 2 ) (m2 + v 2 + p 2 ) (m4 + v 4 + p 4 ) = m 4 + m 3 p + 2m 2 p 2 + mp 3 + p 4 + m 3 v + 2m 2 pv + 2mp 2 v +p 3 v + 2m 2 v 2 + 2mpv 2 + 2p 2 v 2 + mv 3 + pv 3 + v 4 eli 2. (Tarkistus ajattelemalla: Kaksi punaista voivat olla vierekkäin tai vastakkain. Tämän valinnan jälkeen on sama miten päin musta ja valkoinen valitaan, peilaamalla ne vaihtavat paikkaa.) 38 / 42 R. Kangaslampi MS-A0401

43 Pólyan värityslause Esimerkki 21 (Pólyan lause ja ristinolla) Meillä on 3 3-ruudukko ja olemme kirjoittaneet kahteen ruutuun x:n, kahteen o:n ja 5 ruutua on tyhjinä. Tämä on tehtävissä ( 9 2,2,5) = 756:lla eri tavalla, jos paperi pidetään paikallaan. Jos voimme kiertää paperia kulman 0, π 2, π tai 3π 2 verran keskipisteen ympäri, niin näiden vaihtoehtojen lukumäärä pienenee. Ensin pitää selvittää miten π 2 kulman rotaation generoima ryhmä toimii ruudukolla ja erityisesti mikä on tämän toiminnan sykli-indeksi. Eli pitää määrittää erilaisten ratojen pituudet. Tulokset ovat seuraavanlaiset: Identiteettifunktiolla (rotaatio 0) on 9 rataa, joihin kaikkiin kuuluu 1 ruutu. 39 / 42 R. Kangaslampi MS-A0401

44 Pólyan värityslause Esimerkki 21 (Pólyan lause ja ristinolla, jatk.) Kierrolla kulman π 2 verran on 2 rataa, joilla molemmilla on 4 ruutua (toinen sisältää kulmaruudut, toinen niiden välillä olevat ruudut) ja 1 rata johon kuuluu 1 ruutu (ruutu keskellä). Sama pätee jos kierretään kulman 3π 2 verran. Jos kiertokulma on π, niin saamme 4 rataa, joilla molemmilla on 2 ruutua (vastakkaiset kulmat ja vastakkaiset ruudut niiden välillä) sekä 1 rata johon kuuluu 1 ruutu. Sykli-indeksiksi saamme näin ollen ζ G,X (t 1, t 2,..., t 9 ) = 1 4 (t t 1 t t 1 t 4 2). 40 / 42 R. Kangaslampi MS-A0401

45 Pólyan värityslause Esimerkki 22 (Pólyan lause ja ristinolla, jatk.) Jotta voisimme laskea ei-ekvivalenttien väritysten lukumäärän, korvaamme muuttujan t j lausekkeella x j + o j + t j. Tällöin termin x 2 o 2 t 5 kerroin on ei-ekvivalenttien väritysten lukumäärä, kun ruudukossa on kaksi kertaa x ja o ja viisi ruutua tyhjänä (t). Termin x 2 o 2 t 5 kerroin lausekkeessa (x + o + t) 9 on ( 9 2,2,5), lausekkeesta 2(x + o + t)(x 4 + o 4 + t 4 ) 2 ei tule yhtään x 2 o 2 t 5 -termiä ja termin x 2 o 2 t 5 kerroin lausekkeessa (x + o + t)(x 2 + o 2 + t 2 ) 2 on ( 4 1,1,2). Vaihtoehtojen lukumääräksi tulee siis 1 4 (( 9 2, 2, 5 ) ( )) = 1 ( ) = , 1, / 42 R. Kangaslampi MS-A0401

46 Pólyan värityslause Resepti väritysten lukumäärien etsimiseen on siis seuraava: Selvitä tarkasteltavalla joukolla toimivan permutaatioryhmän permutaatiot ja niiden radat. Määrää permutaatioiden sykli-indeksit ja niiden keskiarvona ryhmän sykli-indeksi. Sijoita ryhmän sykli-indeksin lausekkeeseen muuttujan t j tilalle haluamasi värit potenssiin j, eli t j = v j 1 + v j v j k, kun v i ovat käytössä olevat värit Termin v n 1 1 v n v n k k kerroin kertoo, montako sellaista väritystä on, jossa esiintyy täsmälleen n i kertaa väri v i. Pólyan värityslauseen todistus löytyy esim. MyCourses-sivulla annetusta lisämateriaalista. 42 / 42 R. Kangaslampi MS-A0401

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos meillä

Lisätiedot

Luento 9: Permutaatiot ja symmetriat 1 MS-A0401 Diskreetin matematiikan perusteet, syksy 2014 Harri Varpanen Aalto-yliopisto Matematiikan ja systeemianalyysin laitos Keskiviikko 8.10.2014 Ryhmän toiminta

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto. huhtikuuta 0 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto. huhtikuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot Ryhmät Permutaatiot

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 4. lokakuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä4. ym.,

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 4. lokakuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot Permutaatiot

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II G. Gripenberg Aalto-yliopisto 3. huhtikuuta 204 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa II G. Gripenberg Modulaariaritmetiikka 2 Permutaatiot ja ryhmät Aalto-yliopisto 3. huhtikuuta 204 3 Verkot G. Gripenberg (Aalto-yliopisto)

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 5 / vko 41

Diskreetin matematiikan perusteet Laskuharjoitus 5 / vko 41 Diskreetin matematiikan perusteet Laskuharjoitus 5 / vko 4 Tuntitehtävät 4-42 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 45-46 loppuviikon harjoituksissa. Kotitehtävät 43-44 tarkastetaan loppuviikon

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 2. huhtikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteet

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 4. lokakuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto. huhtikuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II MS-A040 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 0. lokakuuta 0 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi Ryhmät ja permutaatiot

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 2. huhtikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, 2.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 2. huhtikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, 2.

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 14.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 2. huhtikuuta 2015 1 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi 2 Ryhmät ja permutaatiot Ryhmät

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 1 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi 2 Ryhmät ja permutaatiot Permutaatiot

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 14. lokakuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 14.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa II G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 1 Modulaariaritmetiikka Eukleideen algoritmi RSA-algoritmi 2 Permutaatiot ja ryhmät Ryhmät

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Symmetrisistä ryhmistä symmetriaryhmiin

Symmetrisistä ryhmistä symmetriaryhmiin Symmetrisistä ryhmistä symmetriaryhmiin 16. marraskuuta 2006 1 Symmetrisistä ryhmistä... Bijektiivistä kuvausta {1,..., n} {1,..., n} kutsutaan n-permutaatioksi. Merkitään n-permutaatioden joukkoa S n.

Lisätiedot

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko

DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko Alkuviikon tuntitehtävä 1: Montako kahdeksaan yhtäsuureen sektoriin leikattua pitsaa voidaan tehdä kolmesta täytteestä siten, että kukin sektori

Lisätiedot

Algebra I, harjoitus 8,

Algebra I, harjoitus 8, Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. 3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää

Lisätiedot

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}. Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa suuriin, helpommin käsiteltäviin osiin. Tämän jälkeen voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Ryhmäteoriaa. 2. Ryhmän toiminta

Ryhmäteoriaa. 2. Ryhmän toiminta Ryhmäteoriaa 2. Ryhmän toiminta Permutaatiot kuvaavat jonkin perusjoukon alkioita toisikseen. Eräät permutaatiot jättävät joitain alkioita paikalleen, toiset liikuttavat kaikkia joukon alkioita. Kaikki

Lisätiedot

4. Ryhmien sisäinen rakenne

4. Ryhmien sisäinen rakenne 4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

5 Platonin kappaleet ja niiden symmetriaryhmät

5 Platonin kappaleet ja niiden symmetriaryhmät 5 Platonin kappaleet ja niiden symmetriaryhmät Ensimmäisissä luvussa käsittelimme ryhmäteorian peruskonsepteja niin kuin ne on 1800- ja 1900-luvuilla määritelty. Nyt palaamme ajassa taaksepäin, ja tutkimme,

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

σ = σ = ( ).

σ = σ = ( ). APPROBATUR 3 (MATP170) Harjoitus 6, Ratkaisut 1. Kirjoita permutaatio perinteisessä kaksirivisessä esitysmuodossa. σ = ( 1 3 6 2 )( 4 5 6 1 )( 2 3 4 5 ) Ratkaisu. Katsotaan alkioden 1, 2, 3, 4, 5, 6 kuvautuminen

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 Olen valinnut kunkin luvun teemaksi yhden ryhmän. Ensimmäisen luvun teema on pienin epätriviaali ryhmä, eli ryhmä, jossa on kaksi alkiota. Merkitsen

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta

Lisätiedot

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ. Rhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 4, ratkaisuehdotus (5 sivua) 26.11.2012 Tehtävä 1. Etsi neliön smmetriarhmän D 8 kaikki alirhmät. Mitkä niistä ovat normaaleja? Ratkaisu. Rhmää D 8

Lisätiedot

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1) MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Kenguru 2017 Student lukio

Kenguru 2017 Student lukio sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai 5 pistettä.

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014 Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

ja siten kyseisen symmetriaryhmä on toinen dihedraaliryhmä (D 2 )

ja siten kyseisen symmetriaryhmä on toinen dihedraaliryhmä (D 2 ) APPROBATUR (MATP170) Harjoitus 7, Ratkaisut 1. Kuvaa kirjaimen H smmetriarhmä permutaatioiden avulla ja tee saadulle rhmälle kertotaulu. (Nimeä tätä varten kirjaimesta smmetrian mielessä tärkeitä kohtia

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

Eräitä ratkeavuustarkasteluja

Eräitä ratkeavuustarkasteluja Eräitä ratkeavuustarkasteluja Pro gradu-tutkielma Milla Jantunen 2124227 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö 1 Ryhmät ja aliryhmät 3 1.1 Ryhmä...............................

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,

Lisätiedot

x gxg 1 Esimerkin 3-sykli saatiin siis konjugoimalla siirretyksi toimimaan lukujen 1, 2 ja 3 sijasta luvuilla 5, 8 ja 6.

x gxg 1 Esimerkin 3-sykli saatiin siis konjugoimalla siirretyksi toimimaan lukujen 1, 2 ja 3 sijasta luvuilla 5, 8 ja 6. 4 Konjugointi 4.1 Konjugoinnin määritelmä Usein ryhmän alkiot kuvaavat operaatioita jossain joukossa. Permutaatiot ovat tästä hyvä esimerkki. Tällaisessa tapauksessa voidaan konjugoinnilla siirtää jossain

Lisätiedot

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}.

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}. Algebra I Matematiikan ja tilastotieteen laitos Harjoitus 7 Ratkaisuehdotus (5 sivua) JR 1. Määritellään reaalilukuparien relaatio seuraavasti: (x,y) (x,y ) x =kx jay=ky jollakink R\{0}. Toisin sanoen

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) 10.12.2012 Tehtävä 1. Osoita, että tuloryhmän R np R sp indeksi Rubikin paikkaryhmässä R p on täsmälleen kaksi. (Tarkkaan

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

4 Konjugointi. 4.1 Konjugoinnin määritelmä

4 Konjugointi. 4.1 Konjugoinnin määritelmä 4 Konjugointi 4.1 Konjugoinnin määritelmä Usein ryhmän alkiot kuvaavat operaatioita jossain joukossa. Ryhmäteoriassa tätä kutsutaan ryhmän toiminnaksi. Permutaatiot ovat hyvä esimerkki ryhmän toiminnasta.

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot