Linkit webbihauissa / PageRank

Koko: px
Aloita esitys sivulta:

Download "Linkit webbihauissa / PageRank"

Transkriptio

1 Linkit Tiedonhakumenetelmät Webbisivuilta voi viitata toisille sivuille (hyper)linkeillä Linkit webbihauissa / <a href= URL_to_B title= B title >Anchor to B</a> Otsikko (vähän käytetty) ankkuriteksti 1 2 Linkkeihin liittyviä oletuksia Linkit ja haku Linkki on laatuindikaattoori Linkin A B olemassaolo tarkoittaa, että sivun A laatija pitää sivua B korkeatasoisena ja relevanttina Onko aina näin? Ankkuriteksti kuvaa hyvin linkin kohdetta Näin pitäisi olla Yleisimmät ankkuritekstit webbisivuissa ovat kuitenkin here ja click Sivujen laatijat eivät ymmärrä linkkien merkitystä Ankkuriteksti pitäisi tulkita hieman laveammin linkin lähistöllä oleva teksti Esim.: Ohjeet harjoitustyön tekemiseksi ovat <a href= kurssisivu.htlm > täällä</a>. Laveasti tulkittu ankkuriteksti: Ohjeet harjoitustyön tekemiseksi ovat täällä. Kun ovat ja täällä ovat hukkasanoja, jäljelle jää Ohjeet harjoitustyön tekemiseksi Hakeminen sivuun viittaavalla ankkuritekstillä sivun tekstin lisäksi on usein tehokkaampaa kuin käyttämällä vain sivun oletettua tekstiä Sivun tekstit voivat johtaa harhaan Jollekin sivuston alisivulle Wikipediaan Spämmisivuille 3 4 Ankkuritekstit Linkkianalyysi Ankkuritekstit osoittavat suoraan kohteeseen Ovat usein parempia sisältökuvauksia kuin sivun oma teksti Voidaan käyttää kohdesivun indeksointiin ja painottaa sisällön kuvauksena jopa enemmän kuin sivun tekstiä Voidaan painottaa sen mukaisesti, miten hyväksi viittaajasivu arvostetaan Jos hyvältä sivulta viitataan sivulle x, niin x on myös hyvä Sivujen välisen linkityksen analysointia Lähdeviite-analyysin tapaista Tutkitaan viitteiden käyttöä tieteellisissä artikkeleissa Viittaukset artikkeliin mittaavat artikkelin vaikuttavuutta (impact) Samankaltaisen viitejoukon perusteella voidaan arvella artikkeleiden käsittelevän samaa aihepiiriä Käytetään hakutulosten rankkaukseen Samankaltainen linkitys voi toimia myös samankaltaisuuskriteerinä sivuille 5 6 H.Laine 1

2 Linkitykseen perustuva ranking Yksinkertainen linkkirankkaus Tekstihaun tuloksena saadut sivut järjestetään sivuun osoittavien linkkien lukumäärän (viitesuosio) perusteella Lähtösivut eivät pärjää Paljon viitattu sivu ei välttämättä ole hyvä Sisällöllinen hyvyys jää taka-alalle Pitäisi yhdistää sisällöllistä hyvyyttä kuvaava mitta ja viitesuosiota kuvaava mitta Viittaajien vaikuttavuuden huomioon ottava viitesuosion mitta 1996 Stanfordin yliopistossa (Page,Brin) Kaikki viittaukset eivät ole yhtä arvokkaita Viitesuosion voisi painottaa viittaajan vaikuttavuuden (Impact) perusteella 7 8 idea Ajatellaan, että henkilö surffailee satunnaisesti webbissä Lähtee liikkeelle satunnaisesti valitsemaltaan sivulta Tuttuaan jollakin sivulle valitsee satunnaisesti jonkin sivun linkeistä. Kaikkien linkkien valinta on yhtä todennäköistä. Pitkän ajan kuluessa havaitaan, että surffaajat eivät käy yhtä usein kaikilla sivuilla. on todennäköisyys sille, että surffaaja päätyy sivulle Määräytyy kyselyistä riippumattomasti verkon ominaisuuksien perusteella Surffaajien sivuvalintoja voidaan tarkastella Markovin ketjujen avulla mallintamalla sivut tiloina ja sivulta toiselle siirtymiset tilasiirtyminä. Tilasiirtymien todennäköisyydet määräytyvät sivuverkon rakenteen perusteella. Sivuille päätymisen todennäköisyys (=) saadaan määräämällä tilasiirtymien todennäköisyysmatriisin ominaisvektori Markovin ketjun sovellettavuus d1 Kytkentämatriisi Jaa arvo rivin ykkösten lukumäärällä Siirtymäverkossa ei saa olla umpikujia eikä silmukoita, joista ei pääse poiis d2 d3 P i,j = todennäköisyys siirtyä tilaan j, jos on päädytty tilaan i Siirtymätodennäköisyydet ½ 0 ½ mutta webissä on sivuja, joissa ei ole linkkejä Otetaan avuksi teleportaatio, Surffaaja voi hypätä sivulta minne sivulle tahansa antamalla sivun osoitteen H.Laine 2

3 Teleportaatio Teleportaatiohypyt mukaan matriisiin Umpikujasta hyppy todennäköisyydellä 1/N jollekin sivulle (N on sivujen kokonaismäärä) Muilta sivuilta todennäköisyydellä d siirtyminen satunnaisesti valitun linkin perusteella ja todennäköisyydellä (1-d) hyppy jollekin sivulle ( sivun todennäköisyys (1-d)/N) Jos sivulla 4 linkkiä, niin kukin valitaan toden näköisyydellä 0.25*d Yleisesti teleportaation huomioiva siirtymistodennäköisyys olisi (1-d)/N+d*p i,j d2 d1 Yleensä d=0.85 d3 Siirtymätodennäköisyydet ½ 0 ½ Teleportaatiohypythuomioivat siirtymätodennäköisyydet [oletetaan d=0.5] 1/6 2/3 1/6 5/12 1/6 5/12 1/6 2/3 1/6 (1-d)/N+d*p i,j Linkkianalyysi Ominaisvektorin laskenta On saatu aikaan siirtymätodennäköisyysmatriisi (merkitään sitä P:llä) ja olisi enää määrättävä ominaisvektori (syötetään MatLabiin ja NAPS) Tämä voidaan ratkaista laskemalla iteratiivisesti t:n arvoilla 0 f xp t kunnes tuloksessa ei enää tapahdu muutoksia (= saavutetaan tasapainotila). Tässä x on lähtösivua kuvaava vektori (lähtösolmu vapaasti valittavissa). P: Valitaan siis x 0 =(1 0 0) x 1 = x 0 P = (1/6 2/3 1/6) x 2 =x 1 P = (1/3 1/3 1/3) x 3 =x 2 P = (1/4 1/2 1/4) x 4 =x 3 P = (7/24 5/12 7/25). X f = (5/18 4/9 5/18) = (tai /N) d2 on siis rankkaukseltaan ylempänä kuin d3 ja d on yksi laatumitta, Google käyttää sitä mutta ei ainoana mittana Kyselyn tulokset haetaan hakutermien perusteella Sivujen järjestys määrätään mitan avulla => järjestys on kiinteä eikä riipu kyselystä Hakurobotit laskevat rankkausta uudelleen kierrellessään sivuja Todelliset käyttäjät eivät surffaa satunnaisesti Reitit ovat hyvin vinoutuneita, harvoihin aihepiireihin painottuneita ja polut lyhyitä Hakukoneet, hakemistot ja kirjanmerkit kasvattavat teleportaatiohyppyjen osuutta Hakukonetta saatetaan käyttää navigointivälineenä jolloin linkkin merkitys hakijalle vähenee Pelkästään mitan käyttö voi tuottaa huonoja tuloksia Painotettu yhdistelmä tekstirankkauksesta, ankkurirankkauksesta ja linkkirankkauksesta tuottaa ehkä parhaan tuloksen (Painot?) H.Laine 3

4 Aihepiirikohtaiset sivurankkaukset Linkkirakennetta hyödyntävä aihepiirihaku Tavoitteena aihepiirikohtainen paremmuusjärjestys Voisi toimia esim. siten että, jos havaitaan käyttäjän olevan kiinnostunut tietystä aihepiiristä tarjotaan materiaali aihepiirikohtaiseen rankkaukseen perustuen (urheilu, tähtitiede, lääketiede, viihde, kokkaus, ) Voi olla hyödyllinen Laskettavuus ja resurssitarve, tarvitaan useita rankkauslukuja /sivu Miten tehdään aihepiiriluokittelu manuaalinen vai LSI? Käyttäjäkohtaiset rankkaukset??? Hyperlink-induced topic search (HITS) Kokonaiskuvaa aihepiiristä haettaessa Kyselyt voivat tuottaa tuloksenaan kahdenlaisia sivuja Asiasivut (authority page) Sisältävät tietoa jostain asiasta Suora vastaus tietotarpeeseen Viitataan usein koostesivuilta Koostesivut (hub page) Johonkin aihepiiriin liittyviä hakemistoja tai kokoelmia, joissa viitataan asiantuntijasivuille Kokonaiskuvaa aihepiiristä Voisi siis olla kahdenlaista relevanssia Asiarelevanssia Koosterelevanssia Relevanssilajit Asia- ja koostepisteet Hyvä koostesivu viittaa useille hyville asiasivuille Hyvään asiasivuun viitataan monelta hyvältä koostesivulta Tavoitteena on löytää huippusivut Miten Valitaan joukko sivuja, jotka voisivat olla hyviä asia- tai koostesivuja Valitaan näiden joukosta huiput Haetaan kaikki sivut, jotka sisältävät kyselytermejä = lähtöjoukko Lisätään joukkoon sivut, jotka viittaavat lähtöjoukon sivuihin sivut, joihin lähtöjoukon sivut viittaavat => tuloksena perusjoukko Lasketaan kullekin perusjoukon sivulle asiapisteet a(x) ja koostepisteet (h(x) lähdetään arvosta 1 ja kasvatetaan iteratiivisesti linkitysten perusteella Huiput Pisteiden lasku Iteraatioiden jälkeen tulostetaan huiput Sivut, joilla on korkein koostepistemäärä h() Sivut, joilla on korkein koostepistemäärä h() Pistelaskentaa iteratiivisesti h(x) x y a(y) x Lähtöjoukoissa tyypillisesti sivua Perusjoukossa voi olla useita tuhansia Joukkoa kasvatetaan sivun linkkejä ja kytkentätietoja käyttämällä Lähtevät ja tulevat linkit a(x) y x h(y) x Iteratiivisesti kunnes konvergoi (vastaa in yhteydessä käytettyä Markovin ketjua) H.Laine 4

5 Pistemäärää voidaan skaalata, jotta se ei kasva liian suureksi. Kertoimella ei väliä, jos suuruusjärjestys säilyy. Tulokseen kahdenlaisia sivuja Tulokseen voi tulla sivuja, joissa ei mainita hakutermejä lainkaan 25 H.Laine 5

Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen

Etsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Heikki Mannila, Jouni Seppänen 12.12.2007 Webin lyhyt historia http://info.cern.ch/proposal.html http://browser.arachne.cz/screen/

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Arvostus Verkostoissa: PageRank. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Arvostus Verkostoissa: PageRank. Idea. Arvostus Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 8..0 in idea on määrittää verkoston solmuille arvostusta kuvaavat tunnusluvut. Voidaan ajatella

Lisätiedot

Etsintä verkosta (Searching from the Web) T Datasta tietoon Jouni Seppänen

Etsintä verkosta (Searching from the Web) T Datasta tietoon Jouni Seppänen Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Jouni Seppänen 13.12.2006 1 Webin lyhyt historia 2 http://info.cern.ch/proposal.html 3 4 5 http://browser.arachne.cz/screen/ 6 7 Etsintä

Lisätiedot

Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa 1 / 31 Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa T-61.2010 Datasta tietoon, syksy 2011 professori Heikki Mannila Tietojenkäsittelytieteen laitos, Aalto-yliopisto 1.12.2011

Lisätiedot

Tämän luvun sisältö. Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa. Webin lyhyt historia 1992: ensimmäisiä selaimia

Tämän luvun sisältö. Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa. Webin lyhyt historia 1992: ensimmäisiä selaimia Tämän luvun sisältö Luku 9. Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa T-6.200 Datasta tietoon, syksy 20 professori Heikki Mannila Tietojenkäsittelytieteen laitos, Aalto-yliopisto.2.20

Lisätiedot

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea.

Department of Mathematics, Hypermedia Laboratory Tampere University of Technology. Roolit Verkostoissa: HITS. Idea. Roolit Tommi Perälä Department of Mathematics, Hypermedia Laboratory Tampere University of Technology 25.3.2011 J. Kleinberg kehitti -algoritmin (Hypertext Induced Topic Search) hakukoneen osaksi. n taustalla

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 27. tammikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Rankkaukseen perustuva tiedonhaku.

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Rankkaukseen perustuva tiedonhaku. Boolen haut Tiedonhakumenetelmät Rankkaukseen perustuva tiedonhaku Boolen haussa dokumentti joko täyttää hakuehdon tai ei täytä hakuehtoa Hakuehdon täyttäviä vastauksia voi olla runsaasti (tuhansia - miljoonia)

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Hankeviestijä hakukoneiden ihmeellisessä maailmassa. Joonas Jukkara, SEOSEON Ltd. https://seoseon.fi

Hankeviestijä hakukoneiden ihmeellisessä maailmassa. Joonas Jukkara, SEOSEON Ltd. https://seoseon.fi Hankeviestijä hakukoneiden ihmeellisessä maailmassa Joonas Jukkara, SEOSEON Ltd. https://seoseon.fi Kuka, mitä, häh? Kuka? Joonas Jukkara, ikä 30v, digimarkkinointia ja hakukoneoptimointia viimeiset 4+

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi

Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

6. Hyperteksti ja tiedonhaku. Hypertekstissä solmu on vahva, riittävä peruskäsite.

6. Hyperteksti ja tiedonhaku. Hypertekstissä solmu on vahva, riittävä peruskäsite. 6. Hyperteksti ja tiedonhaku 6.1 Yleistä Hypertekstimäinen informaation jäsentely: -solmut - linkit (yhteydet) Yhteys tiedonhakuun: solmu = dokumentti tai sen osa tiivistelmä raportti sisällys Hypertekstissä

Lisätiedot

Tehtävä: FIL Tiedostopolut

Tehtävä: FIL Tiedostopolut Tehtävä: FIL Tiedostopolut finnish BOI 2015, päivä 2. Muistiraja: 256 MB. 1.05.2015 Jarkka pitää vaarallisesta elämästä. Hän juoksee saksien kanssa, lähettää ratkaisuja kisatehtäviin testaamatta esimerkkisyötteillä

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Tiedonhakumenetelmät 8.4.2014. Tiedonhakumenetelmät Helsingin yliopisto/ TKTL, k 2014. H.Laine 1. Webbihaut Hakukone. Webbihaku. Hakukoneiden käyttö

Tiedonhakumenetelmät 8.4.2014. Tiedonhakumenetelmät Helsingin yliopisto/ TKTL, k 2014. H.Laine 1. Webbihaut Hakukone. Webbihaku. Hakukoneiden käyttö Webbihaku Hakurobotti (crawler) Indeksoija Tiedonhakumenetelmät Indeksit Mainosindeksit Webbihaut Hakukone Hae 1 2 Webbihaku Hakukoneiden käyttö Perinteisessä tiedonhaussa haetaan dokumentteja tietotarpeen

Lisätiedot

10 helppoa SEO-ohjetta

10 helppoa SEO-ohjetta 10 helppoa SEO-ohjetta 10 helppoa SEO-ohjetta On-page SEO tarkoittaa sivuston sisällölle tehtäviä muutoksia, joilla on merkittävä vaikutus siihen kuinka korkealla sivusto hakukoneiden tuloksissa näkyy.

Lisätiedot

10 helppoa käytännön ohjetta SEO-optimointiin.

10 helppoa käytännön ohjetta SEO-optimointiin. 10 helppoa käytännön ohjetta SEO-optimointiin. On-page SEO-optimointi tarkoittaa nettisivustolle tehtäviä muutoksia, joilla on osaltaan huikea vaikutus sivuston näkyvyyteen hakukoneissa. Tarkista helposti

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto, tktl, k2014. H.Laine 1

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto, tktl, k2014. H.Laine 1 Kyselyn käsittely Tiedonhakumenetelmät Ranking mitan laskenta Vektorimalli ja muut kyselytyypit Hakujärjestelmä 1 2 Kosinimitan laskennassa käytetään dokumenttien painon normalisointiin dokumentin Euclidista

Lisätiedot

ARVO - verkkomateriaalien arviointiin

ARVO - verkkomateriaalien arviointiin ARVO - verkkomateriaalien arviointiin Arvioitava kohde: Jenni Rikala: Aloittavan yrityksen suunnittelu, Arvioija: Heli Viinikainen, Arviointipäivämäärä: 12.3.2010 Osa-alue 1/8: Informaation esitystapa

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

[6.2 Hypertekstin tiedonhakumalleja (jatkoa)] ARC algoritmi: 3º Linkkitekstin huomiointi

[6.2 Hypertekstin tiedonhakumalleja (jatkoa)] ARC algoritmi: 3º Linkkitekstin huomiointi [6.2 Hypertekstin tiedonhakumalleja (jatkoa)] º Linkkitekstin huomiointi [Chakrabarti, S. et al., Automatic resource compilation by analyzing hyperli structure and associative text. Computer Networks and

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

Johdatus verkkoteoriaan 4. luento

Johdatus verkkoteoriaan 4. luento Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Kohdeyleisö: toisen vuoden teekkari

Kohdeyleisö: toisen vuoden teekkari Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

10 yleistä hakukoneoptimointivirhettä

10 yleistä hakukoneoptimointivirhettä 10 yleistä hakukoneoptimointivirhettä Petteri Erkintalo Kehitysjohtaja Klikkicom Oy 2011-09-27 2 1. Hakukoneiden pääsy sivustolle on estetty Hakukoneiden pääsyn sivustolle voi estää usein eri keinoin Yllättävän

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu 811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Finna Tunnusluvut 5.3.2015

Finna Tunnusluvut 5.3.2015 Finna Tunnusluvut 1. TUNNUSLUVUT Nykyään Finnasta lasketaan seuraavat tunnusluvut: Osallistuvien organisaatioiden määrä Indeksin viitteiden määrä Verkossa saatavilla olevien viitteiden määrä Eri aineistotyyppien

Lisätiedot

SANAKIRJA # S E O H A L T U UN # B L O G G A A J A NSEO # S E O J A S M O

SANAKIRJA # S E O H A L T U UN # B L O G G A A J A NSEO # S E O J A S M O SANAKIRJA # S E O H A L T U UN # B L O G G A A J A NSEO # S E O J A S M O SEO = Hakukoneoptimointi = search engine optimization blogin sijoituksen nostaminen hakukoneiden hakutuloksissa blogipostausten

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

VERKKORAKENTEEN VAIKUTUKSIA KAIKKI SOLMUT EIVÄT OLE SAMANLAISIA

VERKKORAKENTEEN VAIKUTUKSIA KAIKKI SOLMUT EIVÄT OLE SAMANLAISIA VERKKORAKENTEEN VAIKUTUKSIA KAIKKI SOLMUT EIVÄT OLE SAMANLAISIA SATU ELISA SCHAEFFER Tietojenkäsittelyteorian laboratorio, TKK elisa.schaeffer@tkk.fi INF-0.3100 VERKOSTOJEN PERUSTEET KÄSITELTÄVÄT AIHEPIIRIT

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Search space traversal using metaheuristics

Search space traversal using metaheuristics Search space traversal using metaheuristics Mika Juuti 11.06.2012 Ohjaaja: Ville Mattila Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Liikenneongelmien aikaskaalahierarkia

Liikenneongelmien aikaskaalahierarkia J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät

Lisätiedot

Lääkintähelikopterikaluston mallintaminen

Lääkintähelikopterikaluston mallintaminen Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Lääkintähelikopterikaluston mallintaminen Väliraportti 19.3.2010 Pohjalainen Tapio (projektipäällikkö) (29157N) Kuikka Ilmari (58634A) Tyrväinen Tero

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio, Differentiaaliyhtälöt, Kesä 06 Harjoitus 3 Kaikissa tehtävissä, joissa pitää tarkastella kriittisten pisteiden stabiliteettia, jos kyseessä on satulapiste, ilmoita myös satulauraratkaisun (tai kriittisessä

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Tee html-sivu, jossa on yllä olevat kaksi taulukkoa.

Tee html-sivu, jossa on yllä olevat kaksi taulukkoa. TAULUKKO 1 Taulukoiden avulla voidaan informaatio esittää havainnollisesti esimerkiksi palstoitettuna. Lisäksi voidaan sijoittaa eri elementit haluttuihin paikkoihin (taulukkotaitto). Taulukko luodaan

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Summon tehokas monihaku

Summon tehokas monihaku Summon tehokas monihaku Suomen Tieteellinen Kirjastoseura Tietoaineistoseminaari 14.3.2012: Onnistuuko kirjasto tiedon hallinnassa? Tuula Hämäläinen, VTT 2 Sisältö VTT, lyhyt organisaation ja Tietoratkaisujen

Lisätiedot

17. Differentiaaliyhtälösysteemien laadullista teoriaa.

17. Differentiaaliyhtälösysteemien laadullista teoriaa. 99 17. Differentiaaliyhtälösysteemien laadullista teoriaa. Differentiaaliyhtälön x'(t) = f(x(t),t), x(t) n määrittelemän systeemin sanotaan olevan autonominen, jos oikea puoli ei eksplisiittisesti riipu

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

TIEDONHAKU INTERNETISTÄ

TIEDONHAKU INTERNETISTÄ TIEDONHAKU INTERNETISTÄ Internetistä löytyy hyvin paljon tietoa. Tietoa ei ole mitenkään järjestetty, joten tiedonhaku voi olla hankalaa. Tieto myös muuttuu jatkuvasti. Tänään tehty tiedonhaku ei anna

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774

Lisätiedot

Auta asiakkaita löytämään kauppaasi! Terhi Aho/ 21.4.2016

Auta asiakkaita löytämään kauppaasi! Terhi Aho/ 21.4.2016 Auta asiakkaita löytämään kauppaasi! Terhi Aho/ 21.4.2016 #ässäthihasta #tuloslove Verkkokaupan hakukoneoptimointi 1. Löydettävyys 2. Mitä on hakukoneoptimointi? 3. Avainsanatutkimus 4. Asiakaspalvelu

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 3 521475S Rinnakkaiset Numeeriset Algoritmit Silmukattomat algoritmit Eivät sisällä silmukka lauseita kuten DO,FOR tai WHILE Nopea suorittaa Yleisimmässä muodossa koostuu peräkkäisistä

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

TEEMA 2 TAULUKKODATAN KÄSITTELY JA TIEDON VISUALISOINTI

TEEMA 2 TAULUKKODATAN KÄSITTELY JA TIEDON VISUALISOINTI TEEMA 2 TAULUKKODATAN KÄSITTELY JA TIEDON VISUALISOINTI Aulikki Hyrskykari & Juhani Linna LUENTO 3 11.9.2018 TÄMÄ VIIKKO o o Ensimmäinen vertaisarvioinnin määrä-aika umpeutui eilen arviointiin saa lisä-aikaa,

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Hakukoneoptimointi. Frida-Maria Pessi 2014

Hakukoneoptimointi. Frida-Maria Pessi 2014 Hakukoneoptimointi Frida-Maria Pessi 2014 Mitä hakukoneoptimointi on? suomennos sanoista search engine optimization (SEO). web-sivujen sijoitusten nostamista hakukoneiden hakutuloksissa hakutulosten houkuttelevuuden

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

Ominaisarvo-hajoitelma ja diagonalisointi

Ominaisarvo-hajoitelma ja diagonalisointi Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat

Lisätiedot

Kotisivu. Hakutoiminnon on oltava hyvin esillä lähes kaikilla kotisivuilla. Hakutoiminto on hyvä sijoittaa heti kotisivun yläosaan.

Kotisivu. Hakutoiminnon on oltava hyvin esillä lähes kaikilla kotisivuilla. Hakutoiminto on hyvä sijoittaa heti kotisivun yläosaan. Kotisivu Kotisivu on sivuston pääsivu Ensi kertaa sivustolle saapuvan käyttäjän pitäisi pystyä päättelemään sivuston tarkoitus kotisivun nähtyään. Usein lähtökohtana sivuston hierarkinen pääjaottelu, mutta

Lisätiedot

B U S I N E S S O U L U

B U S I N E S S O U L U S I S Ä L L Ö N T U O T T A M I N E N, T Y Ö K A L U T J A V I N K I T 8. 1 0. 2 0 1 9 V E R K K O J A L A N J Ä L K I B U S I N E S S O U L U K I R S I M I K KO L A & I L K K A K A U P P I N E N 8.10.2019

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot

1 p p P (X 0 = 0) P (X 0 = 1) =

1 p p P (X 0 = 0) P (X 0 = 1) = Mat-2.3 Stokastiset rosessit Syksy 2007 Laskuharjoitustehtävät 3 Poroudas/Kokkala. Tarkastellaan Markov-ketjua, jonka tilajoukko on {0, } ja tilansiirtotodennäköisyysmatriisi P Olkoon alkujakauma α 0 a

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 / MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot