Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 1"

Transkriptio

1 Kellogg-diagrammit Ilmiömallinnus rosessimetallurgiassa Syksy 6 Teema - Luento Tavoite Oia tulkitsemaan ja laatimaan ns. Kellogg-diagrammeja eli vallitsevuusaluekaavioita Aluksi tutustutaan yleisesti tasaainoiirroksiin

2 Tasaainoiirrokset Tasaaino- eli stabiilisuusiirrokset Kuvaavat graafisesti eri faasien keskinäisiä stabiilisuuksia olosuhteiden funktiona Miten yhdisteiden stabiilisuutta voidaan tarkastella? Kuvaajien taustalla: G, H, S, C = f(t,,x i ) Noea menetelmä tasaainotilaisten systeemien tarkasteluun Reaktioiden sontaanisuus? Faasit ja niiden koostumukset tietyissä olosuhteissa? Tasaainoiirrokset = Tasaainotarkastelujen graafinen esitystaa Tasaainon määritys käyttäen valittuja suureita muuttujina (lukuisia laskentaisteitä) Tuloksena saadaan stabiilit faasit ja niiden koostumukset eri laskentaisteissä Tulokset esitetään valitsemalla akselisuureet... Vaihtoehtoina laskennan lähtöarvoina käytetyt suureet sekä laskennan tuloksena saadut arvot Ekstensiivisuureet: S, V, n i, n j,... Vastaavat otentiaalit: T, P, i, j,... Valittujen suureiden oltava toisistaan riiumattomia... ja esittämällä eri faasien stabiilisuusalueet valittujen akselisuureiden funktiona

3 Tasaainoiirrokset Koostumus-lämötila-iirrokset Tasaaino- tai faasiiirrokset Potentiaali-otentiaali-iirrokset Vallitsevuusaluekaaviot (Kellogg) Vaaaenergiaiirrokset (Ellingham) E-H-iirrokset (Pourbaix) Tasaainoiirrokset Käytännössä kyse on Gibbsin vaaaenergia -kuvaajien rojektioista Kuvat: K. Hack - FactSage -koulutusmateriaali. 3

4 Vallitsevuusaluekaaviot (Kellogg-diagrammit) Kuvaavat yhdisteiden välisiä stabiilisuuksia kolmen komonentin systeemeissä, joissa yksi komonenteista (yleensä jokin metalli) muodostaa yhdisteitä kahden muun komonentin (yleensä eämetalleja) kanssa Akseleina Kahden (jälkimmäisen) komonentin tai niiden muodostamien yhdisteiden aktiivisuudet tai osaaineet (lämötila on vakio) Toinen em. aktiivisuuksista sekä lämötila (toinen aktiivisuuksista on vakio) Vallitsevuusaluekaaviot (Kellogg-diagrammit) log SO (g) 4 3 Rikittävämmät olosuhteet Kaliumin haetusaste kasvaa ja erilaisia sulfideja muodostuu K-O -S Phase Stability Diagram at 5. K S4 O6 Haettavat ja rikittävät olosuhteet Sulfaattien muodostuminen (sis. O ja S) K S O8 K S5 - K SO K S K K O K O KO KO3 Haettavammat olosuhteet Kaliumin haetusaste kasvaa ja erilaisia oksideja muodostuu -6-3 File: C:\HSC4 \KOS5.i log O (g) 4

5 Esimerkkejä Kelloggdiagrammeista log CO(g) 7. Ni-C -O Phase Stability Diagram at. C Ni3C Ni + O + CO NiCO3 (O ja CO molemmat mukana reaktiossa) Akselikomonentit ovat samalla uolella reaktioyhtälöä Laskeva suora NiCO Ni NiO + CO NiCO3 (O ei mukana reaktiossa) 5.8 Ni + O NiO (CO ei mukana reaktiossa) NiO File: D:\HSC4\NiCO.is log O(g) Esimerkkejä Kelloggdiagrammeista log CO(g) Ni3C File: D:\HSC4\NiCO.is Ni-C -O Phase Stability Diagram at. C Ni NiCO NiO + O + CO NiCO3 (CO ei voi olla mukana reaktiossa!) NiO log O(g) 5

6 Esimerkkejä Kelloggdiagrammeista log CO(g) 7. Ni-C -O Phase Stability Diagram at. C Ni + CO NiCO3 + CO (O ei voi olla mukana reaktiossa!) Nyt akselikomonentit ovat eri uolilla reaktioyhtälöä Nouseva suora Ni NiCO3 Ni3C 5.8 NiO File: D:\HSC4\NiCO.is log CO(g) Esimerkkejä Kelloggdiagrammeista log SO(g) Ni-O -S Phase Stability Diagram at. C NiS NiSO4 Ni3S4 - Ni Ni3S File: D:\HSC4\NiOS.is -9-8 NiO Ni + O NiO O on ainoa akselikomonentti, joka on mukana reaktiossa Ei ole väliä, onko toinen akselikomonentti CO vai SO Sama suora kuvaa tätä reaktiota -7-6 log O(g) 6

7 log (P(CO)) (atm) log (P(CO)) (atm) D:\FactSage\Fe-O-C-73.wmf 7.. D:\FactSage\Fe-O-C-73-x.wmf 7.. Esimerkkejä Kellogg-diagrammeista Fe-O-C, 73 K '+' =. atm P(total) isobar - - Fe 5C (s ) CFe 3(s) Fe(s 3) Kellogg-diagrammeihin on mahdollista lisätä isobaarikäyriä. Isobaarit näyttävät alueen, jossa kaasumaisten komonenttien osaaineiden summa vastaa tiettyä annettua kokonaisaineen arvoa (yleensä atm) -3 FeO(s) Fe 3O 4(s) Tämän systeemin kaasukomonentit: CO + CO (+ rautaa sisältävät kaasukomonentit) log (P(CO )) (atm) Esimerkkejä Kellogg-diagrammeista Fe-O-C, 73 K '+' =. atm P(total) isobar Fe 5C (s ) atm Samaan kuvaajaan voidaan luonnollisesti sisällyttää useita isobaareja. - CFe 3(s) Fe(s 3). atm Tässä kuvaajassa isobaarit on iirretty vastaamaan kokonaisaineita, atm ja atm FeO(s) Fe 3O 4(s) log (P(CO )) (atm) 7

8 log (P(CO)) (atm) log (P(CO)) (atm) D:\FactSage\Zn-O-C-73.wmf 7.. D:\FactSage\Zn-O-C73-x.wmf 7.. Esimerkkejä Kellogg-diagrammeista Zn-O-C, 73 K '+' =. atm P(total) isobar - Zn(l) Tarkastellaan rosessia, jossa raudan ja sinkin oksideja sisältävää ölyä käsitellään uunissa, jonka atmosfääri koostuu hiilimonoksidista ja hiilidioksidista Kuvaajasta nähdään, että ZnO saadaan elkistettyä tietyillä kaasukoostumuksilla, mutta näin syntyvä sinkki on sulaa 73 K:n lämötilassa. log (P(CO )) (atm) OZn(s) Halutaan tietää, missä olosuhteissa sinkki saadaan oistettua ölyistä kaasufaasiin (ja erotettua siitä edelleen omaksi faasikseen). Laaditaan Kelloggdiagrammi, jossa sinkin yhdisteiden stabiilisuusalueet on esitetty tarkastelulämötilassa. Esimerkkejä Kellogg-diagrammeista Zn-O-C, 473 K '+' =. atm P(total) isobar Toinen kuvaaja samalle systeemille korkeammassa lämötilassa (473 K) kertoo, että elkistyvä sinkki on nyt kaasumaista. - Zn(g) Ts. ZnO voidaan elkistää kaasufaasiin OZn(s) btw: Isobaarit on määritetty kahdelle eri kokonaisaineelle (, atm ja atm) Kuvaaja ei kuitenkaan kerro mitään siitä, missä muodossa rauta esiintyy näissä olosuhteissa log (P(CO )) (atm) 8

9 log (P(CO)) (atm) log (P(CO)) (atm) D:\FactSage\Fe-O-C73.wmf 7.. D:\FactSage\Fe-Zn-O-C73.wmf 7.. Esimerkkejä Kellogg-diagrammeista Fe-O-C, 473 K '+' = atm P(total) isobar - Fe 5C (s ) CFe 3(s) Fe(s ) Raudan ja sen yhdisteiden stabiilisuusalueiden määrittämiseksi voidaan iirtää toinen Kelloggdiagrammi (Fe-O-Csysteemille samassa lämötilassa) FeO(s) Fe 3O 4(s) Kaasumaisen sinkin stabiilisuusalue (edellisestä kuvaajasta) kertoo, että näissä olosuhteissa rauta esiintyy joko kiinteänä metallina tai karbidina log (P(CO )) (atm) Esimerkkejä Kellogg-diagrammeista Fe-Zn-O-C, 473 K < Zn/(Fe+Zn) < Fe 5C (s )+Zn(g) CFe 3(s)+Zn(g) Alue, jossa Zn on kaasumainen Fe(s )+Zn(g) Fe(s FeO(s)+OZn(s) )+OZn(s) Systeemistä löytyy yhdiste, joka sisältää sekä rautaa että sinkkiä (sinkkiferriitti). Fe 3O 4(s)+OZn(s) Edelliset tarkastelut eivät kuitenkaan kerro, onko olemassa yhdisteitä, jotka sisältävät sekä rautaa että sinkkiä. (Tarkastelut tehtiin erikseen Fe-O-C- ja Zn-O- C-systeemeille.) On kuitenkin mahdollista iirtää Kellogg-diagrammi, jossa on huomioitu useamman kuin yhden metallin muodostamat yhdisteet. (Tällaiset kuvaajat ovat aika monimutkaisia, kun komonenttien lukumäärää kasvatetaan.) Fe 3O 4(s)+Fe O 4Zn(s) log (P(CO )) (atm) 9

10 log (P(CO)) (atm) D:\FactSage\Fe-Zn-O-C-Cl73.wmf 7.. Esimerkkejä Kellogg-diagrammeista Fe-Zn-O-C-Cl, 473 K < Zn/(Fe+Zn) <.333, log P(Cl ) = -6 (atm) Fe 5C (s )+Cl Zn(g) Alue, jossa sinkki on kaasumainen Cl Fe(g)+Cl Zn(g) Alue, jossa myös rauta esiintyy kaasumaisena. Fe 3O 4(s)+Cl Zn(g) Fe 3O 4(s)+OZn(s) Fe 3O 4(s)+Fe O 4Zn(s) Entä jos uunissa on myös klooria? Laadittava kuvaaja Fe-Zn-O-C-Cl-systeemille Koska molemmat akselit on jo varattu (CO ja CO ), on kloorin määrä (ts. osaaine) oletettava kuvaajassa vakioksi. Tässä kuvaajassa on käytetty arvoa -6 atm. Raudan kaasuuntumisen estämiseksi vaaditaan erilaiset olosuhteet, mikäli systeemi sisältää klooria log (P(CO )) (atm)

11

12 Esimerkki Kellogg-diagrammin laadinnasta Esimerkki Kellogg-diagrammin laadinnasta Systeemin komonentit: Mo, MoO, MoO 3 ja MoS Ensimmäinen reaktio: Mo + O = MoO a MoO K a Mo O O Gr,9 ln K,986 T lg O 4,7 G 735 r,9 lg K mol 4,575T 4,575 9K mol K SO ei ole mukana reaktioyhtälössä SO ei esiinny suoran yhtälössä 4,7 lg O

13 Esimerkki Kellogg-diagrammin laadinnasta Toinen reaktio: MoO + ½ O = MoO 3 a MoO 3 K / / a MoO O O Gr,9 lg K 4,575T 3 mol 4,575 9K mol K 5,35 lg / O lg O,7 SO ei ole mukana reaktioyhtälössä SO ei esiinny suoran yhtälössä Esimerkki Kellogg-diagrammin laadinnasta Kolmas reaktio: Mo + SO = MoS + O a K a MoS Mo O SO O SO Gr,9 lg K 4,575T mol 4,575 9K mol K,83 lg O SO lg O lg SO lg SO lg O,4 3

14 Esimerkki Kellogg-diagrammin laadinnasta Neljäs reaktio: MoS + 3 O = MoO + SO K a MoO a SO 3 MoS O SO 3 O Gr,9 lg K 4,575T 8749 mol 4,575 9K mol K 45,5 lg SO 3 O lg SO lg 3 O lg SO 3 lg O,8 Esimerkki Kellogg-diagrammin laadinnasta Viides (viimeinen) reaktio: MoS + 3½ O = MoO 3 + SO K a MoO a 3 SO SO 7/ 7/ MoS O O Gr,9 lg K 4,575T 954 mol 4,575 9K mol K 5,88 lg SO 7 / O lg SO lg 7 / O lg SO,75 lg O 5,4 4

15 Esimerkki Kellogg-diagrammin laadinnasta Kellogg-diagrammi laaditaan iirtämällä edellä määritetyt viisi (lineaarista) yhtälöä samaan kuvaajaan. log SO(g) 5 Mo-O -S Phase Stability Diagram at 67. C Ilma-atmosfääri: O =. lg( O ) = MoS Molybdeenin stabiilein muoto on joko MoO 3 tai MoS. MoS on kuitenkin stabiili vasta äärimmäisen korkeilla SO :n osaaineilla (yli atm) MoO 3 on stabiili muoto ilmaatmosfäärissä - -5 Mo File: C:\HSC\MOOS67.IPS MoO -5 - MoO3 log O(g) 5

Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2012 Teema 1 - Luento 1

Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2012 Teema 1 - Luento 1 Kellogg-diagrammit Ilmiömallinnus rosessimetallurgiassa Syksy Teema - Luento Eetu-Pekka Heikkinen, Tavoite Oia tulkitsemaan ja laatimaan ns. Kellogg-diagrammeja eli vallitsevuusaluekaavioita Eetu-Pekka

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia ..7 Korkealämötilakemia Teema Luento Kellogg-diagrammit To..7 klo 8- SÄ4 Tavoite Oia tulkitsemaan ja laatimaan ns. Kelloggdiagrammeja eli vallitsevuusaluekaavioita Aluksi tutustutaan yleisesti tasaainoiirroksiin

Lisätiedot

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa: Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään

Lisätiedot

Ellinghamin diagrammit

Ellinghamin diagrammit Ellinghamin diagrammit Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 2 Tavoite Oppia tulkitsemaan (ja laatimaan) vapaaenergiapiirroksia eli Ellinghamdiagrammeja 1 Tasapainopiirrokset

Lisätiedot

Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta

Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 4 Tavoite Oppia tulkitsemaan 2-komponenttisysteemien faasipiirroksia 1 Binääriset

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötilakemia Ellingham-diagrammit To 9.11.2017 klo 8-10 SÄ114 Tavoite Oppia tulkitsemaan (ja laatimaan) vapaaenergiapiirroksia eli Ellinghamdiagrammeja 1 Sisältö Mikä on Ellinghamin diagrammi?

Lisätiedot

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on:

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on: Esimerkki Pourbaix-piirroksen laatimisesta Laadi Pourbaix-piirros, jossa on esitetty metallisen ja ionisen raudan sekä raudan oksidien stabiilisuusalueet vesiliuoksessa 5 C:een lämpötilassa. Ratkaisu Tarkastellaan

Lisätiedot

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10 Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko 25.10 klo 8-10 Jokaisesta oikein ratkaistusta tehtävästä voi saada yhden lisäpisteen. Tehtävä, joilla voi korottaa kotitehtävän

Lisätiedot

Standarditilat. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 2 - Luento 2. Tutustua standarditiloihin

Standarditilat. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 2 - Luento 2. Tutustua standarditiloihin Standarditilat Ilmiömallinnus prosessimetallurgiassa Syksy 216 Teema 2 - Luento 2 Tavoite Tutustua standarditiloihin Miksi käytössä? Millaisia käytössä? Miten huomioitava tasapainotarkasteluissa? 1 Miten

Lisätiedot

MT Erikoismateriaalit tuotantoprosesseissa (3 op)

MT Erikoismateriaalit tuotantoprosesseissa (3 op) MT-0.6101 Erikoismateriaalit tuotantoprosesseissa (3 op) 6. Luento - Ke 11.11.2015 Reaktiotermodynamiikan käyttö tulenkestävien valinnassa Marko Kekkonen MT-0.6101 Erikoismateriaalit tuotantoprosesseissa

Lisätiedot

Sähkökemialliset tarkastelut HSC:llä

Sähkökemialliset tarkastelut HSC:llä Sähkökemialliset tarkastelut HSC:llä Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 4 - Luento 5 Tavoite Oppia hyödyntämään HSC-ohjelmistoa sähkökemiallisissa tarkasteluissa 1 Sisältö Sähkökemiallisiin

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia 1.11.217 Korkealämpötilakemia Standarditilat Ti 1.11.217 klo 8-1 SÄ11 Tavoite Tutustua standarditiloihin liuosten termodynaamisessa mallinnuksessa Miksi? Millaisia? Miten huomioidaan tasapainotarkasteluissa?

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

Tärkeitä tasapainopisteitä

Tärkeitä tasapainopisteitä Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia)

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia) Luento 4: Entroia orstai 12.11. klo 14-16 47741A - ermodynaamiset tasaainot (Syksy 215) htt://www.oulu.fi/yomet/47741a/ ermodynaamisten tilansuureiden käytöstä Lämökaasiteetti/ominaislämö - kuvaa aineiden

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 Keskiviikko 13.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2017) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Ni-OHJELMA. OLIVIININ KOOSTUMUKSEN LASKEMISESTA.

Ni-OHJELMA. OLIVIININ KOOSTUMUKSEN LASKEMISESTA. , """' OUTOKUMPU OY Pk ~e 1,., s,',s;j.jn~n /a4-flo A. rn' 1 Ni-OHJELMA. OLIVIININ KOOSTUMUKSEN LASKEMISESTA. Seuraavassa on tarkasteltu oliviinin koostumuksen

Lisätiedot

Johdanto laskennalliseen termodynamiikkaan ja mikroluokkaharjoituksiin

Johdanto laskennalliseen termodynamiikkaan ja mikroluokkaharjoituksiin Johdanto laskennalliseen termodynamiikkaan ja mikroluokkaharjoituksiin Torstai 27.10.2016 klo 14-16 Luennon tavoite Tutustua eri tapoihin määrittää termodyn. tasapaino laskennallisesti Tutustua termodynaamisten

Lisätiedot

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Vapaa energia ja tasapainopiirros Allotropia - Metalli omaksuu eri lämpötiloissa eri kidemuotoja. - Faasien vapaat

Lisätiedot

luku2 Kappale 2 Hapettumis pelkistymisreaktioiden ennustaminen ja tasapainottaminen

luku2 Kappale 2 Hapettumis pelkistymisreaktioiden ennustaminen ja tasapainottaminen Kappale 2 Hapettumis pelkistymisreaktioiden ennustaminen ja tasapainottaminen 1 Ennakkokysymyksiä 2 Metallien reaktioita ja jännitesarja Fe(s) + CuSO 4 (aq) Cu(s) + AgNO 3 (aq) taulukkokirja s.155 3 Metallien

Lisätiedot

Faasipiirrokset, osa 1: Laatiminen sekä 1-komponenttipiirrosten tulkinta

Faasipiirrokset, osa 1: Laatiminen sekä 1-komponenttipiirrosten tulkinta Faasipiirrokset, osa 1: Laatiminen sekä 1-komponenttipiirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 3 Tavoite Tutustua faasipiirrosten kokeelliseen ja laskennalliseen

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,. Matematiikka, MAA9. a) Ratkaise yhtälö tan (YOS) Kulma on välillä [, 6]. Ratkaise asteen tarkkuudella seuraavat yhtälöt: b) sin c) cos (YOs). Kulmalle [9,6 ] on voimassa sin = 8 7. Määritä cos ja tan..

Lisätiedot

OUTOKUMPU. ;.,,, r 4 x 4 i ALE 0 K MALMINETSINTK RAPORTTI NAYTE 10-JH/ /78. KOBALTIITIN JA ARSEENIKIISUN KOKOOMUS

OUTOKUMPU. ;.,,, r 4 x 4 i ALE 0 K MALMINETSINTK RAPORTTI NAYTE 10-JH/ /78. KOBALTIITIN JA ARSEENIKIISUN KOKOOMUS OUTOKUMPU $2 OY 0 K MALMINETSINTK RAPORTTI NAYTE 10-JH/2431 04/78. KOBALTIITIN JA ARSEENIKIISUN KOKOOMUS --:?--!.: p 3 Qk ;.,,, r 4 x 4 i ALE Näytteen 10-~~/2'431 04/78 (pintahie no C282) mikroskooppisessa

Lisätiedot

Johdanto laskennalliseen termodynamiikkaan ja mikroluokkaharjoituksiin

Johdanto laskennalliseen termodynamiikkaan ja mikroluokkaharjoituksiin Johdanto laskennalliseen termodynamiikkaan ja mikroluokkaharjoituksiin Torstai 7.9.2017 klo 8-10 Prosessimetallurgian tutkimusyksikkö Eetu-Pekka Heikkinen, 2017 Luennon tavoite Tutustua eri tapoihin määrittää

Lisätiedot

2. Reaktioyhtälö 3) CH 3 CH 2 COCH 3 + O 2 CO 2 + H 2 O

2. Reaktioyhtälö 3) CH 3 CH 2 COCH 3 + O 2 CO 2 + H 2 O 2. Reaktioyhtälö 11. a) 1) CH 3 CH 2 OH + O 2 CO 2 + H 2 O Tasapainotetaan CH 3 CH 2 OH + O 2 CO 2 + H 2 O C, kpl 1+1 1 kerroin 2 CO 2 :lle CH 3 CH 2 OH + O 2 2 CO 2 + H 2 O H, kpl 3+2+1 2 kerroin 3 H

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 orstai 11.10. klo 14-16 477401A - ermodynaamiset tasapainot (Syksy 2012) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen Faasi

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä www.e-oppi.fi. Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä www.e-oppi.fi. Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava Reaktioyhtälö Sähköisen oppimisen edelläkävijä www.e-oppi.fi Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava Empiirinen kaava (suhdekaava) ilmoittaa, missä suhteessa yhdiste sisältää eri alkuaineiden

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

Faasipiirrokset, osa 3 Ternääristen ja monikomponenttipiirrosten tulkinta

Faasipiirrokset, osa 3 Ternääristen ja monikomponenttipiirrosten tulkinta Faasipiirrokset, osa 3 Ternääristen ja monikomponenttipiirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 5 Tavoite Oppia tulkitsemaan 3-komponenttisysteemien faasipiirroksia

Lisätiedot

* FINAS -akkreditoitu menetelmä. Mittausepävarmuus ilmoitetaan tarvittaessa. Akkreditointi ei koske lausuntoa.

* FINAS -akkreditoitu menetelmä. Mittausepävarmuus ilmoitetaan tarvittaessa. Akkreditointi ei koske lausuntoa. Pvm: 16.9.2015 Projekti: 1510019970/1 Näytteenottopvm: 8.9.2015 Näytteenottopiste: Alvettula, kaivo Näyte saapui: 8.9.2015 Näytteenottaja: Antti Rehula Analysointi aloitettu: 8.9.2015 Määritys 15TP02480

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015 Lukion kemia 3, Reaktiot ja energia Leena Piiroinen Luento 2 2015 Reaktioyhtälöön liittyviä laskuja 1. Reaktioyhtälön kertoimet ja tuotteiden määrä 2. Lähtöaineiden riittävyys 3. Reaktiosarjat 4. Seoslaskut

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA8 Juuri- ja logaritmifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Juuri- ja logaritmifunktiot (MAA8) Pikatesti ja kertauskokeet

Lisätiedot

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä): CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt KEMS448 Fysikaalisen kemian syventävät harjoitustyöt Jakaantumislaki 1 Teoriaa 1.1 Jakaantumiskerroin ja assosioituminen Kaksi toisiinsa sekoittumatonta nestettä ovat rajapintansa välityksellä kosketuksissa

Lisätiedot

- Termodynaamiset edellytykset - On olemassa ajava voima prosessin tapahtumiselle - Perusta - Kemiallinen potentiaali

- Termodynaamiset edellytykset - On olemassa ajava voima prosessin tapahtumiselle - Perusta - Kemiallinen potentiaali Luento 1: Yleistä kurssista ja sen suorituksesta Tiistai 9.10. klo 10-12 Kemiallisten prosessien edellytykset - Termodynaamiset edellytykset - On olemassa ajava voima prosessin tapahtumiselle - Perusta

Lisätiedot

www.ruukki.com MINERAALI- TUOTTEET Kierrätys ja Mineraalituotteet

www.ruukki.com MINERAALI- TUOTTEET Kierrätys ja Mineraalituotteet www.ruukki.com MINERAALI- TUOTTEET Kierrätys ja Mineraalituotteet Masuunihiekka stabiloinnit (sideaineena) pehmeikkörakenteet sidekivien alusrakenteet putkijohtokaivannot salaojan ympärystäytöt alapohjan

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä.

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. FAASIDIAGRAMMIT Määritelmiä Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. Esimerkkejä: (a) suolaliuos (P=1),

Lisätiedot

a) Puhdas aine ja seos b) Vahva happo Syövyttävä happo c) Emäs Emäksinen vesiliuos d) Amorfinen aine Kiteisen aineen

a) Puhdas aine ja seos b) Vahva happo Syövyttävä happo c) Emäs Emäksinen vesiliuos d) Amorfinen aine Kiteisen aineen 1. a) Puhdas aine ja seos Puhdas aine on joko alkuaine tai kemiallinen yhdiste, esim. O2, H2O. Useimmat aineet, joiden kanssa olemme tekemisissä, ovat seoksia. Mm. vesijohtovesi on liuos, ilma taas kaasuseos

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio:

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio: HTKK, TTY, LTY, OY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 26.05.2004 1. a) Kun natriumfosfaatin (Na 3 PO 4 ) ja kalsiumkloridin (CaCl 2 ) vesiliuokset sekoitetaan keske- nään, muodostuu

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Luku 2. Kemiallisen reaktion tasapaino

Luku 2. Kemiallisen reaktion tasapaino Luku 2 Kemiallisen reaktion tasapaino 1 2 Keskeisiä käsitteitä 3 Tasapainotilan syntyminen, etenevä reaktio 4 Tasapainotilan syntyminen 5 Tasapainotilan syntyminen, palautuva reaktio 6 Kemiallisen tasapainotilan

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Dislokaatiot - pikauusinta

Dislokaatiot - pikauusinta Dislokaatiot - pikauusinta Ilman dislokaatioita Kiteen teoreettinen lujuus ~ E/8 Dislokaatiot mahdollistavat deformaation Kaikkien atomisidosten ei tarvitse murtua kerralla Dislokaatio etenee rakeen läpi

Lisätiedot

d) Klooria valmistetaan hapettamalla vetykloridia kaliumpermanganaatilla. (Syntyy Mn 2+ -ioneja)

d) Klooria valmistetaan hapettamalla vetykloridia kaliumpermanganaatilla. (Syntyy Mn 2+ -ioneja) Helsingin yliopiston kemian valintakoe: Mallivastaukset. Maanantaina 29.5.2017 klo 14-17 1 Avogadron vakio NA = 6,022 10 23 mol -1 Yleinen kaasuvakio R = 8,314 J mol -1 K -1 = 0,08314 bar dm 3 mol -1 K

Lisätiedot

Käytännön esimerkkejä on lukuisia.

Käytännön esimerkkejä on lukuisia. PROSESSI- JA Y MPÄRISTÖTEKNIIK KA Ilmiömallinnus prosessimet allurgiassa, 01 6 Teema 4 Tehtävien ratkaisut 15.9.016 SÄHKÖKEMIALLISTEN REAKTIOIDEN TERMODYNAMIIKKA JA KINETIIKKA Yleistä Tämä dokumentti sisältää

Lisätiedot

Reaktiosarjat

Reaktiosarjat Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

TUTKIMUSTODISTUS. Jyväskylän Ympäristölaboratorio. Sivu: 1(1) Päivä: 09.10.14. Tilaaja:

TUTKIMUSTODISTUS. Jyväskylän Ympäristölaboratorio. Sivu: 1(1) Päivä: 09.10.14. Tilaaja: Jyväskylän Ympäristölaboratorio TUTKIMUSTODISTUS Päivä: 09.10.14 Sivu: 1(1) Tilaaja: PIHTIPUTAAN LÄMPÖ JA VESI OY C/O SYDÄN-SUOMEN TALOUSHAL. OY ARI KAHILAINEN PL 20 44801 PIHTIPUDAS Näyte: Verkostovesi

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

Resurssiviisaus on bisnestä ja huikeita mahdollisuuksia? Kenneth Ekman CrisolteQ Oy April 2013

Resurssiviisaus on bisnestä ja huikeita mahdollisuuksia? Kenneth Ekman CrisolteQ Oy April 2013 Resurssiviisaus on bisnestä ja huikeita mahdollisuuksia? Kenneth Ekman CrisolteQ Oy April 2013 Resurssiviisaus-Sitra Energia Vesi Ruoka Liikenne Jäte Resurssiviisaus-Sitra Jäte Closed Loop B-to-B toimijat

Lisätiedot

Lumijoki 1, silta 14VV Lumijärvi 14VV Lämpötila 0,6 0,2 0,1 0,8 2,2 C Suodatus (alkuaineet), KT ok ok ok ok ok Kenttät.

Lumijoki 1, silta 14VV Lumijärvi 14VV Lämpötila 0,6 0,2 0,1 0,8 2,2 C Suodatus (alkuaineet), KT ok ok ok ok ok Kenttät. Pv: 19.3.2014 1/6 Talvivaara Sotkao Oy Talvivaarantie 66 88120 TUHKAKYLÄ Tutkiuksen nii: Talvivaara, vedet, aaliskuu 2014, kierros I, Vuoksen suunta Näytteenottopv: 10.3.2014 Näyte saapui: 11.3.2014 Näytteenottaja:

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

Firan vesilaitos. Laitosanalyysit. Lkm keski- maksimi Lkm keski- maksimi

Firan vesilaitos. Laitosanalyysit. Lkm keski- maksimi Lkm keski- maksimi Laitosanalyysit Firan vesilaitos Lämpötila C 3 8,3 8,4 4 8,4 9 ph-luku 3 6,5 6,5 4 7,9 8,1 Alkaliteetti mmol/l 3 0,53 0,59 4 1 1,1 Happi 3 2,8 4 4 11,4 11,7 Hiilidioksidi 3 23,7 25 4 1 1,9 Rauta Fe 3

Lisätiedot

(l) B. A(l) + B(l) (s) B. B(s)

(l) B. A(l) + B(l) (s) B. B(s) FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 LIUKOISUUDEN IIPPUVUUS LÄMPÖTILASTA 6. 11. 1998 (HJ) A(l) + B(l) µ (l) B == B(s) µ (s) B FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 1. TEOIAA Kyllästetty liuos LIUKOISUUDEN

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

EPÄORGAANINEN KEMIA HARJOITUKSIA. Jaksollinen järjestelmä

EPÄORGAANINEN KEMIA HARJOITUKSIA. Jaksollinen järjestelmä EPÄORGAANINEN KEMIA HARJOITUKSIA Jaksollinen järjestelmä Mitkä alkuaineet ovat oheisesta jaksollisesta järjestelmästä peitetyt A ja B? Mitkä ovat A:n ja B:n muodostamien kloridien stoikiometriat? Jos alkuaineita

Lisätiedot

Prosessi- ja ympäristötekniikan perusta

Prosessi- ja ympäristötekniikan perusta Prosessi- ja ympäristötekniikan perusta Aihe 2: Materiaalitaseet Tavoite Tavoitteena on oppia tasetarkastelun käsite ja oppia tuntemaan, miten materiaalitaseita voidaan hyödyntää kokonaisprosessien sekä

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio.

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio. REAKTIOT JA TASAPAINO, KE5 REAKTIOTASAPAINO Johdantoa: Usein kemialliset reaktiot tapahtuvat vain yhteen suuntaan eli lähtöaineet reagoivat keskenään täydellisesti reaktiotuotteiksi, esimerkiksi palaminen

Lisätiedot

Ravinteet. Mansikan lannoitus ja kastelu -koulutus Raija Kumpula

Ravinteet. Mansikan lannoitus ja kastelu -koulutus Raija Kumpula Ravinteet Mansikan lannoitus ja kastelu -koulutus 1.11.2017 Raija Kumpula Sivu 1 3.11.2017 sisältö muutama asia kasvin veden ja ravinteiden otosta (edellisviikon aiheet) sivu- ja hivenravinteet ravinteisiin

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT 1 a) Vaihtoehto B on oikein. Elektronit sijoittuvat atomiorbitaaleille kasvavan

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön:

Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön: S-445, ysiikka III (Sf) entti 653 Astiassa on, µmol vetyä (H ) ja, µg tyeä ( ) Seoksen lämötila on 373 K ja aine,33 Pa Määritä a) astian tilavuus, b) vedyn ja tyen osaaineet ja c) molekyylien lukumäärä

Lisätiedot

Lkm keski- maksimi Lkm keski- maksimi. Lkm keski- maksimi Lkm keski- maksimi

Lkm keski- maksimi Lkm keski- maksimi. Lkm keski- maksimi Lkm keski- maksimi Firan vesilaitos Lahelan vesilaitos Lämpötila C 12 9,5 14,4 12 7,9 8,5 ph-luku 12 6,6 6,7 12 8,0 8,1 Alkaliteetti mmol/l 12 0,5 0,5 12 1,1 1,1 Happi mg/l 12 4,2 5,3 12 11,5 13,2 Hiilidioksidi mg/l 12 21

Lisätiedot

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7.

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7. HEM-A0 Kemiallinen reaktio Kevät 07 Laskuharjoitus 7.. Metalli-ioni M + muodostaa ligandin L - kanssa : kompleksin ML +, jonka pysyvyysvakio on K ML + =,00. 0 3. Mitkä ovat kompleksitasapainon vapaan metalli-ionin

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

1.1 Homogeeninen kemiallinen tasapaino

1.1 Homogeeninen kemiallinen tasapaino 1.1 Homogeeninen kemiallinen tasapaino 1. a) Mitä tarkoittaa käsite kemiallinen tasapaino? b) Miten kemiallinen tasapaino ilmaistaan reaktioyhtälössä? c) Mistä tekijöistä tasapainossa olevan reaktioseoksen

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio Talousmatematiikan perusteet: Luento 4 Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko

Lisätiedot

Tiukentuneet määräykset

Tiukentuneet määräykset Tiukentuneet määräykset Tiukentuvat ympäristö ja tuoteturvallisuusmääräykset Euroopassa sekä nousevat raaka-ainekustannukset pakottavat Euroopan kemianteollisuutta hakemaan kustannus-säästöjä myös hankintaketjussaan

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

17. Tulenkestävät aineet

17. Tulenkestävät aineet 17. Tulenkestävät aineet Raimo Keskinen Peka Niemi - Tampereen ammattiopisto Alkuaineiden oksidit voidaan jakaa kemiallisen käyttäytymisensä perusteella luonteeltaan happamiin, emäksisiin ja neutraaleihin

Lisätiedot

781611S KIINTEÄN OLOMUODON KEMIA (4 op)

781611S KIINTEÄN OLOMUODON KEMIA (4 op) 781611S KIINTEÄN OLOMUODON KEMIA (4 op) ma ti ke to pe 12.9. klo 12-14 19.9. klo 12-14 26.9. klo 12-14 3.10. klo 12-14 KE351 10.10. klo 12-14 17.10. klo 12-14 24.10. klo 12-14 31.10. klo 12-14 KE351 14.9.

Lisätiedot

L7 Kaasun adsorptio kiinteän aineen pinnalle

L7 Kaasun adsorptio kiinteän aineen pinnalle CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle 1

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY

Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY Pellettien pienpolton haasteet TUOTEPÄÄLLIKKÖ HEIKKI ORAVAINEN VTT EXPERT SERVICES OY Esityksen sisältö Ekopellettien ja puupellettien vertailua polttotekniikan kannalta Koetuloksia ekopellettien poltosta

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot