Kvanttifysiikka k-2006
|
|
- Tommi Haapasalo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kvanttifysiikka k-2006 Ilkka Tittonen prof. Optiikka ja Molekyylimateriaalit Micronova Jukka Tulkki prof. Laskennallisen tekniikan laboratorio
2 KVANTTIFYSIIKAN TUTKIMUSALA: Aineen atomirakenne Elektronitilat Aineen sähköiset ja optiset ominaisuudet Sähkömagneettisen kentän kvantittuminen
3 Täydellinen klassinen fysiikka 1900 Maailmankaikkeus käyttäytyy koneen tavoin. Kokonaisuus jaettavissa rajatta osiin. Liike kuvattavissa syyn ja seurauksen tarkkana lakina rajaton ennustettavuus eli determinismi. Valon ominaisuudet täydellisesti kuvattavissa Maxwellin yhtälöiden avulla. Energia on joko liike-energiaa tai kenttäenergiaa. Tutkittavan objektin rakenne ja liiketila on mitattavissa rajattomalla tarkkuudella häiritsemättä systeemiä. G. Galileo I Newton ( ) J. C. Maxwell ( )
4 Esimerkki atomirakenteesta: nanokiteet AFM-kuva InP saarekkeista GaAs kiteen pinnalla. TKK, Optoelektroniikan laboratorio InP saarekkeen atomitasot TEM-kuva Lundin yliopisto
5 Kide koostuu järjestäytyneistä atomeista Suurennettu TEM kuva
6 Sinkkivälkehila
7 Elektronivyöt ja fotonit Koe Teoria
8 Puolijohdeteknologia Aktiivinen materiaali 100 nm InAs kvanttipyramideja InGaAs/GaAs VECSEL Saito et al., Appl. Phys. Lett. 71, 590 (1997) 3 nm
9 Kentän ja materiaalin välinen vuorovaikutus elektronien sironta tuotti silti ihmeellisiä kuvioita kiinteästä hilasta kiihtyvässä liikkeessä oleva varaus säteilee energiaa
10 Kvanttifysiikan ilmiömaailma Sähkömagneettisen kentän kvantittuminen Atomien viivaspektrit, atomien ja molekyylien elektronirakenne, Valosähköinen ilmiö Comptonin sironta Elektronin de Broglie aallonpituus Braggin diffraktio
11 Nanosta makroon elektronirakenteen tuntemus kertoo makroskooppisista materiaaliominaisuuksista, sähkön johtavuus, optiset ja mekaaniset ominaisuudet mittaustapahtumakin ymmärretään paremmin kvanttifysiikan avulla laitteita: transistorit, laserit, nanotekniikan mahdollisuudet
12 Wilhelm Röntgen ( ) Saksalainen fyysikko Ensimmäinen fysiikan Nobel, 1901, röntgensäteilystä Löysi röntgen-säteilyn puolivahingossa Röntgen itse oli melko pihalla löydöksensä ominaisuuksista ja nimesi sen X-säteiksi
13 Röntgensäteilyn havaitseminen Hehkukatodilta irtoavat elektronit kiihdytetään muutaman kilovoltin jännite-eron yli. Osuessaan anodiin ne hidastuvat nopeasti ja emittoivat SM-säteilyä
14 Röntgensäteilyn intensiteettijakauma Varatun hiukkasen hidastuessaan emittoimaa säteilyä kutsutaan jarrutussäteilyksi. Jarrutussäteilyn intensiteettijakauma on jatkuva. Röntgenputkesta tulevassa säteilyssä esiintyy myös voimakkaita karakteristisia viivoja
15 K α -röntgenspektrit 1/2 Röntgenputkessa muodostuu fotoneita joiden energia on suurempi kuin tutkittavan aineen K-ionisaatioenergia. Röntgenfotoni irrottaa K-kuorelta elektronin, jolloin jäljelle jää tyhjä 1s-elektronitila.
16 K α -röntgenspektrit 2/2 Muodostunut ioni pyrkii alimpaan energiatilaan, joten K-kuorelle muodostuneen aukon täyttää jokin ylemmän kuoren elektroni. Jos aukon täyttävä elektroni tulee M-kuorelta emittoituu K β säteilyä.
17 Mustan kappaleen säteily mittaustulos tunnettiin jo 1899 (Lummer, Pringsheim) Ulkoa aukkoon osuva valo absorboituu ontelon sisäseiniin. Ontelossa oleva SM-kenttä on tasapainossa seinämän kanssa.
18 Max Planck ( ) Planck tutki mustan kappaleen säteilyä ja päätyi 1990 malliin, jossa valo emittoituu energiakvantteina, jotka toteuttavat yhtälön E = hf Fysiikan Nobel 1918: Energiakvanttien löytäminen Saksalainen teoreettinen fyysikko säteilyn energiajakaumalla ja kaviteetin seinämän atomien energian välillä jokin yhteys Vaikka Planckin säteilymalli selitti mustan kappaleen säteilyn hän ei itse luottanut teoriaansa.
19 Planckin fotonihypoteesi 1/3 Seinämän atomit ovat oskilaattoreita, joiden energiat ovat kvantittuneet : E = E + nhf n = n 0 0,1,2,3,4 h on Planckin vakio ja E ns nollapiste - energia. 0 Tämä oli selkeässä ristiriidassa klassisen sähkömagnetismin kanssa (energiatiheys jatkuva funktio) Boltzmannin jakauman mukaan oskillaattori on energiatasolla todennäköisyydellä : Pn exp ( En/ kt) / = exp ( En/ kt) n n
20
21
22
23
24
25
26
27 Wienin siirtymälaki Stefan-Boltzmannin laki
28 Planckin fotonihypoteesi 2/3 Oskillaattorin keskimääräinen energia on E = P E = E exp E / kt / exp E / kt = n n n ( ) ( ) / n n n n n hf kt hf e 1 Planck oletti, että nämä ovat myös SM- kentän keskimääräiset moodienergiat!! SM- moodin energiakvantti = fotoni Energia Liikemäärä Aallonpituus E p = hf = E/ c λ = c/ f = ch/ E = h/ p
29 Planckin fotonihypoteesi 3/3 Energiatiheys = SM-moodien tiheys E( f) = max 3 8π hf 1 c 3 hf / kt e 1 Wienin siirtymälaki λ T = hc/ k Stefan - Boltzmannin laki: E E tot = at 4 Plackin vakio : 34 h = 6, Js Klassinen teoria (Raylight - Jeans) 3 8π hf E( f) = kt 3 c (keskimääräinen moodienergia = kt )
30 Big Bang ja 2,7 K fotonisäteily 1965 A. Penzias ja R. Wilson havaitsivat radioteleskoopilla isotrooppisen 7,35 cm mikroaaltosäteilyn. Säteilyn intensiteettijakauma vastaa 2,7 K mustankappaleen säteilyä. Säteily voidaan selittää avaruuden adiabaattisella laajenemisella alkuräjähdyksen jälkeen.
31 Fotoelektronien havaitseminen P. Lenard havaitsi fotonien metallin pinnalta iroittamat elektronit 1900 Sai fysiikan Nobelin 1905 Valonlähteestä L tulevat fotonit iroittavat elektroneita katodilta C. Elektronit kulkevat anodilla olevan reiän läpi keräyslevylle α. Kun magneettikenttä kytketään päälle elektronivirta ohjautuu levylle β. Kokeella voidaan määrätä varauksen merkki ja q/ m suhde.
32 Valosähköinen ilmiö 1/4 Tyhjössä olevaa metallipintaa valaistaan valolla, jonka aallonpituutta ja intensiteettiä voidaan säätää. Metallista irronneet elektronit havaitaan keräilylevyllä C. Elektroneja voidaan hidastaa säädettävällä sähkökentällä. Fotonit läpäisevät lasiseinämän ja irrottavat metallilevyltä elektroneita Kullekin aallonpituudelle määrätään elektronivirran estojännite V 0.
33 Valosähköinen ilmiö 2/4 Valon taajuuden ollessa alempi kuin kynnystaajuus ei fotoelektronivirtaa saada suurellakaan valoteholla Klassisen fysiikka ei toimi: Olkoon valon intensiteetti 1W/m 2, aallonpituus 400 nm. Yhden elektronin irrottamiseen tarvitaan 2,22 ev. Kalium: 2,22 ev=teho pinta-ala aika Aika = 2, 22 ev/ 1 Wm 10 m = 11s ( Atomin säde on ) m. π ( ) Pinnalle tulee 1W/ 400nm h/c = fotonia/sm!!
34 Valosähköinen ilmiö 3/4 Elektronitilat metallissa Fermienergia on φ 0 verran pienempi kuin ulkopuolella olevan tyhjön potentiaalienergia
35 Valosähköinen ilmiö 4/4 Energiansäilymislaki h hf = φ0 + ev0 V0 = f φ0/ e e Suoran kulmakerroin on h/ e Albert Einstein selitti valosähköisen ilmiön 1905 ja sai siitä fysiikan nobelin 1921
36 Elektronin liike-energia suhteellisuusteoriassa Maxwellin yhtälöistä saadaan elektromagneettiselle tasoaallolle Oletetaan elektroni paikalleen aluksi tarkasteltavassa koordinaatistossa E k on alussa nolla ja sironnan jälkeen suhteellisuusteoreettisesti pitäisi olla Jossain on ristiriita!!!! mutta ei selvästi ole (vaikka kuinka pyörittäisi näitä yhtälöitä)
37 Kokeellinen tulos: aallonpituuden funktiona sirontaintensiteetti riippuu kulmasta ja vielä siten, että ilmestyy uusi aallonpituus/ taajuuskomponentti pitemmillä aallonpituuksilla uusi kulmasta riippuva komponentti
38 Comptonin sironta 1/4 Comptonin sironnalla tarkoitetaan hyvin lyhyen aallonpituuden omaavan SM-säteilyn sirontaa heikosti sidotuista elektroneista. Compton sironta on yhä merkittävä materiaalien elektronirakenteen tutkimusmenetelmä. A.H. Compton havaitsi 1922 röntgensäteiden epäelastisen sironnan ja selitti sen aallonpituuden muutoksen Planckin fotonimallin ja energian ja liikemäärän säilymislakien avulla. Sai tästä ansiosta fysiikan Nobelin 1927.
39 Comptonin sironta 2/4 Energian säilyminen: e e e E + mc = E+ c mc + p Liikemäärän säilyminen: p= p + p e Sironneen fotonin suuntakulma voidaan laskea säilymislaeista ilman SM-kentän ja elektronin dynamiikan yksityiskohtia.
40 ( 2 E+ m ) ec E Comptonin sironta 3/4 Liikemäärän säilymislaista : pe = p + p 2pp = E + E 2EE cos 2 c Energian säilymislaista : 2 ( θ ) pe = mc 2( ) 2 2 e = E + E + E E mc 2 e EE c c Yhdistämällä ja sijoittamalla E = hc / λ ( hmc)( 1 cos ) ( 1 cos ) λ λ = θ = λ θ e C missä λ C = hmc= Comptonin aallonpituus e
41 Compton sironta 4/4 Comptonin kaava = C ( 1 cos ) λ λ λ θ Huomaa myös elastisen sironnan maksimi aallonpituudella λ = λ (b)-(d) Sironneen säteilyn intensiteetti aallonpituuden funktiona
42 Varausten välinen vuorovaikutus Myös varattujen hiukkasten välinen vuorovaikutus eli Coulombin laki toteutuu fotonien vaihdon kautta. Elektroni 1 emittoi fotonin ja antaa sille osan energiastaan ja liikemäärästään. Elektroni 2 absorboi fotonin jolloin sen energia ja liikemäärä muuttuvat.
43 Sähkömagneettinen säteilyspektri Einsteinin teorian mukaan kaikki SM-säteily koostui energiakvanteista, joiden energia saadaan yhtälöstä E = hf. Korkeataajuisen säteilyn fotonien energia on suuri ja siksi niiden terminen virittyminen on vähäistä mustan kappaleen säteilyssä
44 Absorptio- ja emissiospektrit Siirtymät stationääristen tilojen välillä : Absorptio: A+ hf A Emissio: * * A A+ hf Niels Bohr esitti idean stationäärisistä tiloista ja selitti atomin energiatilat osin klassisella mallilla Fysiikan Nobel 1922
45 Jatkuvan spektrin muodostuminen Hiukkasella on sen näkemän potentiaalienergia-kentän ominaisuuksista riippuen viiva ja jatkumo spektrit. Spektri = hiukkasen stationääristen energiatilojen jakauma Viivaspektri muodostuu elektronin siirtyessä kahden sidotun tilan (E<0) välillä.
46 Optinen spektroskopia J. von Fraunhofer ( ) tutki auringon spektriä ja havaitsi siinä satoja voimakkaita viivoja.
47 Atomien viivaspektrit Vetyatomin fotoemissiospektrin muodostuminen Balmer sarja havaittiin jo v. 1885
48 Rekyyli-ilmiö fotoemissiossa Liikemäärän säilyminen: p = p = hν c atomi fotoni Energian säilyminen: 2 patomi Ei = Ef + + hν 2M hν Ei Ef = hν Mc hν = E E i f ( E ) i Ef 2Mc 2 2 Emittoituvan fotonin energia on pienempi kuin stationääristen tilojen energiaero
49 Franckin ja Hertzin koe 1/2 J. Franckin ja G. Hertzin kokeessa (1914) elektroneja irtoaa hehkukatodilta elohopeakaasuun. Elektronit kiihtyvät sähkökentän vaikutuksesta ja törmäävät satunnaisesti elohopea-atomeihin. epäelastiset törmäykset
50 Frankin ja Hertzin koe 2/2 Anodivirta kasvaa V:n funktiona kunnes elektroneilla on energiaa elohopea-atomin virittämiseen. Viritykseen osallistuneille elektroneilla ei ole energiaa estojännitealueen ylittämiseen joten anodivirta pienenee. Anodivirta kiihdytysjännitteen V funktiona. Kiihdytysjännitteen kasvaessa anodivirta kasvaa jälleen. Maksimeja havaitaan ennen kuin elektroni kykenee virittämään yhden tai useamman elohopeaatomin. Atomin virittämiseen tarvitaan 4,9 ev energiaa.
51 Elektronien diffraktio kiteessä a Sironneiden elektronien (a) interferenssikuvio elektronisuihkun (energia kev, G. P. Thomson) kulkiessa monikiteisen metallikalvon läpi. Vastaavan aallonpituuden omaavilla röntgensäteillä (b)saatiin samanlainen kuvio (Max Laue). b
52 De Broglie aallonpituus De Broglie ehdotti aaltoluonteen selitykseksi elektronilla olevan aallonpituus h λ = p Tämä on sama aallonpituuden ja liikemäärän suhde, jonka Planck esitti fotonille!
53 Elektronin kiihdyttäminen jännitteen V:n yli Elektronin liike-energia, kun se on kiihdytetty jännite-eron V yli Jos kiihdytysjännite on esim. TV:n 10 kv, saadaan aallonpituudeksi noin m.
54 Hiukkasten paikka vs liikemäärä de Broglie-aallonpituus kuvaa hiukkasen aaltoluonnetta ja antaa mm. vapaan hiukkasen monokromaattisen tasoaallon aallonpituuden hiukkasen liikemäärä on silloin tunnettu, mutta se ei paikallistu mihinkään avaruuden osaan koska mikään voima ei kohdistu siihen, ei myöskään materia-aaltoa voi mikään voima poikkeuttaa jossain paikassa enempää kuin muualla vastaavan harmonisen aallon vaihenopeus on (vrt. valolle ν=c/λ) Eli aineaaltokentän vaihenopeus on puolet hiukkasen klassisesta nopeudesta!
55 Myöhemmin havaitaan, että tämä ei ole mitattava suure, vaan nopeus, jota kutsutaan ryhmänopeudeksi, joka puolestaan saadaan laskettua aineaaltokentästä... Myöhemmin havaitaan myös, että vapaan hiukkasen paikasta riippuva amplitudi on muotoa Todennäköisyystulkinnan mukaan hiukkasen esiintymistodennäköisyystiheys on aaltofunktion itseisarvon neliö Vapaan hiukkasen aineaaltokenttä ei siis anna tietoa hiukkasen paikasta, mutta määrittelee tarkasti sen liikemäärän
56 Tasoaalto Aaltopaketti, paikka lokalisoitunut tarkkuudella x
57 Heisenbergin epätarkkuusrelaatio Hiukkasen paikka suurella todennäköisyydellä välillä ja Monokromaattinen tasoaalto, p tunnetaan tarkasti:
58 Heisenbergin epämääräisyysyhtälö Elektronin paikan epämääräisyys x-suunnassa b Ensimmäistä minimiä vastaa diffraktiokulma sin θ = λ/ b Tätä vastaava liikemäärä x-suunnassa on h λ h h px = psinθ = = = px x = h λ b b x
59 Fotoneille : λ = h/ p= hc/ E Neutroneille : λ = h/ p= h/ 2M E Elektronille : λ = h/ p= h/ 2m E mc e n 2 M c 2 e Aallonpituus ja energia n 2 2 = hc / 2M c E = hc / 2m c E e 0,5 GeV 1000 GeV n
60 Neutronispektroskopia Termisillä neutroneilla voidaan tutkia mm aineiden kiderakennetta. Fissioreaktorista tuleva suihku tehdään monokromaattiseksi NaCl kiteellä. Monokromaattinen neutronisuihku diffraktoituu tutkittavana olevasta näytteestä.
61 Ajan ja energian epämääräisyys Energian mittaamiseen käytetty aika t ja energian mittaustarkkuus E toteuttavat yhtälön E t h jota kutsutaan energian ja ajan epämääräisyysyhtälöksi. Kaasumaisesta näytteestä tulevassa valossa viivanleveys aiheutuu myös atomien liikkeestä spektrometriin nähden (Doppler leveneminen)
62 Fotonien absorptio ja sironta Fotonien tärkeimmät vuorovaikutusprosessit väliaineessa ovat: 1. Valosähköinen ilmiö. 2. Comptonin sironta. 3. Parin muodostus (fotonin energia siirtyy elektroni-positroniparille, osa liikemäärästä kiteeseen kuuluvalle ytimelle.
63 Plackin fotonihypoteesi: Yhteenveto 1/4 Fotonin energia Fotonin liikemäärä valon nopeus aallonpituus Planckin vakio E p c= fλ λ = = hf = E/ c h/ p h = 6, Js Planckin säteilylaki E( f) = E tot = at 4 3 8πν h 1 c 3 hf / kt e 1 Stefan- Boltzmannin laki
64 Yhteenveto 2/4 Valosähköinen ilmiö : Fotoelektronin energia: Ek = hν φ0 h 1 Pysäytysjännite: V0 = f φ0 e e φ = Irroitustyö (tai työfunktio) 0 Comptonin sironta λ λ = λc ( 1 cosθ) λ = Comptonin aallonpituus c Braggin ehto : 2dsinθ = nλ
65 Yhteenveto 3/4 Hiukkasen de Broglie aallonpituus : λ = h p Hiukkasen kulmataajuus: ω E / h h = h /2π (luetaan h-bar) kätevä apusuure Aaltovektori: p hk Aineaallot etenevät ryhmänopeudella : dω Vapaalle hiukkaselle: v g = de dp= p m= v dk he E p Vaihenopeus vapaalle hiukkaselle: v 1 p = λ f = = = = v ph p 2m 2 Vaihenopeus on puolet aallon nopeudesta!!
66 Yhteenveto 4/4 Heisenbergin epämääräisyysyhtälöt : Paikalle ja liikemäärälle: x p h Ajalle ja energialle: t E h t = energian mittaamiseen kuluva aika E = energian mittaustarkkuus Fysiikan Nobel 1931: Kvanttimekaniikan kehittämisestä. Esitti Heisenbergin epätarkkuusyhtälön helmikuussa 1927 kirjeessään Wolfgang Paulille ja julkaisi tuloksen myöhemmin samana vuonna. Werner Heisenberg ( )
S Fysiikka IV (SE, 3,0 ov) S Fysiikka IV (Sf, 4,0 ov )
S-114.326 Fysiikka IV (SE, 3,0 ov) S-114.426 Fysiikka IV (Sf, 4,0 ov ) KVANTTIFYSIIKAN TUTKIMUSALA: Aineen atomirakenne Elektronitilat Aineen sähköiset ja optiset ominaisuudet Sähkömagneettisen kentän
LisätiedotTäydellinen klassinen fysiikka 1900
KVANTTIFYSIIKAN TUTKIMUSALA: Aineen atomirakenne Elektronitilat Aineen sähköiset ja kemialliset ominaisuudet Sähkömagneettisen kentän kvantittuminen Sähkömagneettisen säteilyn ja aineen vuorovaikutus,
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
Lisätiedot2. Fotonit, elektronit ja atomit
Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotOsallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
LisätiedotKVANTTIFYSIIKAN ILMIÖMAAILMA...1
KVANTTIFYSIIKAN ILMIÖMAAILMA...1 1.1 Historiaa... 1 1. Klassisen sähkömagnetismin perusideoita... 4 1.3 Mustan kappaleen säteily... 7 1.4 Valosähköinen ilmiö... 1 1.5 Sähkömagneettisen säteilyn sironta
LisätiedotS Fysiikka III (EST) (6 op) 1. välikoe
S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna
LisätiedotKvanttisointi Aiheet:
Kvanttisointi Luento 5 4 Aiheet: Valosähköilmiö Einsteinin selitys Fotonit Aineaallot ja energian kvantittuminen Bohrin kvanttimalli atomille Bohrin malli vetyatomille Vedyn spektri Mitä olet oppinut?
LisätiedotValon hiukkasluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 3. Elektroniikan ja nanotekniikan laitos
Valon hiukkasluonne Harris luku 3 Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2018 Johdanto Valolla myös hiukkasluonne fotoni Tarkastellaan muutamia ilmiöitä joiden kuvaamiseen
Lisätiedotn=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1
10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen
LisätiedotKVANTTIFYSIIKAN ILMIÖMAAILMA...1
KVANTTIFYSIIKAN ILMIÖMAAILMA...1 1.1 Historiaa... 1 1. Klassisen sähkömagnetismin perusideoita... 4 1.3 Mustan kappaleen säteily... 7 1.4 Valosähköinen ilmiö... 1 1.5 Sähkömagneettisen säteilyn sironta
LisätiedotMustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
Lisätiedot3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3.1. DE BROGLIE AALLOT 1905: Aaltojen hiukkasominaisuudet 1924: Hiukkasten aalto-ominaisuudet: de Broglien hypoteesi Liikkuvat hiukkaset käyttäytyvät aaltojen
Lisätiedotja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
LisätiedotKVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI
LisätiedotMustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotValosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo
Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että
LisätiedotLuento 6. Mustan kappaleen säteily
Mustan kappaleen säteily Luento 6 Pintaa, joka absorboi kaiken siihen osuvan sähkömagneettisen säteilyn, kutsutaan mustaksi kappaleeksi. Tällainen pinta myös säteilee kaikilla aallonpituuksilla. Sen sanotaan
Lisätiedot3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
LisätiedotAineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos
Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen
LisätiedotWien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
Lisätiedot766326A Atomifysiikka 1 - Syksy 2013
766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9
LisätiedotPHYS-C0240 Materiaalifysiikka kevät 2017
PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto
LisätiedotAtomi- ja ydinfysiikka -verkkokurssin toteuttaminen
Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen Janne Klemola Oulun yliopisto Fysiikan tutkinto-ohjelma Pro gradu -tutkielma Toukokuu 2017 Sisältö Johdanto 1 1 Kurssin asiasisältö 2 1.1 Sähkömagneettisten
Lisätiedot766326A ATOMIFYSIIKKA 1 - SYKSY 2017
766326A ATOMIFYSIIKKA 1 - SYKSY 2017 Luennot 40 tuntia (10 viikkoa) Tiistaisin 14-16 (sali L6) Torstaisin 8-10 (sali L5) Luennoitsija: Saana-Maija Huttula saana.huttula@oulu.fi Huone FY253-1 (ei laskutehtävien
LisätiedotAineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
LisätiedotInfrapunaspektroskopia
ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
Lisätiedot1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
LisätiedotRöntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia
Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia Hyvinvointiteknologian koulutusohjelma 1 Saatteeksi... 2 1. Atomi- ja röntgenfysiikan perusteita... 2 Sähkömagneettinen säteily...3 Valosähköinen
LisätiedotMIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma
MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen
Lisätiedot780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
LisätiedotTURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V
TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight
LisätiedotTodennäköisyys ja epämääräisyysperiaate
Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain
LisätiedotFRANCKIN JA HERTZIN KOE
FRANCKIN JA HRTZIN KO 1 Atomin kokonaisenergian kvantittuneisuuden osoittaminen Franck ja Hertz suorittivat vuonna 1914 ensimmäisinä kokeen, jonka avulla voitiin osoittaa oikeaksi Bohrin olettamus, että
LisätiedotLIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
LisätiedotValon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen
Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki
LisätiedotKvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri
Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt
Lisätiedot4. ATOMI. Kuva atomista?
4. ATOMI Kuva atomista? 4. ATOMIN RAKENNE YDIN 8-luvun lopulla useimmat tutkijat jo uskoivat, että materiaalit koostuvat atomeista pienistä jakamattomista osista 898 J.J. Thomson löysi elektronit ja esitti
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
LisätiedotCh7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
LisätiedotSynkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa
Synkrotronisäteily ja elektronispektroskopia Tutkimus Oulun yliopistossa Ryhmätyö Keskustelkaa n. 4 hengen ryhmissä, mitä on synkrotronisäteily ja miten sitä tuotetaan. Kirjoittakaa ylös ajatuksianne.
LisätiedotFysikaalisten tieteiden esittely puolijohdesuperhiloista
Fysikaalisten tieteiden esittely puolijohdesuperhiloista "Perhaps a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing the same thing."
LisätiedotLinssin kuvausyhtälö (ns. ohuen linssin approksimaatio):
Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta
LisätiedotKuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla).
VALOSÄHKÖINEN ILMIÖ 1 Johdanto Valosähköisessä ilmiössä valo, jonka taajuus on f, irrottaa metallilta elektroneja. Koska valo koostuu kvanteista (fotoneista), joiden energia on hf (missä h on Planckin
LisätiedotFysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI
Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan
LisätiedotSMG-4300: Yhteenveto ensimmäisestä luennosta
SMG-4300: Yhteenveto ensimmäisestä luennosta Aurinko lähettää avaruuteen sähkömagneettista säteilyä. Säteilyn aallonpituusjakauma määräytyy käytännössä auringon pintalämpötilan (n. 6000 K) perusteella.
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
Lisätiedot(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
Lisätiedot1. JOHDANTOA. Makroskooppinen aine koostuu atomeista ja molekyyleistä. Atomit koostuvat ytimestä ja elektroneista.
1. JOHDANTOA Makroskooppinen aine koostuu atomeista ja molekyyleistä. Atomit koostuvat ytimestä ja elektroneista. 1 Atomifysiikka käsittelee atomin elektroniverhon fysiikka Ydinfysiikka käsittelee ytimen
LisätiedotBraggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on
763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla
LisätiedotYdin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
Lisätiedot1.5 RÖNTGENDIFFRAKTIO
1.5 RÖNTGENDIFFRAKTIO 1.5.1 Kiinteän aineen rakenne Kiinteät aineet voidaan luokitella kahteen ryhmään sen mukaan, millä tavalla niiden atomit tai molekyylit ovat järjestäytyneet. Amorfisten aineiden,
Lisätiedotd sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia
LisätiedotAtomien rakenteesta. Tapio Hansson
Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista
LisätiedotLuento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
LisätiedotHarjoitustehtävien vastaukset
Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,
LisätiedotMiksi tarvitaan tilastollista fysiikkaa?
Miksi tarvitaan tilastollista fysiikkaa? cm 3 kaasua NTP ssä ~ 3 9 molekyyliä P, T? (paine ja lämpötila?) tarvitaan joitakin estimaatteja jokaisen hiukkasen dynaamisesta tilasta, todennäköisyysjakaumia
LisätiedotTehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8. Aine ja säteily. Sanoma Pro Oy Helsinki
Tehtävien ratkaisut Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen FYSIIKKA 8 Aine ja säteily Sanoma Pro Oy Helsinki Sisällys Johdantotehtävien ratkaisut... 4 1 Säteily ja kvantit... 6 Atomi
LisätiedotFRANCKIN JA HERTZIN KOE
FYSP106/2 Franckin ja Hertzin koe 1 FYSP106/2 FRANCKIN JA HERTZIN KOE Työssä mitataan elohopea-atomin erään viritystilan energia käyttäen samantyyppistä koejärjestelyä, jolla Franck ja Hertz vuonna 1914
LisätiedotTeoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotAtomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N
Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
LisätiedotATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN
ATOMIFYSIIKAN LUKIO-OPETUKSESTA JA JALOKAASUJEN TUTKIMISESTA ELEKTRONISPEKTROSKOPIAA KÄYTTÄEN PRO GRADU -TUTKIELMA MARJUT PARRILA OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 005 Sisällysluettelo 1.
LisätiedotKuvan 4 katkoviivalla merkityn alueen sisällä
TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle
Lisätiedotperushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi
8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät
Lisätiedot12. Eristeet Vapaa atomi
12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa
LisätiedotPerusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
LisätiedotS Fysiikka III (Est) Tentti
S-114137 Fyiikka III (Et) Tentti 9008 1 Vetyatomin elektronin kulmaliikemäärää kuvaa kvanttiluku l =3 Lake miä kaikia kulmia kulmaliikemäärävektori voi olla uhteea kulmaliikemäärän z-komponenttiin ( )
LisätiedotXFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
Lisätiedot1.1 ATOMIN DISKREETIT ENERGIATILAT
1.1 ATOMIN DISKREETIT ENERGIATILAT 1. MITTAUKSET Franckin ja Hertzin kokeen ja ionisaatiopotentiaalin mittauslaitteisto: jännitelähde digitaalinen yleismittari suojatut banaanijohdot neonputki telineineen
Lisätiedot1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
LisätiedotFYSA230/2 SPEKTROMETRI, HILA JA PRISMA
FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden
LisätiedotFYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO
FYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO Työssä tutkitaan termistä elektroniemissiota volframista, todetaan Stefanin - Boltzmannin lain paikkansapitävyys ja Richardsonin - Dushmanin yhtälön avulla
LisätiedotFysiikan valintakoe klo 9-12
Fysiikan valintakoe 2.5.208 klo 9-2. Koripalloilija heittää vapaaheiton. Hän lähettää pallon liikkeelle korkeudelta,83 m alkuvauhdilla 7,53 m/s kulmassa 43,2 vaakatason yläpuolella. Pallon lähtöpisteen
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotTheory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)
Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan
LisätiedotValo ja muu sähkömagneettinen säteily
Valo ja muu sähkömagneettinen säteily Valon luonne Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valoaallot eivät
LisätiedotOpettajaopiskelijoiden käsityksiä kvanttimekaniikasta
Opettajaopiskelijoiden käsityksiä kvanttimekaniikasta Eetu Laukka Pro gradu -tutkielma Joulukuu 2015 Fysiikan ja matematiikan laitos Itä-Suomen yliopisto i Eetu Laukka Työn ohjaajat Opettajaopiskelijoiden
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotFononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
LisätiedotLuento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
LisätiedotSÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA
SÄHKÖMAGNEETTINEN SÄTEILY JA SEN VUOROVAIKUTUS MATERIAN KANSSA PRO GRADU -TUTKIELMA HENRIK VAHTOLA OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS OULU 2000 Alkusanat Kiitän professori Helena Akselaa ja
LisätiedotSuhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson
Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava
LisätiedotAineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto
Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn
Lisätiedot