Tärkeitä tasapainopisteitä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Tärkeitä tasapainopisteitä"

Transkriptio

1 Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen piste Tehtävä 5 vipusääntö Tehtävä 6 rakenteen muodostuminen Tehtävä 7 rauta-sementiitti eutektoidinen systeemi

2 Tärkeitä tasapainopisteitä Eutektinen sula muuttuu kahdeksi kiinteäksi faasiksi L => + Peritektinen sula ja yksi kiinteä faasi muuttuvat yhdeksi kiinteäksi faasiksi L+ => Eutektoidinen yksi kiinteä faasi muuttuu kahdeksi kiinteäksi faasiksi => +

3 Faasialueiden rajat Joillakin faasialueiden rajoilla on vakiintuneet nimet Likvidus sulan alueen alaraja Solidus kiinteän alueen yläraja Solvus Kiinteiden faasialueiden liukoisuusraja Likvidus Solidus Solvus

4 Vipusääntö Tasapainopiirroksesta voidaan laskea eri faasien osuudet vipusäännön avulla c c 2 % 100% c 1 2 c c 1 % 100% c 1 2

5 Tehtävä 1 Hahmottele kahden kiteisen aineen (A ja B) muodostama eutektinen tasapainopiirros, kun: - A:n sulamispiste on 650 C - B:n sulamispiste on 800 C - A:n suurin jähmeä liukoisuus aineeseen B on 10 % ja B:n aineeseen A on 40 % lämpötilan ollessa 500 C - Liukoisuudet ovat huoneenlämpötilassa, A:n aineeseen B 5 % ja B:n aineeseen A 20 % - Alin lämpötila, jossa sulaa esiintyy, on 500 C, koostumuksen ollessa tällöin 45 % A. Merkitse piirrokseen lisäksi eri faasien esiintymisalueet.

6 Tehtävä 1

7 Tehtävä 2 Mikä on seoksen koostumus (atomiprosentteina), kun seoksessa on 33 g kuparia (Cu, atomipaino A Cu 63,55 g/mol) ja 47 g sinkkiä (Zn, atomipaino A Zn 65,93 g/mol). Koostumus voidaan ratkaista kaavalla: C ' 1 n m1 n m1 n m2 *100

8 Tehtävä 2 Jotta seoksen koostumus voitaisiin laskea atomiprosentteina, tulee ensin määrittää molempien seosaineiden ainemäärät. Kuparin ainemäärä: Sinkin ainemäärä: Kun ainemäärät tunnetaan, voidaan käyttää annettua kaavaa atomimassaosuuksien määrittämiseen. n ' m Kupari: Cu CCu 100 n n m Cu m Zn 0,519mol ,1% 0,519mol 0,713mol Sinkki: ' 0,713 C Zn mcu 33g nm Cu 0, 519mol A g Cu 63,55 mol n m Zn mzn 47g 0,713mol A g Zn 65,93 mol mol ,9% 0,519mol 0,713mol V: Seoksen koostumus atomiprosentteina on 42, %Cu ja 57,9.%Zn. Muunnos atomiprosenttien ja massaprosenttien välillä on hyvin yleistä. Yleensä seoksen koostumus ilmoitetaan massaprosentteina, sillä ne on helppo mitata.

9 Tehtävä 3 Ohessa Al-Si - tasapainopiirros. Selvitä kuvan avulla: a) Kuinka suuri on alumiinin maksimiliukoisuus piihin ja piin alumiiniin (vastaus a-%)? B*) Eri faasien määrät koostumuksella 50 p-% Al lämpötilassa 800ºC.

10 Tehtävä 3a Kuvasta nähdään, että: 1. alumiini ei liukene piihin käytännössä lainkaan missään lämpötilassa (tarkastellaan siis tasapainopiirroksen piin puolesta päätä) 2. piin maksimiliukoisuus alumiiniin on 1,5 a-% lämpötilassa 577 C (tarkastellaan siis tasapainopiirroksen alumiinin puolesta päätä) 100 % alumiini 100% pii

11 Tehtävä 3b Koostumuksella 50 p-% Al lämpötilassa 800 C seoksessa esiintyy sulaa (L) ja piivaltaista faasia (). Faasiosuudet voidaan ratkaista vipusäännön avulla. n L : 100% 72,5% m n m : 100% 27,5% mn Pitoisuus voidaan laskea myös: : 100 % - 72,5 % = 27,5 % m n

12 Tehtävä 4 Tina-lyijy -seoksia käyttiin elektroniikka-teollisuudessa komponenttien liittämiseen juottamalla. Pohdi oheisen tasapainopiirroksen avulla, miksi etenkin koostumus Sn 60 p-% / Pb 40 p-% on hyvä kyseisessä kohteessa?

13 Tehtävä 4 Tina-lyijy -seoksia käytetään yleisesti elektroniikkateollisuudessa liitettäessä komponentteja juottamalla Seoksilla on yleisesti ottaen hyvä sähkönjohtavuus Koostumuksella 60/40 Sn-Pb-systeemillä on eutektinen tasapainotila lämpötilassa 183ºC (tarkasti 61,9w-% Sn) Tällöin seos jähmettyy eutektisella reaktiolla sulasta kahdeksi faasiksi ilman puuroaluetta Koska jähmettyminen tapahtuu nopeasti, voidaan automaattisten koneiden tahtiaikaa nostaa suureksi Hitaasti jähmettyvän juotteen kanssa jouduttaisiin odottamaan, ennen kuin kappaletta päästäisiin siirtämään; sula juote saattaisi siirrossa valua eitoivottavaan kohtaan Toinen etu seuraa alhaisesta sulamispisteestä Komponentteihin ei kohdisteta niin suurta lämpökuormaa

14 Tehtävä 5 Tina-lyijy -seos, jossa on 80 p-% tinaa on 100 C:een lämpötilassa a) Mitä faaseja esiintyy? b) Mitkä ovat faasien koostumukset? c) Mitkä ovat faasien massaosuudet? d) Mitkä ovat faasien tilavuusosuudet, kun -faasin tiheys on 11,2 g/cm 3 ja -faasin tiheys on 7,3 g/cm 3?

15

16 Tehtävä 5 a-c. a) Koostumuksella 80% Sn lämpötilassa 100 C seoksessa esiintyy lyijyvaltaista faasia () ja tinavaltaista faasia (). b) Faasien koostumukset saadaan kuvasta: :n koostumus on 5% Sn, 95% Pb :n koostumus on 99% Sn, 1% Pb c) Faasien massaosuudet saadaan vipusäännön avulla: n W 100% 20,2% m n 99 5 W 100 % - 20,2% = 79,8 % m n C C

17 Tehtävä 5 d. Olkoon seoksen kokonaismassa x. Tällöin: m =0,202x, r =11,2 g/cm 3 m =0,798x, r =7,3 g/cm 3 V V m m r r Faasien tilavuusosuudet ovat: 0,202x cm 3 V 11,2 V (%) 100% 100% 14, 2% V V 0,202x 3 0,798x 3 cm cm 11, 2 7,3 0,798x cm 3 V 7,3 V (%) 100% 100% 85,8% V V 0,202x 3 0,798x 3 cm cm 11, 2 7,3 Muunnos massa- ja tilavuusosuuksien välillä joudutaan tekemään esimerkiksi silloin, kun halutaan verrata mikrorakennekuvasta mitattuja faasiosuuksia seoksen koostumustietoihin (jotka yleensä ilmoitetaan massaprosentteina).

18 Tehtävä 6 a) Kuvaile, miten 61,9 p-% Sn sisältävä seos jäähtyy 300 C:sta huoneenlämpötilaan. b) Mitä faaseja esiintyy 300 C, 183 C ja 100 C lämpötiloissa? c) Mitkä ovat esiintyvien faasien massaosuudet eutektisen reaktion jälkeen? Entä huoneenlämpötilassa? Oletetaan, että muutos tapahtuu erittäin hitaasti.

19

20 Tehtävä 6 a-b. a) b) 300 C seos on sulaa. Sulan koostumus on sama kuin seoksen eli 61,9 p-% Sn, loput Pb. Eutektisessa lämpötilassa (183 C) muuttuu sula eutektikumiksi. Eutektikumi koostuu lamellittain vaihtelevista - ja faaseista. -faasin koostumus on 18,3% Sn ja -faasin 97,8% Sn. Seoksen jäähtyessä hitaasti, muuttuvat - ja -faasien koostumukset solvus-rajoja noudattaen. 300 C: yksi faasi, sula L. 183 C (ennen eutektista reaktiota): yksi faasi, L 183 C (eutektisen reaktion jälkeen): kaksi faasia, C: kaksi faasia, +

21

22 Tehtävä 6 c. Faasiosuudet lasketaan (jälleen) vipusäännön avulla: n 97,8 61,9 W 100% 100% 45, 2% m n 97,8 18,3 m 61,9 18,3 W 100% 100% 54,8% m n 97,8 18,3 Vastaavasti faasiosuudet huoneenlämpötilassa: W W h h nh 99 61,9 100% 100% 37,9% m n 99 1 h h mh 61, % 100% 62,1% m n 99 1 h h Tuloksia verrattaessa havaitaan, että -faasin osuus on kasvanut. Syy havaitaan tarkastelemalla -faasin solvus-rajaa: lämpötilan laskiessa lyijyvaltaiseen -faasiin ei enää liukene yhtä paljon tinaa. Tämän seurauksena tina siirtyy tinapitoiseen -faasiin. m n

23 Tehtävä 7 Tehtävää varten kannattaa ensin tutustua kurssin aineistossa rautahiili tasapainopiirrokseen ja siinä esiintyviin termeihin. 0,35 p-% hiiltä sisältävä alieutektoidinen seos on jähmettynyt juuri eutektoidisen lämpötilan alapuolelle. Määritä syntyneiden faasien osuudet vipusääntöä hyväksi käyttäen. a) ferriitin ja sementiitin kokonaismäärät. b) esieutektoidisen ferriitin määrä. c) eutektoidisessa reaktiossa syntyvän perliitin määrä. d) eutektoidisen ferriitin määrä.

24 Tehtävä 7 Ferriitin kokonaismäärä: Sementiitin määrä: W W Fe B 6,7 0,35 0,95 A B 6,7 0,022 A A B 0,35 0,022 6,7 0,022 3 C 0,05 V: Ferriittiä on 95 % ja sementiittiä 5 %.

25 Tehtävä 7 Esieutektoidisessa reaktiossa syntyneen ferriitin määrä saadaan piirtämällä jana eutektoidisen pisteen ja ferriitin maksimiliukoisuuden välille ja käyttämällä vipusääntöä. W prim D C D 0,76 0,35 0,76 0,022 0,56 V: Esieutektoidista ferriittiä on 56 %.

26 Tehtävä 7 Eutektoidisessa reaktiossa syntyvän perliitin (ferriitin ja sementiitin lamellinen seos) määrä saadaan joko edellisen tehtävän tai vipusäännön avulla. W tai W perliitti perliitti 100 W C C D prim 0,35 0, ,56 0,44 0,022 0,44 0,022 V: Eutektoidista perliittiä on 44 %

27 Tehtävä 7 Eutektoidisen ferriitin määrä saadaan vähentämällä ferriitin kokonaismäärästä esieutektoidisen ferriitin määrä: W W W eut prim W W eut W prim 0,95 0,56 0,39 V: Eutektoidisen ferriitin osuus on 39 %.

28 Tehtävä 7 Eutektoidisen ferriitin määrä voidaan laskea myös vipusäännön ja eutektoidisen pisteen avulla: W W W eut perliitti perliitti BD 6,7 0,76 W perliitti 0,889 AB 6,7 0,022 Eutektoidisessa reaktiossa syntyvä perliitti (kohta c) sisältää siis 88,9% ferriittiä. Eutektoidisen ferriitin määrä saadaan, kun tiedetään syntyvät perliitin määrä sekä ferriitin osuus ko. rakenteesta. Sijoittamalla saadaan: W W W 0, 440,889 0,39 eut peltiitti perliitti V: Eutektoidisen ferriitin osuus on 39 %.

Kon Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka

Kon Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Kon-67.3110 Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri ilmiöistä

Lisätiedot

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 A B B Piirroksen alue 1: Sularajan yläpuolella on seos aina täysin sula => yksifaasialue (L). Alueet 2 ja 5: Nämä ovat

Lisätiedot

Dislokaatiot - pikauusinta

Dislokaatiot - pikauusinta Dislokaatiot - pikauusinta Ilman dislokaatioita Kiteen teoreettinen lujuus ~ E/8 Dislokaatiot mahdollistavat deformaation Kaikkien atomisidosten ei tarvitse murtua kerralla Dislokaatio etenee rakeen läpi

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötilakemia Binääriset tasapainopiirrokset To 30.10.2017 klo 8-10 SÄ114 Tavoite Oppia lukemaan ja tulkitsemaan binäärisiä tasapainopiirroksia 1 Sisältö Hieman kertausta - Gibbsin vapaaenergian

Lisätiedot

Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta

Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta Faasipiirrokset, osa 2 Binääristen piirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 4 Tavoite Oppia tulkitsemaan 2-komponenttisysteemien faasipiirroksia 1 Binääriset

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 3

KJR-C2004 materiaalitekniikka. Harjoituskierros 3 KJR-C2004 materiaalitekniikka Harjoituskierros 3 Tänään ohjelmassa 1. Tasapainopiirros 1. Tulkinta 2. Laskut 2. Faasimuutokset 3. Ryhmätyöt 1. Esitehtävän yhteenveto (palautetaan harkassa) 2. Ryhmätehtävä

Lisätiedot

Rauta-hiili tasapainopiirros

Rauta-hiili tasapainopiirros Rauta-hiili tasapainopiirros Teollisen ajan tärkein tasapainopiirros Tasapainon mukainen piirros on Fe-C - piirros, kuitenkin terästen kohdalla Fe- Fe 3 C -piirros on tärkeämpi Fe-Fe 3 C metastabiili tp-piirrosten

Lisätiedot

Binäärinen tasapaino, ei täyttä liukoisuutta

Binäärinen tasapaino, ei täyttä liukoisuutta Tasapainopiirrokset Binäärinen tasapaino, ei täyttä liukoisuutta Binäärinen tasapaino Kiinteässä tilassa koostumuksesta riippuen kahta faasia Eutektisella koostumuksella ei puuroaluetta Faasiosuudet muuttuvat

Lisätiedot

Alieutektoidisen teräksen normalisointi

Alieutektoidisen teräksen normalisointi Alieutektoidisen teräksen normalisointi Hiili (C) ja rauta (Fe) Hiili ja rauta voivat muodostaa yhdessä monia erilaisia mikrorakenteita, olipa kyseessä sitten teräs (hiiltä maksimissaan 2.1p.% C, eli hiiltä

Lisätiedot

Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot:

Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot: Tina-vismutti juotosmetallin binäärinen seos Tekijä: Lassi Vuorela Yhteystiedot: lassi.vuorela@aalto.fi Juottaminen Juottamisessa on tarkoitus liittää kaksi materiaalia tai osaa niin, että sähkövirta kykenee

Lisätiedot

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa: Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötilakemia Useamman komponentin tasapainopiirrokset To 7.12.2017 klo 8-10 SÄ114 Tavoite Oppia lukemaan ja tulkitsemaan ternäärisiä tasapainopiirroksia 1 Sisältö Ternääriset tasapainopiirrokset

Lisätiedot

Tina-vismutti seos juotosmetallina

Tina-vismutti seos juotosmetallina Tina-vismutti seos juotosmetallina Miikka Martikainen Juottaminen Juottaminen on metallien liitosmenetelmä, jossa kappaleet liitetään toisiinsa sulattamalla niiden väliin juotosainetta, eli juotetta. Juotteena

Lisätiedot

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10 Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko 25.10 klo 8-10 Jokaisesta oikein ratkaistusta tehtävästä voi saada yhden lisäpisteen. Tehtävä, joilla voi korottaa kotitehtävän

Lisätiedot

Mak Materiaalitieteen perusteet

Mak Materiaalitieteen perusteet Mak-45.310 tentit Mak-45.310 Materiaalitieteen perusteet 1. välikoe 24.10.2000 1. Vertaile ionisidokseen ja metalliseen sidokseen perustuvien materiaalien a) sähkönjohtavuutta b) lämmönjohtavuutta c) diffuusiota

Lisätiedot

Metallurgian perusteita

Metallurgian perusteita Metallurgian perusteita Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Korkean laadun saavuttaminen edellyttää sekä rauta että teräsvalujen tuotannossa tiukkaa prosessikuria

Lisätiedot

Luento 2. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Luento 2. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Luento 2 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Rauta-hiili -tasapainopiirros Honeycombe & Bhadeshia s. 30-41. Uudistettu Miekk oj s. 268-278. Rauta (Fe)

Lisätiedot

Faasipiirrokset, osa 3 Ternääristen ja monikomponenttipiirrosten tulkinta

Faasipiirrokset, osa 3 Ternääristen ja monikomponenttipiirrosten tulkinta Faasipiirrokset, osa 3 Ternääristen ja monikomponenttipiirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 5 Tavoite Oppia tulkitsemaan 3-komponenttisysteemien faasipiirroksia

Lisätiedot

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Vapaa energia ja tasapainopiirros Allotropia - Metalli omaksuu eri lämpötiloissa eri kidemuotoja. - Faasien vapaat

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Aikataulu Pe 2.9.2005 Pe 9.9.2005 Pe 16.9.2005 Pe 23.9.2005 Pe 10.9.2005 Pe 8.10.2005 Valurauta Valurauta ja teräs Teräs Teräs ja alumiini Magnesium ja titaani Kupari,

Lisätiedot

Mak Sovellettu materiaalitiede

Mak Sovellettu materiaalitiede .106 tentit Tentti 21.5.1997 1. Rekristallisaatio. 2. a) Mitkä ovat syyt metalliseosten jähmettymisen yhteydessä tapahtuvalle lakimääräiselle alijäähtymiselle? b) Miten lakimääräinen alijäähtyminen vaikuttaa

Lisätiedot

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin.

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin. KERTAUSKOE, KE1, SYKSY 2013, VIE Tehtävä 1. Kirjoita kemiallisia kaavoja ja olomuodon symboleja käyttäen seuraavat olomuodon muutokset a) etanolin CH 3 CH 2 OH höyrystyminen b) salmiakin NH 4 Cl sublimoituminen

Lisätiedot

Tina-vismutti -juotosmetallin binäärinen seos

Tina-vismutti -juotosmetallin binäärinen seos Tina-vismutti -juotosmetallin binäärinen seos Tekijä: Riku Varje Yhteystiedot: riku.varje@aalto.fi Metallien liittämiseen on olemassa useita erilaisia keinoja. Eräs keino on esimerkiksi erilaisten mekaanisten

Lisätiedot

Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos

Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Kon-67.3110 Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri

Lisätiedot

Faasimuutokset ja lämpökäsittelyt

Faasimuutokset ja lämpökäsittelyt Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja

Lisätiedot

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä.

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. FAASIDIAGRAMMIT Määritelmiä Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. Esimerkkejä: (a) suolaliuos (P=1),

Lisätiedot

Sulamisen ja jähmettymisen tarkastelu faasipiirroksia hyödyntäen

Sulamisen ja jähmettymisen tarkastelu faasipiirroksia hyödyntäen Sulamisen ja jähmettymisen tarkastelu faasipiirroksia hyödyntäen Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 6 Tavoite Oppia muutamien esimerkkien avulla tarkastelemaan monikomponenttisysteemien

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia 1.11.217 Korkealämpötilakemia Standarditilat Ti 1.11.217 klo 8-1 SÄ11 Tavoite Tutustua standarditiloihin liuosten termodynaamisessa mallinnuksessa Miksi? Millaisia? Miten huomioidaan tasapainotarkasteluissa?

Lisätiedot

Valurauta ja valuteräs

Valurauta ja valuteräs Valurauta ja valuteräs Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Valurauta ja valuteräs ovat raudan (Fe), hiilen (C), piin (Si) ja mangaanin (Mn) sekä muiden seosaineiden

Lisätiedot

KOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi

KOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi KOVAJUOTTEET 2009 fosforikupari hopea messinki alumiini juoksutteet Somotec Oy www.somotec.fi SISÄLLYSLUETTELO FOSFORIKUPARIJUOTTEET Phospraz AG 20 Ag 2% (EN 1044: CP105 ). 3 Phospraz AG 50 Ag 5% (EN 1044:

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Esitiedot. Valuraudat. Esitiedot. Esitiedot

Esitiedot. Valuraudat. Esitiedot. Esitiedot Esitiedot Valuraudat juha.nykanen@tut.fi Mistä tulevat nimitykset valkoinen valurauta ja harmaa valurauta? Miten ja miksi niiden ominaisuudet eroavat toisistaan? Miksi sementiitti on kovaa ja haurasta?

Lisätiedot

Juottaminen J O H D A N T O... D 1. 2. J u o k s u t t e e n v a l i n t a t a u l u k k o... D 1. 3

Juottaminen J O H D A N T O... D 1. 2. J u o k s u t t e e n v a l i n t a t a u l u k k o... D 1. 3 J O H D A N T O.......................................... D 1. 2 J u o k s u t t e e n v a l i n t a t a u l u k k o............... D 1. 3 I M P O W E L D, C H E M E T, F E L D E R j a S T E L L A - j

Lisätiedot

Terästen lämpökäsittelyn perusteita

Terästen lämpökäsittelyn perusteita Terästen lämpökäsittelyn perusteita Austeniitin nopea jäähtyminen Tasapainopiirroksen mukaiset faasimuutokset edellyttävät hiilen diffuusiota Austeniitin hajaantuminen nopeasti = ei tasapainon mukaisesti

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

Reaktiosarjat

Reaktiosarjat Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine

Lisätiedot

Luento 9 Kemiallinen tasapaino CHEM-A1250

Luento 9 Kemiallinen tasapaino CHEM-A1250 Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

5 LIUOKSEN PITOISUUS Lisätehtävät

5 LIUOKSEN PITOISUUS Lisätehtävät LIUOKSEN PITOISUUS Lisätehtävät Esimerkki 1. a) 100 ml:ssa suolaista merivettä on keskimäärin 2,7 g NaCl:a. Mikä on meriveden NaCl-pitoisuus ilmoitettuna molaarisuutena? b) Suolaisen meriveden MgCl 2 -pitoisuus

Lisätiedot

Ultralujien terästen hitsausmetallurgia

Ultralujien terästen hitsausmetallurgia 1 Ultralujien terästen hitsausmetallurgia CASR-Steelpolis -seminaari Oulun yliopisto 16.5.2012 Jouko Leinonen Nostureita. (Rautaruukki) 2 Puutavarapankko. (Rautaruukki) 3 4 Teräksen olomuodot (faasit),

Lisätiedot

Lasku- ja huolimattomuusvirheet - ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet - ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 DI-kemian valintakoe 31.5. Malliratkaisut Lasku- ja huolimattomuusvirheet - ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim.

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

(l) B. A(l) + B(l) (s) B. B(s)

(l) B. A(l) + B(l) (s) B. B(s) FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 LIUKOISUUDEN IIPPUVUUS LÄMPÖTILASTA 6. 11. 1998 (HJ) A(l) + B(l) µ (l) B == B(s) µ (s) B FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 1. TEOIAA Kyllästetty liuos LIUKOISUUDEN

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017

Materiaalifysiikan perusteet P Ratkaisut 1, Kevät 2017 Materiaalifysiikan perusteet 51104P Ratkaisut 1, Kevät 017 1. Kiderakenteen alkeiskopin hahmottamiseksi pyritään löytämään kuvitteellisesta rakenteesta sen pienin toistuva yksikkö (=kanta). Kunkin toistuvan

Lisätiedot

a) Puhdas aine ja seos b) Vahva happo Syövyttävä happo c) Emäs Emäksinen vesiliuos d) Amorfinen aine Kiteisen aineen

a) Puhdas aine ja seos b) Vahva happo Syövyttävä happo c) Emäs Emäksinen vesiliuos d) Amorfinen aine Kiteisen aineen 1. a) Puhdas aine ja seos Puhdas aine on joko alkuaine tai kemiallinen yhdiste, esim. O2, H2O. Useimmat aineet, joiden kanssa olemme tekemisissä, ovat seoksia. Mm. vesijohtovesi on liuos, ilma taas kaasuseos

Lisätiedot

17VV VV Veden lämpötila 14,2 12,7 14,2 13,9 C Esikäsittely, suodatus (0,45 µm) ok ok ok ok L. ph 7,1 6,9 7,1 7,1 RA2000¹ L

17VV VV Veden lämpötila 14,2 12,7 14,2 13,9 C Esikäsittely, suodatus (0,45 µm) ok ok ok ok L. ph 7,1 6,9 7,1 7,1 RA2000¹ L 1/5 Boliden Kevitsa Mining Oy Kevitsantie 730 99670 PETKULA Tutkimuksen nimi: Kevitsan vesistötarkkailu 2017, elokuu Näytteenottopvm: 22.8.2017 Näyte saapui: 23.8.2017 Näytteenottaja: Eerikki Tervo Analysointi

Lisätiedot

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaation jännitystila Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta

Lisätiedot

Pehmeä magneettiset materiaalit

Pehmeä magneettiset materiaalit Pehmeä magneettiset materiaalit Timo Santa-Nokki Pehmeä magneettiset materiaalit Johdanto Mittaukset Materiaalit Rauta-pii seokset Rauta-nikkeli seokset Rauta-koboltti seokset Amorfiset materiaalit Nanomateriaalit

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2012 Teema 1 - Luento 1

Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2012 Teema 1 - Luento 1 Kellogg-diagrammit Ilmiömallinnus rosessimetallurgiassa Syksy Teema - Luento Eetu-Pekka Heikkinen, Tavoite Oia tulkitsemaan ja laatimaan ns. Kellogg-diagrammeja eli vallitsevuusaluekaavioita Eetu-Pekka

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Firan vesilaitos. Laitosanalyysit. Lkm keski- maksimi Lkm keski- maksimi

Firan vesilaitos. Laitosanalyysit. Lkm keski- maksimi Lkm keski- maksimi Laitosanalyysit Firan vesilaitos Lämpötila C 3 8,3 8,4 4 8,4 9 ph-luku 3 6,5 6,5 4 7,9 8,1 Alkaliteetti mmol/l 3 0,53 0,59 4 1 1,1 Happi 3 2,8 4 4 11,4 11,7 Hiilidioksidi 3 23,7 25 4 1 1,9 Rauta Fe 3

Lisätiedot

Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000

Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000 Deformaatio Kertaus Deformaatio Kiteen teoreettinen lujuus: σ E/8 Todelliset lujuudet lähempänä σ E/1000 3 Dislokaatiot Mekanismi, jossa deformaatio mahdollista ilman että kaikki atomisidokset murtuvat

Lisätiedot

ja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi.

ja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi. Harjoituksia yhtälöryhmistä ja matriiseista 1. Ratkaise yhtälöpari (F 1 ja F 2 ovat tuntemattomia) cos( ) F 1 + cos( ) F 2 = 0 sin( ) F 1 + sin( ) F 2 = -1730, kun = -50 ja = -145. 2. Ratkaise yhtälöpari

Lisätiedot

Standarditilat. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 2 - Luento 2. Tutustua standarditiloihin

Standarditilat. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 2 - Luento 2. Tutustua standarditiloihin Standarditilat Ilmiömallinnus prosessimetallurgiassa Syksy 216 Teema 2 - Luento 2 Tavoite Tutustua standarditiloihin Miksi käytössä? Millaisia käytössä? Miten huomioitava tasapainotarkasteluissa? 1 Miten

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KEMIALLISIIN REAKTIOIHIN PERUSTUVA POLTTOAINEEN PALAMINEN Voimalaitoksessa käytetään polttoaineena

Lisätiedot

Kokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu

Kokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Lkm keski- maksimi Lkm keski- maksimi. Lkm keski- maksimi Lkm keski- maksimi

Lkm keski- maksimi Lkm keski- maksimi. Lkm keski- maksimi Lkm keski- maksimi Firan vesilaitos Lahelan vesilaitos Lämpötila C 12 9,5 14,4 12 7,9 8,5 ph-luku 12 6,6 6,7 12 8,0 8,1 Alkaliteetti mmol/l 12 0,5 0,5 12 1,1 1,1 Happi mg/l 12 4,2 5,3 12 11,5 13,2 Hiilidioksidi mg/l 12 21

Lisätiedot

Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 1

Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 1 - Luento 1 Kellogg-diagrammit Ilmiömallinnus rosessimetallurgiassa Syksy 6 Teema - Luento Tavoite Oia tulkitsemaan ja laatimaan ns. Kellogg-diagrammeja eli vallitsevuusaluekaavioita Aluksi tutustutaan yleisesti tasaainoiirroksiin

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

mak37135 MAK-37.135 Materiaalien ja prosessien termodynaamis-kineettiset perusteet Tentti 22.2.2001 Vastaa 7:ään kysymykseen 1. Sinun olisi arvioitava hiilettyykö teräs, jonka hiilipitoisuus on 0.35% vai

Lisätiedot

Valuraudat.

Valuraudat. Valuraudat juha.nykanen@tut.fi Esitiedot Miten ja miksi jäähtymisnopeus ja pii pitoisuus vaikuttaa valuraudan rakenteeseen? Mikä on piin tärkein vaikutus? Miksi nopea jäähdytys suosii sementiitin syntymistä?

Lisätiedot

Puhtaat aineet ja seokset

Puhtaat aineet ja seokset Puhtaat aineet ja seokset KEMIAA KAIKKIALLA, KE1 Määritelmä: Puhdas aine sisältää vain yhtä alkuainetta tai yhdistettä. Esimerkiksi rautatanko sisältää vain Fe-atomeita ja ruokasuola vain NaCl-ioniyhdistettä

Lisätiedot

Sähkökaapelien palomallinnuksen uusia menetelmiä ja tuloksia

Sähkökaapelien palomallinnuksen uusia menetelmiä ja tuloksia Sähkökaapelien palomallinnuksen uusia menetelmiä ja tuloksia Anna Matala, Simo Hostikka, Johan Mangs VTT Palotutkimuksen päivät 27.-28.8.2013 2 Motivaatio 3 Pyrolyysimallinnuksen perusteet Pyrolyysimallinnus

Lisätiedot

Tulosten analysointi. Liite 1. Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma

Tulosten analysointi. Liite 1. Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Liite 1 Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Tulosten analysointi Liite loppuraporttiin Jani Isokääntä 9.4.2015 Sisällys 1.Tutkimustulosten

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT 1 a) Vaihtoehto B on oikein. Elektronit sijoittuvat atomiorbitaaleille kasvavan

Lisätiedot

Jotain valimistusmenetelmiä

Jotain valimistusmenetelmiä Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle. 1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA.

SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1 HITSAVONIA PROJEKTI Teemapäivä 13.12.2005. DI Seppo Vartiainen Savonia-amk/tekniikka/Kuopio SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1. Hitsiaine

Lisätiedot

1 Tehtävät. 2 Teoria. rauta(ii)ioneiksi ja rauta(ii)ionien hapettaminen kaliumpermanganaattiliuoksella.

1 Tehtävät. 2 Teoria. rauta(ii)ioneiksi ja rauta(ii)ionien hapettaminen kaliumpermanganaattiliuoksella. 1 Tehtävät Edellisellä työkerralla oli valmistettu rauta(ii)oksalaattia epäorgaanisen synteesin avulla. Tätä sakkaa tarkasteltiin seuraavalla kerralla. Tällä työ kerralla ensin valmistettiin kaliumpermanganaatti-

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Kuparimalmi Kuparia esiintyy sulfidi- ja oksidimalmeissa. Pitoisuudet ovat tyypillisesti alhaisia (usein alle 1%). Louhittu malmi murskataan ja jauhetaan lietteeksi. Sulfidimalmista

Lisätiedot

Fe - Nb - C ja hienoraeteräkset

Fe - Nb - C ja hienoraeteräkset Fe - Nb - C ja hienoraeteräkset 0.10 %Nb 0.08 NbC:n liukoisuus austeniitissa γ + NbC 1200 C 0.06 0.04 1100 C 0.02 0 γ 0 0.05 0.1 0.15 0.2 %C Tyypillinen C - Nb -yhdistelmä NbC alkaa erkautua noin 1000

Lisätiedot

2. Reaktioyhtälö 3) CH 3 CH 2 COCH 3 + O 2 CO 2 + H 2 O

2. Reaktioyhtälö 3) CH 3 CH 2 COCH 3 + O 2 CO 2 + H 2 O 2. Reaktioyhtälö 11. a) 1) CH 3 CH 2 OH + O 2 CO 2 + H 2 O Tasapainotetaan CH 3 CH 2 OH + O 2 CO 2 + H 2 O C, kpl 1+1 1 kerroin 2 CO 2 :lle CH 3 CH 2 OH + O 2 2 CO 2 + H 2 O H, kpl 3+2+1 2 kerroin 3 H

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

Alumiinin ominaisuuksia

Alumiinin ominaisuuksia Alumiini Alumiini Maaperän yleisin metalli Kuuluu kevytmetalleihin Teräksen jälkeen käytetyin metalli Käytetty n. 110 v. Myrkytön Epämagneettinen Kipinöimätön 1 Alumiinin ominaisuuksia Tiheys, ~ teräs/3

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015 Lukion kemia 3, Reaktiot ja energia Leena Piiroinen Luento 2 2015 Reaktioyhtälöön liittyviä laskuja 1. Reaktioyhtälön kertoimet ja tuotteiden määrä 2. Lähtöaineiden riittävyys 3. Reaktiosarjat 4. Seoslaskut

Lisätiedot

SUMUINEN AAMU METALLINKIERRÄTYSLAITOKSELLA

SUMUINEN AAMU METALLINKIERRÄTYSLAITOKSELLA sivu 1/6 KOHDERYHMÄ: Työ on suunniteltu lukion kurssille KE4, jolla käsitellään teollisuuden tärkeitä raaka-aineita sekä hapetus-pelkitysreaktioita. Työtä voidaan käyttää myös yläkoululaisille, kunhan

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötilakemia Gibbsin faasisääntö, kuvaajien laadinta sekä1-komponenttipiirrokset To 23.11.2017 klo 8-10 SÄ114 Tavoite Tutustua faasipiirrosten kokeelliseen ja laskennalliseen laadintaan ja siten

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 Keskiviikko 13.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2017) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen

Lisätiedot

Ismo Aaltonen, Jaakko Lajunen Päätös 25.04.2014 108/5L, Tarjouspyyntö 20.5.2014 126/5L VTT Expert Services Oy, Tilausvahvistus 10.6.

Ismo Aaltonen, Jaakko Lajunen Päätös 25.04.2014 108/5L, Tarjouspyyntö 20.5.2014 126/5L VTT Expert Services Oy, Tilausvahvistus 10.6. 1 (17) Tilaaja Tilaus Yhteyshenkilö Onnettomuustutkintakeskus Ratapihantie 9 00520 HELSINKI Ismo Aaltonen, Jaakko Lajunen Päätös 25.04.2014 108/5L, Tarjouspyyntö 20.5.2014 126/5L VTT Expert Services Oy,

Lisätiedot

Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia CHEM-A1250

Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia CHEM-A1250 Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia 9.2.2017 CHEM-A1250 Tasapaino ja tasapainovakio Kaksisuuntainen reaktio a A+ b B p P + r R Eteenpäin menevän reaktion nopeus: rr 1

Lisätiedot