Järvi 1 Valkjärvi. Järvi 2 Sysijärvi

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Järvi 1 Valkjärvi. Järvi 2 Sysijärvi"

Transkriptio

1 Tilastotiedettä Tilastotieteessä kerätään tietoja yksittäisistä asioista, ominaisuuksista tai tapahtumista. Näin saatua tietoa käsitellään tilastotieteen menetelmin ja saatuja tuloksia voidaan käyttää apuna monessa yhteydessä, kuten tulevaisuuden tapahtumien ennustamisessa, ympäristön tilan arvioimisessa ja vaikkapa jonkin alueen eläinpopulaation arvioimisessa. Lähestytään tilastotiedettä ekologisen esimerkin avulla. Valitaan aiheeksi kahden pienen järven ahvenpopulaation selvittäminen. Järvi 1 Valkjärvi Järvi 2 Sysijärvi

2 Perusjoukko Tutkimuksessa on kaksi perusjoukkoa. Joukko1: Valkjärven ahvenet ja joukko2: Sysijärven ahvenet. Muuttuja Ahvenista halutaan määrittää muuttujat: pituus ja ikä. Otos Tarkinta tietoa perusjoukoista saataisiin pyydystämällä kummastakin järvestä kaikki ahvenet. Tämä on kuitenkin useimmiten mahdotonta ja haitallistakin. Tutkijat tyytyvät pyydystämään vain pienen osuuden järven ahvenista. Tämän joukon nimi on otos. Otoksen huolellinen suunnittelu on tilastollisen tutkimuksen kriittisin vaihe. Jos otos ei edusta hyvin koko ahvenpopulaatiota saadaan tutkimuksesta harhaanjohtavia tuloksia. Otokseen liittyy suuri määrä virhemahdollisuuksia. Otoksen kerääminen Valkjärvestä: Mustalla kaarella on kuvattu tiheäsilmäisen nuotan vetoalueet. Alueet on valittu siten, että ne edustavat hyvin järven syvyysalueita unohtamatta rantaruovikkoa. Otoksen kerääminen Sysijärvestä: Sysijärvi on pohjanmuodoiltaan yksinkertaisempi ja kuvan nuottaus saattaisi antaa hyvän otoksen. Kyseisissä tapauksissa saatettaisiin saada otokseksi noin 2-3% Valkjärven kaloista ja noin 1-2% Sysijärven kaloista. Koska kaikkein pienimmät ahvenet pääsevät nuotan silmien läpi karkuun, niitä ei tutkita.

3 Aineiston luokittelu ja taulukko Otoksien ahvenien pituus mitattiin automaattisesti valopöydällä. Mittaukset saatiin 1 mm:n tarkkuudella ja pituudet jaettiin luokkiin kahden sentin välein. Frekvenssi (eli taajuus) kertoo kuinka monta havaintoa johonkin luokkaan kuuluu. Aineistosta koottiin ns. taulukko. Näissä kahdessa taulukossa muuttujana on pituus. on luokan n ja n keskiarvo. Sysijärvi Valkjärvi f Tehtiin myös toinen taulukko, johon merkittiin muuttujaksi ahventen ikä. Ikä määritettiin tutkimalla kuuloluu eli otoliitti. Työ oli vaativa ja aikaa vievä (vasen taulukko on Sysijärvi, oikea Valkjärvi). f 10,0 11,9 10, ,0 11,9 10, ,0 13,9 12, ,0 13,9 12, ,0 15,9 14, ,0 15,9 14, ,0 17,9 16, ,0 17,9 16, ,0 19,9 18, ,0 19,9 18, ,0 21,9 20, ,0 21,9 20, ,0 23,9 22, ,0 23,9 22, ,0 25,9 24, ,0 25,9 24, ,0 27,9 26, ,0 27,9 26, ,0 29,9 28, ,0 29,9 28, ,0 31,9 30, ,0 31,9 30, ,0 33,9 32, ,0 33,9 32,95 31 S 5830 S 1757 Ikä (v) f Ikä (v) f S 5830 S 1757

4 Graafinen esitys Pylväsdiagrammi lienee yleisimmin käytetty graafinen esitys. Taulukko 1. Järvien ahventen pituus Taulukko 2. Järvien ahventen ikä

5 Tilastofunktioita 1. Frekvenssi f kertoo montako alkiota otoksesta kuuluu luokitellussa aineistossa johonkin luokkaan. 2. Suhteellinen f% kertoo montako prosenttia otoksen alkioista kuuluu johonkin luokkaan. 3. Summa sf kertoo kuinka monta alkiota otoksesta kuuluu kyseiseen tai sitä pienempään/suurempaan luokkaan (lasketaan vain frekvenssejä yhteen juoksevana summana) 4. Suhteellinen summa sf% kertoo kuinka monta prosenttia otoksen alkioista kuuluu kyseiseen tai sitä pienempään/suurempaan luokkaan (lasketaan suhteellisia frekvenssejä yhteen juoksevana summana). sf% on käyttökelpoinen mm. mediaanin määrittämisessä. Pistänpä tähän näkyville täydennetyn taulukon, jossa on Valkjärven ahventen pituus. Valkjärvi Esimerkkinä vihreät kohteet: f f% sf sf% 10,0 11,9 10, , ,5 12,0 13,9 12, , ,4 14,0 15,9 14, , ,0 16,0 17,9 16, , ,6 18,0 19,9 18, , ,7 20,0 21,9 20, , ,6 22,0 23,9 22, , ,1 24,0 25,9 24, , ,2 26,0 27,9 26, , ,1 28,0 29,9 28,95 0 0, ,1 30,0 31,9 30,95 3 0, ,2 32,0 33,9 32, , ,0 S 1757 f: 25 kpl ahvenista oli pituudeltaan 22,0 23,9 cm. suhteellinen f%: 9,1 prosenttia ahvenista oli pituudeltaan 18,0 19,9 cm. summa sf: 977 ahventa oli pituudeltaan 17,9 cm tai sitä lyhyempiä. suhteellinen summa sf%: 64,7 prosenttia ahvenista oli pituudeltaan korkeintaan 19,9 cm. 5. moodi eli tyyppiarvo on se muuttujan arvo, jonka on suurin. Esimerkiksi ylläolevassa taulukossa suurin on 468. Tätä vastaava muuttujan arvo on luokka 16,0 17,9 cm. Paikallislehdessä voitaisiin mainita, että: Tyypillinen Valkjärven ahven on pituudeltaan 16,0-17,9 cm mittainen. 6. mediaani on järjestetyn joukon keskimmäisen alkio. Tällaisessa luokitellussa aineistossa meillä ei enää ole käytettävissä alkuperäisiä mittauksia, joten joudumme korvaamaan pituusjärjestyksessä keskimmäisen kalan pituuden pituusluokalla. Tuo keskimmäinen kala kuuluu siihen luokkaan, jonka sf% ensimmäisenä kipuaa yli arvon 50. Yllä olevassa taulukossa sf% saa arvon 55,6 luokan 16,0 17,9 cm kohdalla. Tässä tapauksessa tuo luokka on mediaani.

6 7. keskiarvo x lienee jo tuttu juttu. Lasketaan vain kaikki luvut yhteen ja sitten jaetaan saatu summa lukujen määrällä. Tilastotieteessä asia on ihan samoin, mutta luokitellussa aineistossa menetellään hieman omalaatuisella tavalla. x = f x f. Tuossa kaavassa x on luokkakeskus. Luku f x saadaan, kun kustakin luokasta kerrotaan f luokkakeskuksella x (tehdään taulukkoon uusi sarake f x. Näin saadaan yhden luokan kalojen yhteenlaskettu pituus. Nämä kun lasketaan yhteen saadaan koko otoksen kalojen yhteenlaskettu pituus. Luku f saadaan kun lasketaan kaikki t yhteen (se on kaikkien kalojen lukumäärä). Kuulostaa vaikealta, mutta näyttää helpolta. Näytän, miten saadaan laskettua Valkjärven ahventen pituuden keskiarvo eli keskipituus. Valkjärvi Keskipituus x = f x f 31981,15 cm = = 18, cm 18,2 cm keskihajonta s kertoo, kuinka paljon otos on levinnyt eli kuinka paljon yksittäiset muuttujan arvot keskimäärin poikkeavat keskiarvosta. Joukon keskihajonta lasketaan kaavalla: s = (x 1 x ) 2 + (x 2 x ) (x n x ) 2 n 1 s = f (x x )2 f 1 Luokitellusta aineistosta laskukaava on:, jossa x on luokkakeskus. Tätä ei tule kokeeseen, mutta laskenpa senkin niiden ihmeteltäväksi, joita tällainen kiinnostaa. f f% sf sf% f. x 10,0 11,9 10, , ,5 1445,4 12,0 13,9 12, , ,4 3379,95 14,0 15,9 14, , ,0 1734,2 16,0 17,9 16, , ,6 7932,6 18,0 19,9 18, , , ,0 21,9 20, , ,6 6599,25 22,0 23,9 22, , ,1 573,75 24,0 25,9 24, , ,2 5738,5 26,0 27,9 26, , ,1 431,2 28,0 29,9 28,95 0 0, ,1 0 30,0 31,9 30,95 3 0, ,2 92,85 32,0 33,9 32, , ,0 1021,45 S ,15

7 Valkjärvi Luokkake skus frekvens si f f% sf sf% f. x f. (x - x ) 2 10,0 11,9 10, , ,5 1445,4 6942,3 12,0 13,9 12, , ,4 3379, ,7 14,0 15,9 14, , ,0 1734,2 1226,9 16,0 17,9 16, , ,6 7932,6 733,7 18,0 19,9 18, , , ,5 20,0 21,9 20, , ,6 6599, ,5 22,0 23,9 22, , ,1 573,75 563,6 24,0 25,9 24, , ,2 5738, ,7 26,0 27,9 26, , ,1 431,2 1224,4 28,0 29,9 28,95 0 0, ,1 0 0,0 30,0 31,9 30,95 3 0, ,2 92,85 487,5 32,0 33,9 32, , ,0 1021, ,5 S , ,3 x = 18,2 cm s = 4,7 cm f (x x ) 2 On tuo luku tuossa f 1 saadaan, kun tuosta vähennetään luku 1. Nämä sitten jaetaan keskenään ja tuloksesta otetaan neliöjuuri. Tulos s= 4,7 cm. 9. normitettu arvo z kertoo, kuinka monen keskihajonnan verran jokin alkio poikkeaa keskiarvosta. Normitetun arvon avulla voidaan verrata hyvinkin erilaisista perusjoukoista saatuja alkioita. Normitettu arvo on negatiivinen, jos alkio on pienempi kuin keskiarvo. Se s on positiivinen, jos alkio on suurempi kuin keskiarvo. Kuvitellaan tilanne, jossa Valkjärvellä ja Sysijärvellä järjestetään pilkkikilpailu, jossa punnitaan kunkin kalastajan saamista ahvenista kolme suurinta. Olisi lähes varmaa, että palkintosijat täyttyisivät niistä jotka kalastelivat Valkjärvellä (siellä kun vaan on paljon isompia ahvenia). Olisi reilua laskea kustakin järvestä kolmen ahvenen normitetut arvot. Tällöin noin 16 cm mittainen ahven Sysijärvestä saattaisi olla tasavertainen 25 senttisen Valkjärven ahvenen kanssa. keskenään. z = x x

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...

Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa

Lisätiedot

Tilastolliset toiminnot

Tilastolliset toiminnot -59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

VARESJÄRVI KOEKALASTUS

VARESJÄRVI KOEKALASTUS Varsinais-Suomen Kalavesien Hoito Oy Puutarhakatu 19 A 20100 TURKU www.silakka.info VARESJÄRVI KOEKALASTUS 2012 Chris Karppinen Varsinais-suomen kalavesien Hoito Oy 1. Johdanto Maataloustuottajain säätiö

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Matin alkuvuoden budjetti

Matin alkuvuoden budjetti 1 TILASTOJEN TULKINTAA 1. euroa Matin alkuvuoden budjetti 600 500 400 300 200 100 0 tammikuu helmikuu maaliskuu huhtikuu a) Milloin Matti on kuluttanut eniten rahaa ostoksiin? Arvioi, kuinka paljon vaatteisiin

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Til.yks. x y z

Til.yks. x y z Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3 : http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)

Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin) 1/11 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

1 TILASTOMATEMATIIKKA... 2 2 TILASTOTIETEEN PERUSKÄSITTEITÄ... 3 3 MUUTTUJAT... 6 4 FREKVENSSIJAKAUMA... 8 5 AINEISTON LUOKITTELU...

1 TILASTOMATEMATIIKKA... 2 2 TILASTOTIETEEN PERUSKÄSITTEITÄ... 3 3 MUUTTUJAT... 6 4 FREKVENSSIJAKAUMA... 8 5 AINEISTON LUOKITTELU... SISÄLLYSLUETTELO 1 TILASTOMATEMATIIKKA... 2 1.1 JOHDANTO... 2 1.2 LINKKEJÄ... 2 1.3 LÄHTEET... 2 2 TILASTOTIETEEN PERUSKÄSITTEITÄ... 3 2.1 HAVAINTOAINEISTO... 3 2.2 POPULAATIO... 3 2.3 OTOS... 3 2.4 HAVAINTOAINEISTON

Lisätiedot

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 %

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 % Testaa taitosi 1 1. Noppaa heitetään kahdesti. Merkitse kaikki alkeistapaukset koordinaatistoon. a) Millä todennäköisyydellä ainakin toinen silmäluvuista on 3? b) Mikä on a-kohdan tapahtuman vastatapahtuma?

Lisätiedot

Tilastollisten aineistojen kuvaaminen

Tilastollisten aineistojen kuvaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten

Lisätiedot

Tilastoja yleisurheillen

Tilastoja yleisurheillen Tilastoja yleisurheillen Millainen mehupurkki on halvin valmistaa? Voisiko kaupan mehupurkki olla muodoltaan pallo? Entä lieriö? Opettaja jakaa luokan oppilaat noin kolmen henkilön ryhmiin. Työohjeet:

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina. [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

TILASTO- JA TALOUSMATEMATIIKKA s. 1

TILASTO- JA TALOUSMATEMATIIKKA s. 1 TILASTO- JA TALOUSMATEMATIIKKA s. 1 Käsitteitä: Tilastoja voidaan havainnollistaa: o Tilastokuvioilla eli diagrammeilla Tavallisimmin käytettyjä tilastokuvioita ovat pylväsdiagrammit Muodostuu erillisistä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011 Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää

Lisätiedot

5. Keskiluvut. luokan väliin, ei sen määrääminen tuota vaikeuksia. Näin on seuraavissa esimerkeissä:

5. Keskiluvut. luokan väliin, ei sen määrääminen tuota vaikeuksia. Näin on seuraavissa esimerkeissä: 22 5. Keskiluvut Kaikkein pisimmälle on informaation tiivistämisessä menty silloin, kun otosta kuvataan vain yhdellä luvulla, joka mahdollisimman hyvin edustaa kaikkia otoksen arvoja. Tällaisia lukuja

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Esimerkki 1: auringonkukan kasvun kuvailu

Esimerkki 1: auringonkukan kasvun kuvailu GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo

Lisätiedot

1.1 Tilastotieteen peruskäsitteitä

1.1 Tilastotieteen peruskäsitteitä Tilastotieteen peruskäsitteitä 1.1 Tilastotieteen peruskäsitteitä 1. Muodostetaan taulukon perusteella suhteellinen frekvenssijakauma. Lehti Levikki f % Helsingin 365994 365 994 0,13579... 13,6% Sanomat

Lisätiedot

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Luentotesti 3. Kun tutkimuksen kävelynopeustietoja analysoidaan, onko näiden tutkittavien aiheuttama kato

Luentotesti 3. Kun tutkimuksen kävelynopeustietoja analysoidaan, onko näiden tutkittavien aiheuttama kato Tehtävä 1 Osana laajempaa tutkimusprojektia mitattiin kävelynopeutta yli 80-vuotiaita tutkittavia. Osalla tutkittavista oli lääkärintarkastuksen yhteydessä annettu kielto osallistua fyysistä rasitusta

Lisätiedot

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne Seuraavista tehtävistä saatu yhteispistemäärä (max 7 pistettä) jaetaan luvulla 3.5 ja näin saadaan varsinainen kurssipisteisiin laskettava pistemäärä. Bonustehtävien pisteet jaetaan luvulla 4 eli niistä

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Rodun lisääntymistilanteen selvittäminen. Tampere 23.10.2010 Outi Niemi

Rodun lisääntymistilanteen selvittäminen. Tampere 23.10.2010 Outi Niemi Rodun lisääntymistilanteen selvittäminen Tampere 23.10.2010 Outi Niemi Miten lähteä liikkeelle? Suunnittelu Tietojen keruusta sopiminen rotuyhdistyksessä Sitouttaminen Tiedottaminen Tekninen toteutus Suunnittelu

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

Merimetson ravinto ja kannankehitys Selkämerellä

Merimetson ravinto ja kannankehitys Selkämerellä Merimetson ravinto ja kannankehitys Selkämerellä RKTL/Juhani A. Salmi 27.3.2012 Selkämeren merimetsot Selkämerellä tavataan kahta merimetson alalajia. Pesivät linnut kuuluvat alalajiin sinensis ja läpimuuttavat

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Näsijärven muikkututkimus

Näsijärven muikkututkimus 1 Näsijärven muikkututkimus Markku Nieminen iktyonomi 1.1.1 NÄSIJÄRVEN KALASTUSALUEEN TUTKIMUKSIA MUIKKUTUTKIMUS VUONNA 1 1. Johdanto Näsijärven muikkukannan tilaa on seurattu kalastusalueen saaliskirjanpitäjien

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

3 Mittaamisen taso ja tilaston keskiluvut

3 Mittaamisen taso ja tilaston keskiluvut 3 Mittaamisen taso ja tilaston keskiluvut Tämä tutkimus on sellainen, että (jos nyt jänisten laskua voidaan mittaamiseksi kutsua) mittaamisessa on eroteltavissa neljä erilaista mittaamisen tasoa, mittausasteikkoa.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 ESITYS pisteitykseksi Yleisohje tarkkuuksista: Ellei tehtävässä vaadittu tiettyä tarkkuutta, kelpaa numeerisissa vastauksissa ohjeen vastauksen lisäksi yksi merkitsevä

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää?

3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää? Seuraavassa muutamia lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4,

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä

Lisätiedot

KUITUPUUN PINO- MITTAUS

KUITUPUUN PINO- MITTAUS KUITUPUUN PINO- MITTAUS Ohje KUITUPUUN PINOMITTAUS Ohje perustuu maa- ja metsätalousministeriön 16.6.1997 vahvistamaan pinomittausmenetelmän mittausohjeeseen. Ohjeessa esitettyä menetelmää sovelletaan

Lisätiedot

LOKAN JA PORTTIPAHDAN TEKOJÄRVIEN KALOJEN ELOHOPEAPITOISUUDEN TARKKAILU VUONNA 2012

LOKAN JA PORTTIPAHDAN TEKOJÄRVIEN KALOJEN ELOHOPEAPITOISUUDEN TARKKAILU VUONNA 2012 LOKAN JA PORTTIPAHDAN TEKOJÄRVIEN KALOJEN ELOHOPEAPITOISUUDEN TARKKAILU VUONNA 2012 JOHANNA MEHTÄLÄ 2014 TARKKAILUN PERUSTA Lokan ja Porttipahdan tekojärvien kalaston elohopeapitoisuuksien tarkkailu perustuu

Lisätiedot

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI

KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI Asko Poikela Samuli Hujo TULOSKALVOSARJAN SISÄLTÖ I. Vanha mittauskäytäntö -s. 3-5 II. Keskusmuotolukujen funktiointi -s. 6-13 III.Uusi mittauskäytäntö -s.

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

A-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

A-osio: Ilman laskinta, MAOL:in taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. MAA6 koe 26.9.2016 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-osio: Ilman laskinta, MAOL:in taulukkokirja

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Ma8 Todennäköisyys ja tilastot

Ma8 Todennäköisyys ja tilastot Ma8 Todennäköisyys ja tilastot H1 Tilastollisen aineiston kuvaaminen 1.1 Vastaa kuvaajan perusteella kysymyksiin. a) Kuinka paljon tarvitset kuvaajan mukaan unta? b) Paljonko 20-vuotias tarvitsee unta?

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Diagrammeja ja tunnuslukuja luokkani oppilaista

Diagrammeja ja tunnuslukuja luokkani oppilaista Diagrammeja ja tunnuslukuja luokkani oppilaista Aihepiiri Tilastollisiin tunnuslukuihin tutustuminen Luokka-aste Kesto Tarvittavat materiaalit / välineet Lyhyt kuvaus tehtävästä Yläaste 9. luokka 30 min

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI Mikko Kylliäinen Insinööritoimisto Heikki Helimäki Oy Dagmarinkatu 8 B 18, 00100 Helsinki kylliainen@kotiposti.net 1 JOHDANTO Suomen rakentamismääräyskokoelman

Lisätiedot

Tarkasteluja lähtötason merkityksestä opintomenestykseen. MAMK:n tekniikassa

Tarkasteluja lähtötason merkityksestä opintomenestykseen. MAMK:n tekniikassa 1 Tarkasteluja lähtötason merkityksestä opintomenestykseen MAMK:n tekniikassa 2 1. Tutkimuksen perusteita Tekniikan alalle otetaan opiskelijoita kolmesta eri lähteestä : -ammattitutkinnon suorittaneet

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

POLVIJÄRVEN KALASTORAKENTEEN TUTKIMUS SYKSYLLÄ 2008

POLVIJÄRVEN KALASTORAKENTEEN TUTKIMUS SYKSYLLÄ 2008 POHJOIS-KARJALAN AMMATTIKORKEAKOULU Ympäristöteknologian koulutusohjelma AYNS07 POLVIJÄRVEN KALASTORAKENTEEN TUTKIMUS SYKSYLLÄ 2008 Heiskanen Tuulia, Kempas Anita, Räsänen Riika ja Tossavainen Tarmo SISÄLLYSLUETTELO

Lisätiedot