Tämän luvun sisältö. Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa. Webin lyhyt historia 1992: ensimmäisiä selaimia
|
|
- Arttu Mäkelä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tämän luvun sisältö Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa T Datasta tietoon, syksy 20 professori Heikki Mannila Tietojenkäsittelytieteen laitos, Aalto-yliopisto.2.20 Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Etsintä verkosta PageRank Muista T-ohjelman kurssipalaute (+ piste joulu- ja tammikuun tenttiin): / 3 2 / 3 989: Tim Berners-Lee 992: ensimmäisiä selaimia Maaliskuussa 989 Tim Berners-Lee jätti ehdotuksen CERNin tiedonhallintajärjestelmäksi Esimiehen kommentti: epämääräinen mutta kiinnostava... Proposal.html Syksyllä 992 info.cern.ch kertoi uusista palvelimista ja sivuista 3 / 3 4 / 3
2 Linkkikokoelmia Altavista oli 990-luvun Hakukone Jerry and David s Guide to the World Wide Web. Myöhemmin nimellä Yahoo; iso käsin ylläpidetty lista webbiosoitteita. vanhoja sivustoja Digital teki Altavistan mainostaakseen servereitään: Näillä voi indeksoida vaikka koko webin. Altavistalla webbisivujen etsiminen muuttui paljon helpommaksi, mutta vastaukset tulivat melko satunnaisessa järjestyksessä. 5 / 3 6 / 3 998: Google Etsintä verkosta Google keksi, miten hakutulokset järjestetään hyödyllisyyden mukaan. Miten löydetään verkosta hyviä sivuja, jotka kertovat vaikkapa tiedon louhinnasta? Ensimmäiset menetelmät skaalautuivat huonosti: info.cern.ch: ilmoitustaulu uusista sivuista Yahoo: käsin toimitettu hakemisto Annettuna kysely data mining Miten löydetään automaattisesti sivut, joilla nuo sanat esiintyvät (tai esiintyvät peräkkäin)? Miten löydetään näistä sivuista hyödyllisimmät? 7 / 3 8 / 3
3 Etsintä verkosta Sanahaku Etsintä verkosta Relevanssi Merkkijonomenetelmät ( string algorithms ): paljon hauskoja algoritmeja Esivalmisteluna käydään koko verkko läpi seuraamalla linkkejä Kullakin sanalla X tallennetaan lista sivuista, joilla X esiintyy Kyselyyn X ja Y vastattessa käydään kummankin sanan osoitelistat läpi ja palautetaan ne osoitteet, jotka esiintyvät molemmissa. Käytännössä hankalampaa kuin näyttää paperilla: dataa on paljon, vastaus pitäisi saada alle sekunnissa. Paljon mielenkiintoista tekniikkaa, katso esim. Results 0 of about 50,300,000 Vanha tapa ratkaista ongelma: käyttäjä tarkentaa kyselyä lisäämällä ovelasti valittuja sanoja ja operaattoreilla AND, OR, NOT, NEAR. Miten valitaan ne sivut, jotka näytetään ensimmäiseksi? Heuristiikkoja: Sanojen esiintymisfrekvenssi (huono idea) Sivu on hyvä, jos siihen viitataan paljon Sivu on hyvä lähde asiasta X, jos X mainitaan sivuun viittaavissa linkeissä (eli ihminen on tehnyt jo arvioinnin) 9 / 3 0 / 3 Etsitään ensin parhaiden sivujen ja linkkien joukot Hubs and authorities : Jon M. Kleinberg: Authoritative Sources in a Hyperlinked Environment, IBM Research Report 997; SODA Hyvillä auktoriteetti-sivuilla on paljon yhteisiä linkittäjiä eli keskuksia. Hyvä keskus osoittaa hyvää arvostelukykyä linkittämällä hyviin auktoriteetteihin Etsitään ensin sivut, joilla X ja Y esiintyy Otetaan näistä heuristiikkojen perusteella esim. 200 parasta; olkoon tämä sivujen ydinjoukko S Muodostetaan joukko T : S ja sivut jotka viittaavat johonkin joukon S sivuun ja sivut joihin jokin S:n sivu viittaa (katso kuva alla) S 2 3 T S Kuva:. Ydinjoukko S laajennettuna sivuilla, joihin tai joista on linkki. / 3 2 / 3
4 (2) Etsitään ensin parhaiden sivujen ja linkkien joukot Periaate Tarkastellaan joukkoa T verkkona: solmuina sivut, kaarina linkit (suunnattuja kaaria) Olkoon E verkon T kaarien joukko: (u, v) E kun sivulta u on linkki sivulle v Pelkkä sivuun osoittavien linkkien määrä ei ole kovin hyvä relevanssin mittari Periaate: Hyvä keskus osoittaa hyviin auktoriteetteihin Hyviin auktoriteetteihin tulee linkkejä hyvistä keskuksista Kehämääritelmä? 3 / 3 4 / 3 Hyvien keskusten ja auktoriteettien laskenta iteratiivisesti (2) Hyvien keskusten ja auktoriteettien laskenta iteratiivisesti Kehämääritelmästä selvitään iteratiivisella menetelmällä (vrt. c-means, Luku 6) Kullekin joukon T sivulle s määritellään keskuspaino k s ja auktoriteettipaino a s Tarvitaan jotkin alkuarvot: a s = k s = n, s T Iteratiiviset päivityssäännöt: a s k t, k s t T, (t,s) E t T, (s,t) E a t Eli sivun s auktoriteettipainoa varten summataan kaikki keskuspainot niistä sivuista, joista on linkki sivulle s. Sivun s keskuspaino päivitetään vastaavasti summaamalla sivun s linkkaamien sivujen auktoriteettipainot Joka iteraatiossa skaalataan painojen neliöiden summat ykkösiksi as 2 =, ks 2 = s T s T 5 / 3 6 / 3
5 Hyvien keskusten ja auktoriteettien laskenta matriiseilla Edellä saadut iterointikaavat voidaan kirjoittaa helposti myös matriisimuodossa Ajatellaan painoja vektoreina a = (a s ) s T, ja verkko matriisina M k = (k s ) s T M = (, jos (s, t) E, muuten 0) Nyt iteraation päivityssäännöt voidaan kirjoittaa: (2) Hyvien keskusten ja auktoriteettien laskenta matriiseilla Ottaen huomioon skaalauksen ykköseksi voidaan kirjoittaa koko iterointisääntö: a MT k M T k, k Ma Ma Ajetaan iteraatiota läpi muutama kierros, kun alustuksena a { { M T MT a... MMT a... MT MM T k k... MT M k... MMT M M M Siis i:n iteraation jälkeen a M T k, k Ma a =... (MT M) i 7 / 3 8 / 3 (3) Hyvien keskusten ja auktoriteettien laskenta matriiseilla Pieni esimerkki Matriisi M T M on symmetrinen, joten sillä on reaaliset ominaisarvot ja -vektorit ja se voidaan diagonalisoida M T M = VD n V T missä D = diag(λ,..., λ n ) Teknisellä oletuksella λ > λ 2 saadaan (M T M) i = VD i V T V diag(λ i, 0,..., 0) V T = (λ i vt )v Siis a on matriisin M T M suurinta ominaisarvoa vastaava ominaisvektori Vastaavasti k on matriisin MM T ominaisvektori Ominaisvektorit voitaisiin esim. Matlabissa funktiolla [V, D] = eig(m *M) Tuloksia Kleinbergin paperista Auktoriteetteja (ylempi kuva) Toinen sovellus (alempi kuva): Samankaltaisten sivujen löytäminen: sen sijasta, että aloitettaisiin sanahaun löytämistä sivuista, aloitetaan johonkin sivuun linkittävistä sivuista. 9 / 3 20 / 3
6 PageRank PageRank Sergey Brin and Larry Page, 998 (Google) The Anatomy of a Large-Scale Hypertextual Web Search Engine Wikipedia: PageRank Sivu on relevantti, jos relevantit sivut viittaavat siihen. Kehämääritelmä? (Jälleen tehdään iteratiivinen menetelmä) Jos sivulta t on linkit sivuille s, s 2,..., s k, sivun t relevanssista r välittyy /k jokaiselle näistä sivuista Esimerkiksi universumin neljä sivua, niiden nykyiset relevanssit, linkit ja välittyvät relevanssit 2 / 3 22 / 3 PageRank (2) PageRank (3) Siis relevanssivektori ( PageRank ) r F r, missä matriisin F määrittelee { /deg(t), jos t:stä on linkki s:ään F s,t = 0, muuten jossa deg(t) on linkkien määrä eli k yllä Sopivilla oletuksilla r on F:n suurinta ominaisarvoa vastaava ominaisvektori, joten iteraatio konvergoi Toinen tulkinta: Satunnainen surffailija aloittaa joltain sivulta ja seuraa linkkejä satunnaisesti. Sivun relevanssi on todennäköisyys, jolla surffailija päätyy sivulle (pitkän ajan kuluessa). Entä jos / 3 24 / 3
7 PageRank (4) PageRank (5) Jos sivusta ei ole linkkejä minnekään, lisätään linkit kaikkialle. Tässä n on sivujen määrä. /deg(t), jos t:stä on linkki s:ään F s,t = /n, jos t:stä ei ole linkkejä minnekään 0, muuten Lisätään linkkejä saman tien kaikkialle: sallitaan surffaajan joskus kyllästyä (lisäksi vältytään teknisiltä hankaluuksilta konvergenssitodistuksessa) Pieni esimerkki ɛ deg(t) + ɛ n, jos t:stä on linkki s:ään F s,t = /n, jos t:stä ei ole linkkejä minnekään ɛ/n, muuten Altavistan käyttäjät jaksoivat lukea tuloksia monelta sivulta, Googlen käyttäjät katsovat vain muutamaa ensimmäistä 25 / 3 26 / 3 Yhteenveto Liite: Kuvia esitykseen, luku 9 Esimerkki keskuksista ja auktoriteeteista Tässä luvussa keskusteltiin merkitsevien webbisivujen löytämisestä sivujen linkityksen perusteella. Keskusten ja auktoriteettien algoritmissa periaattena on, että hyvät keskukset linkittävät hyviin auktoriteetteihin ja vastaavasti hyviin auktoriteetteihin tulee linkkejä hyvistä keskuksista. PageRank-algoritmi laskee sivujen relevanssia satunnaisen surffailijan tavoin. Algoritmi on käytössä Googlessa. Tutkitaan oheista verkkoa, jonka kaarien matriisi M, M(i, j) =, jos olemassa kaari (s i, s j ). Oikeanpuoleisessa kuvassa vasemman puolen solmujen koko viittaa laskettuun keskuspainoon ja oikean puolen solmujen koko auktoriteettipainoon. Seuraavilla kalvoilla Matlab-koodi ja tulokset Kuva:. (a) Lähtötilanne. (b) Keskuspainot k,..., k 6 ja auktoriteettipainot a 7,... a / 3 28 / 3
8 Liite: Kuvia esitykseen, luku 9 Esimerkki keskuksista ja auktoriteeteista Matlab-koodi Liite: Kuvia esitykseen, luku 9 Esimerkki keskuksista ja auktoriteeteista Tulokset M = [ ; <M-matriisi> ]; % M(i,j)= <=> s_i-->s_j n = size(m,); a = ones(n,)/sqrt(n); k = ones(n,)/sqrt(n); % auktoriteettipainot % keskuspainot for s = : 20 aold = a; kold = k; anew = M *k; knew = M*a; % paivitys a = anew/sqrt(sum(anew.^2)); % skaalaus k = knew/sqrt(sum(knew.^2)); disp([ Kierros: num2str(s)]); disp([ Muutos: num2str(sum((a-aold).^2)), num2str(sum((k-kold).^2))]); disp([ # aukt kesk alku ]); disp([(:n) a k ones(n,)/sqrt(n)]) pause; end Kierros: 20 Muutos:.297e-5,.9e-4 # aukt kesk alku Takaisin kalvoihin 29 / 3 30 / 3 Liite: Kuvia esitykseen, luku 9 Esimerkki PageRank:sta ɛ deg(t) + ɛ n, jos t:stä on linkki s:ään F s,t = /n, jos t:stä ei ole linkkejä minnekään ɛ/n, muuten Kuva: PageRank-esimerkki. Varsinaiset linkit paksummalla viivalla ja nuolella. Takaisin kalvoihin 3 / 3
Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa
1 / 31 Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa T-61.2010 Datasta tietoon, syksy 2011 professori Heikki Mannila Tietojenkäsittelytieteen laitos, Aalto-yliopisto 1.12.2011
Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen
Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Heikki Mannila, Jouni Seppänen 12.12.2007 Webin lyhyt historia http://info.cern.ch/proposal.html http://browser.arachne.cz/screen/
Etsintä verkosta (Searching from the Web) T Datasta tietoon Jouni Seppänen
Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Jouni Seppänen 13.12.2006 1 Webin lyhyt historia 2 http://info.cern.ch/proposal.html 3 4 5 http://browser.arachne.cz/screen/ 6 7 Etsintä
Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.
Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla
Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Arvostus Verkostoissa: PageRank. Idea.
Arvostus Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 8..0 in idea on määrittää verkoston solmuille arvostusta kuvaavat tunnusluvut. Voidaan ajatella
Matematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 27. tammikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:
Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi
Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa
Ratkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
Internet. Tiedon haun tekniikkaa ja ongelmia. Tietotekniikan perusteet Helsingin ammattikorkeakoulu Stadia Vesa Ollikainen
Internet Tiedon haun tekniikkaa ja ongelmia Tavoite ja sisältö Tavoite Taito hakea tietoa tehokkaasti ja kriittisesti Internetistä Sisältö Hakumahdollisuudet Internetistä Internet-hakukoneet: toiminta,
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Ominaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
MS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
Matriisialgebra harjoitukset, syksy 2016
Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä
Ratkaisuehdotukset LH 10 / vko 48
MS-C134 Lineaarialgebra, II/017 Ratkaisuehdotukset LH 10 / vko 48 Tehtävä 1: Olkoot A R n n symmetrinen ja positiividefiniitti matriisi. Näytä, että (i T A n (λ iα i (ii A n (λ i α i jossa α i on siten,
Ratkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
[6.2 Hypertekstin tiedonhakumalleja (jatkoa)] ARC algoritmi: 3º Linkkitekstin huomiointi
[6.2 Hypertekstin tiedonhakumalleja (jatkoa)] º Linkkitekstin huomiointi [Chakrabarti, S. et al., Automatic resource compilation by analyzing hyperli structure and associative text. Computer Networks and
Milloin A diagonalisoituva?
Milloin A diagonalisoituva? ) Oletus: A on diagonalisoituva eli D = TAT, jollakin D = diag(λ, λ 2,..., λ n ). A:n ja D:n ominaisarvot ovat samat λ, λ 2,..., λ n ovat myös A:n ominaisarvot... D e i = D
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
Ortogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
Linkit webbihauissa / PageRank
Linkit Tiedonhakumenetelmät Webbisivuilta voi viitata toisille sivuille (hyper)linkeillä Linkit webbihauissa / Anchor to B Otsikko (vähän käytetty) ankkuriteksti 1
Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
Differentiaaliyhtälöt II, kevät 2017 Harjoitus 5
Differentiaaliyhtälöt II, kevät 27 Harjoitus 5 Heikki Korpela 26. huhtikuuta 27 Tehtävä 2. Määrää seuraavan autonomisen systeemin kriittiset pisteet, ratakäyrät ja luonnostele systeemin aikakehitys: (t)
Harjoitus 3 (31.3.2015)
Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
Paikannuksen matematiikka MAT
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:
Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi
MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.
URL-osoitteiden suunnittelu
Tim Berners-Lee: Jos olisin arvannut kuinka suosittu Webistä tulee, olisin yrittänyt keksiä URL-osoitteiden alkuosalle jonkin toisen muodon. http-alkuosa on hankala erityisesti puhelinkeskusteluissa. URL
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
Konjugaattigradienttimenetelmä
Konjugaattigradienttimenetelmä Keijo Ruotsalainen Division of Mathematics Konjugaattigradienttimenetelmä Oletukset Matriisi A on symmetrinen: A T = A Positiivisesti definiitti: x T Ax > 0 kaikille x 0
Numeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
Harjoitus 3 (3.4.2014)
Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
Matematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,
Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
Kohdeyleisö: toisen vuoden teekkari
Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
TIEDONHAKU INTERNETISTÄ
TIEDONHAKU INTERNETISTÄ Internetistä löytyy hyvin paljon tietoa. Tietoa ei ole mitenkään järjestetty, joten tiedonhaku voi olla hankalaa. Tieto myös muuttuu jatkuvasti. Tänään tehty tiedonhaku ei anna
Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5
Matemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
Numeeriset menetelmät
Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
Ortogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
3.2.2 Tikhonovin regularisaatio
3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M
8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151
Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät
Matematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
Iteratiiviset ratkaisumenetelmät
Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n
Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).
Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun
Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)
811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo
4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =
BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B
Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan
Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
VERKKORAKENTEEN VAIKUTUKSIA KAIKKI SOLMUT EIVÄT OLE SAMANLAISIA
VERKKORAKENTEEN VAIKUTUKSIA KAIKKI SOLMUT EIVÄT OLE SAMANLAISIA SATU ELISA SCHAEFFER Tietojenkäsittelyteorian laboratorio, TKK elisa.schaeffer@tkk.fi INF-0.3100 VERKOSTOJEN PERUSTEET KÄSITELTÄVÄT AIHEPIIRIT
Hankeviestijä hakukoneiden ihmeellisessä maailmassa. Joonas Jukkara, SEOSEON Ltd. https://seoseon.fi
Hankeviestijä hakukoneiden ihmeellisessä maailmassa Joonas Jukkara, SEOSEON Ltd. https://seoseon.fi Kuka, mitä, häh? Kuka? Joonas Jukkara, ikä 30v, digimarkkinointia ja hakukoneoptimointia viimeiset 4+
Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.
Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista
S Laskennallinen Neurotiede
S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 3 8.12.2006 Heikki Hyyti 60451P Tehtävä 2 Tehtävässä 2 piti tehdä 100 hermosolun assosiatiivinen Hopfield-muistiverkko. Verkko on rakennettu Matlab-ohjelmaan
Laskennallinen data-analyysi II
Laskennallinen data-analyysi II Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Kevät 2007 Ulottuvuuksien vähentäminen, SVD, PCA Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto visualisointi
Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
Harj 2 teht. 13. mplv0009r.mw
Harj 2 teht. 13 mplv0009r.mw 23.3.2013 Alustukset restart:with(linalg): with(linearalgebra): with(plots): setoptions3d(axes=boxed,orientation=[-30,50],style= patchcontour): #read("c:\\opetus\\maple\\v201.mpl"):
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:
2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Similaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
T Luonnollisten kielten tilastollinen käsittely
T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Numeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0.
T-6.28 Luonnollisen kielen tilastollinen käsittely Vastaukset, ti 7.2.200, 8:30-0:00 Tiedon haku, Versio.0. Muutetaan tehtävässä annettu taulukko sellaiseen muotoon, joka paremmin sopii ensimmäisten mittojen
Katsaus konepellin alle - iteratiivisia menetelmiä ominaisarvotehtävälle
Katsaus konepellin alle - iteratiivisia menetelmiä ominaisarvotehtävälle Saku Suuriniemi saku.suuriniemi@tut.fi TTY / Sähkötekniikka Fysiikan seminaari 13.2.2014 1 / 29 Outline Ominaisarvotehtävä Matriisien
10 yleistä hakukoneoptimointivirhettä
10 yleistä hakukoneoptimointivirhettä Petteri Erkintalo Kehitysjohtaja Klikkicom Oy 2011-09-27 2 1. Hakukoneiden pääsy sivustolle on estetty Hakukoneiden pääsyn sivustolle voi estää usein eri keinoin Yllättävän
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Sisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä
(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut
BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti
Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.
B U S I N E S S O U L U
S I S Ä L L Ö N T U O T T A M I N E N, T Y Ö K A L U T J A V I N K I T 8. 1 0. 2 0 1 9 V E R K K O J A L A N J Ä L K I B U S I N E S S O U L U K I R S I M I K KO L A & I L K K A K A U P P I N E N 8.10.2019
Osallistavan suunnittelun kyselytyökalu
Osallistavan suunnittelun kyselytyökalu Käyttöohje ARFM- hankkeessa jatkokehitetylle SoftGIS-työkalulle Dokumentti sisältää ohjeistuksen osallistavan suunnittelun työkalun käyttöön. Työkalu on käytettävissä