PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus"

Transkriptio

1 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden määritelmästä eli kappaleen massan ja tilavuuden suhteesta. Kappaleen massan määrität punnitsemalla kappaleen ja tilavuuden mittaamalla kappaleen ulko- ja sisähalkaisijat sekä korkeuden. Opit arvioimaan mittaustulostesi luotettavuutta niin, että osaat arvioida sekä tilavuuden että tiheyden absoluuttisen ja suhteellisen virheen ylärajat. Kun olet määrittänyt tutkittavan kappaleen tiheyden, voit päätellä, mitä metallia kappale on. 1. Oppimistavoitteet Työn tarkoituksena on opettaa sinua käyttämään kolmea tärkeää perusmittausvälinettä analyysivaakaa, työntömittaa ja mikrometriruuvia. Jos jatkat tämän kurssin jälkeen kohti vaativampia fysiikan, kemian tai tekniikan mittauksia, tulet käyttämään näitä mittalaitteita monta kertaa. Opit myös määrittämään vaa an, työntömitan ja mikrometriruuvin lukematarkkuuden, mikä on tärkeää arvioitaessa yksittäisen suureen mittaustarkkuutta. Tässä työssä keskeisenä tavoitteena on myös harjoitella mittaustulosten luotettavuuden arviointia. Opit arvioimaan omien mittaustesi perusteella yksittäisen mittaustuloksen virhettä. Tuloksen luotettavuutta parannetaan usein mittaamalla sama suure monta kertaa, jolloin suureen virhe voidaan arvioida tarkastelemalla yksittäisten mittaustulosten poikkeamaa tulosten keskiarvosta. Opit myös soveltamaan luennoilla käsiteltyä kokonaisdifferentiaalimenetelmää mittauksissa esiintyvään tilanteeseen, jossa määritettävät suureet (metallikappaleen tilavuus ja tiheys) eivät ole suoraan mitattavissa. Harjoittelet myös käyttämään ns. 15 yksikön sääntöä, joka on yleisesti käytössä oleva ohje sille, miten lopputulos ilmoitetaan virherajoineen. Kolmas tärkeä oppimistavoite on tutustuttaa sinut mittausraportin, jota fysiikan ja kemian töiden yhteydessä usein kutsutaan työselostukseksi, laatimiseen. Kaikki tälle kurssille osallistuvat opiskelijat olivatpa he sitten tulevia fyysikoita, kemistejä, opettajia tai diplomi-insinöörejä tulevat todennäköisesti tulevissa työtehtävissään kirjoittamaan koko joukon erilaisia mittausraportteja. Siksi työselostusten kirjoittaminen on hyvää harjoitusta tulevia työtehtäviäsi ajatellen. Työselostusten laatimisen helpottamiseksi löytyy ohje tämän kurssin sivuilta.

2 PERUSMITTAUKSIA. Pituuden mittaus ja punnitseminen.1 Metrimitta Metrimitalla voidaan sen pituudesta riippuen kätevästi mitata pituuksia 0,1 m 30 m. Metrimitan lukematarkkuus on 0,5 1 mm.. Työntömitta Lyhyitä, alle 0 cm:n välejä mitattaessa päästään suurempaan tarkkuuteen, kun käytetään metrimitan sijaan työntömittaa. Työntömitan lukematarkkuus on 0,05 0,1 mm. Työntömitta on esitetty kuvassa 1.1. Kuvan mukaisesti voidaan kiinteän ja liikkuvan mittausleuan (a1 ja a) välissä mitata kappaleiden ulkomittoja ja kiinteän ja liikkuvan mittauskärjen (b1 ja b) välissä sisämittoja. Kielen c avulla mitataan syvyyttä. Työntömitan pääasteikko löytyy sen rungolta (d) ja lisäksi työntömittaan kuuluu liikkuvalta osalta eli luistilta (e) löytyvä lukematarkkuutta parantava ns. noniusasteikko eli sivuasteikko. Työntömitassa on yleensä lukituslaite eli salpa (f), joka lukitsee leuat, kärjet ja kielen mittausasemaan. b1 b d c a1 a e f a1, a = leuat, b1,b = kärjet, c = kieli, d =runko, e = luisti, f = salpa Kuva 1.1. Työntömitta ja sen osat. Ennen mittausta tarkastetaan työntömitan nollakohta ja tarvittaessa otetaan korjaus huomioon vähentämällä nollakohdan lukema etumerkkeineen saadusta työntömitan lukemasta. Tämän jälkeen mitattava kappale asetetaan paikoilleen esimerkiksi ulkohalkaisijan mittaamista varten leukojen a1 ja a väliin. Työntömitalla mittaamista esittää tarkemmin kuva 1.. Mittaustuloksen kokonaisosa luetaan pääasteikolta (kuvassa 1. g1) sivuasteikon nollaviivan kohdalta. Pääasteikon jaotus on tavallisesti 1 mm. Esimerkiksi kuvan 1. tilanteessa, joka näkyy suurennettuna kuvan oikeassa alanurkassa, sivuasteikon nollaviiva sattuu välille 70 mm ja 71 mm ja kokonaisosaksi saadaan siten kuvan tilanteessa 70 mm. Sivuasteikolla (kuvassa 1. h1) on pääasteikon

3 3 mittaväli l jaettu n:ään osaan (tavallisesti n on 10, 0 tai 50). Kuvan tilanteessa pääasteikon mittaväli 1 mm on jaettu 0 osaan. Myös nonius-asteikon pituus vastaa pituutta l ja siinä on mittaviivoja etäisyydellä l toisistaan siten, että l = l n, jolloin l = l/n. Kuvassa nonius-asteikon mittaviivojen välimatka vastaa siis todellisuudessa etäisyyttä 1 mm/0 = 0,05 mm. Yleensä tämä työntömitan lukematarkkuus on merkitty mittaan (kuvassa 1. i). Mittaustuloksen murto-osat luetaan nyt katsomalla, mikä sivuasteikon viiva sattuu parhaiten kohdakkain jonkin pääasteikon viivan kanssa. Kuvan 1. tilanteessa sivuasteikon lukemaa 7 vastaava viiva sattuu parhaiten kohdakkain pääasteikon viivan kanssa. Mittaustulos on tässä tilanteessa siten 70,70 mm. i g h h1 g1 g1, g = pääasteikko (cm, tuuma), h1, h = sivuasteikko (cm, tuuma), i = lukematarkkuus Kuva 1.. Työntömitalla mittaaminen..3 Mikrometriruuvi Mikrometriruuvilla tai mikrometrillä voidaan mitata lyhyitä, alle,5 cm:n välejä. Mikrometriruuvin lukematarkkuus on yleensä 0,01 mm. Kuva 1.3 esittää tyypillistä fysiikan töissä käytettävää mikrometriruuvia. Mikrometriruuvi muodostuu kaarevasta runko-osasta (kuvassa a), jonka toisessa päässä on ruuvikierre (b) ja toisessa päässä vastinkappale eli alasin (c). Kiertämällä ruuvia voidaan säätää ruuvin pään ja alasimen välimatkaa. Ruuvin yhtä kierrosta vastaava nousu on yleensä 0,5 tai 1 mm. Ruuvin mukana kiertyy sylinterinmuotoinen putki, jonka reunassa on asteikko (kuvassa d ja e). Asteikko on jaettu joko 50 osaan nousun ollessa 0,5 mm tai 100 osaan nousun ollessa 1 mm, jolloin pienin jako-osa on 0,01 mm. Tämä mikrometriruuvin lukematarkkuus on usein merkitty näkyville (f.)

4 4 PERUSMITTAUKSIA Mikrometriruuviin kuuluu tavallisesti lukituslaite (kuvassa g), jolla ruuvi voidaan lukita mittausasemaan. Ruuvia kierrettäessä lukitus ei saa olla päällä. Sylinteriputken päässä tai päällä näkyvä osa on kitkajarru (h). Ruuvin loppukiristys tehdään mittaustilanteessa kitkajarrulla, jolloin saadaan jokaisella mittauskerralla yhtä suuri voimavaikutus mittauskohteeseen. Mikrometriruuvia on vältettävä kiertämästä liian voimakkaasti, koska tämä voi aiheuttaa nollakohdan siirtymisen. Mikrometriruuvilla mitattaessa asteikon nollakohta onkin aina muistettava tarkastaa. Jos nollakohtaa vastaa jokin muu lukema kuin nolla, korjataan mittauslukemaa vähentämällä nollakorjaus etumerkkeineen saadusta mikrometriruuvin lukemasta. Kuvan 1.3 alanurkan tilanteessa mikrometriruuvin nollalukema on +0,01 mm. e h c b d a f g a = runko, b = ruuvikierre, c = alasin, d = sylinteriputki, e = asteikko, f = lukematarkkuus, g = lukitus, h = kitkajarru Kuva 1.3. Mikrometriruuvi. Mikrometriruuvilla mitattaessa kappale Yläasteikko asetetaan kuvan 1.4 mukaisesti ruuvikierteen ja alasimen väliin ja käännetään kitkajarrusta ruuvi mittausasentoon. Kuvassa käytössä on mikrometriruuvi, jonka kierteen nousu on 0,5 mm. Tässä mikrometri- Ala-asteikko ruuvissa mittauslukeman kokonaiset millimetrit luetaan yläasteikolta ja puolikkaat Kuva 1.4. Mikrometriruuvilla mittaaminen. ala-asteikolta. Kuvan tilanteessa kokonaisia millimetrejä saadaan 15, mutta ala-asteikolta huomataan, että lukemaa 15,5 vastaava viiva on vasta tulossa näkyviin, jolloin puolikkaita millimetrejä ei tässä ole. Murto-osat luetaan sylinteriputken reunassa olevalta asteikolta ja kuvassa lukema on 40. Mittaustulos on siten (15 + 0,0 + 0,40) = 15,40 mm. Kuvan 1.3 alareunassa näkyvä nollakorjaus huomioiden mittaustulokseksi saadaan 15,40 mm 0,01 mm = 15,39 mm.

5 5.4 Punnitseminen Kevyitä kappaleita, joiden massa on alle 00 g, punnitaan opetuslaboratoriossa kuvassa 1.5 a) näkyvällä digitaalisella analyysivaa alla. Painavampia kappaleita punnittaessa käytetään kuvassa 1.5 b) esitettyä orsivaakaa, jonka käyttöön tutustut lähemmin Fysiikan laboratoriotyöt kurssissa. a) b) Ovet Kappale Nollaus (Tare) On/Off Kuva 1.5. a) Digitaalinen analyysivaaka b) Orsivaaka. 3. Ennakkotehtävät Ratkaise seuraavat tehtävät ennen saapumista työvuorolle. Palauta ratkaisusi työn ohjaajalle. d 1 d 1. Tutkittava kappale on oheisen kuvan mukainen h sylinterirengas, jonka ulkohalkaisija on d1, sisähalkaisija on d ja korkeus on h. Johda renkaan tilavuudelle V yhtälö h V = p ( d1 - d ). (1.1) Kuva 1.6. Tutkittava sylinterirengas. 4. Osoita liitteessä 1 annettujen ohjeiden avulla, että tilavuuden absoluuttisen virheen yläraja D V voidaan laskea yhtälöstä DV phd -phd + 1 p Dd1 Dd + ( d1 - d 4 ) Dh. (1.)

6 6 PERUSMITTAUKSIA 4. Mittaukset Valitse työn ohjaajan antamasta kokoelmasta tutkittavaksesi yksi metallirengas. Tarkastele valitsemaasi kappaletta ja yritä päätellä, mitä metallia se voisi olla. 4.1 Kappaleen tilavuus Mittaa valitsemasi kappaleen halkaisijat kymmenestä eri kohdasta työntömitalla ja korkeus samoin kymmenestä kohdasta mikrometriruuvilla. Kirjaa ylös käyttämiesi mittalaitteiden lukematarkkuudet ja muista tarkastaa myös nollakorjaukset. 4. Kappaleen massa Kappaleen punnituksessa käytetään kuvassa 1.5 a) esitettyä analyysivaakaa. Tarkasta vaa an nollakohta ennen mittausta ja punnitse kappale sitten ohjaajan antamien ohjeiden mukaan. Kirjaa mittauspöytäkirjaan ylös punnitustulos sekä massan virheenä käytettävä vaa an lukematarkkuus. 5. Mittaustulosten käsittely ja tulosten luotettavuuden arviointi 5.1 Kappaleen tilavuuden määritys Laske tutkimasi kappaleen ulko- ja sisähalkaisijoiden sekä korkeuden keskiarvot. Laske tämän jälkeen yksittäisten mittaustulostesi poikkeamat keskiarvosta. Nyt voit määrittää halkaisijoiden ja korkeuden absoluuttisten virheiden ylärajat D d1, D d ja D h vertaamalla mitan lukematarkkuutta ja suurinta poikkeamaa keskiarvosta toisiinsa. Tee halkaisijoiden ja korkeuden keskiarvoihin mahdolliset nollakorjaukset ja laske tämän jälkeen kappaleen tilavuus yhtälöstä (1.1). Määritä sitten tilavuuden absoluuttisen virheen yläraja lausekkeen (1.) avulla sijoittamalla siihen määrittämäsi halkaisijoiden ja korkeuden absoluuttisten virheiden ylärajat. Laske lisäksi tilavuuden suhteellisen virheen yläraja D V V. 5. Metallin tiheyden määritys Aineen tiheydellä r tarkoitetaan sen massan m ja tilavuuden V suhdetta, ts. m r =. (1.3) V

7 7 Sijoita määrittämäsi kappaleen massa ja edellä laskemasi tilavuus yhtälöön (1.3) ja laske metallin tiheys. Muodosta sitten yhtälön (1.3) perusteella aineen tiheyden luonnollisen logaritmin ln r lauseke massan m ja tilavuuden V luonnollisten logaritmien ln m ja ln V avulla. Määritä tiheyden suhteellisen virheen D r r ylärajan lauseke Liitteen 1 avulla ja sijoita saamaasi lausekkeeseen mittaamasi massan arvo m sekä sen virheraja D m ja edellä laskemasi tilavuuden suhteellisen virheen yläraja D V V. Laske vielä näin saamasi suhteellisen virheen ylärajan avulla tiheyden absoluuttisen virheen Dr yläraja. 6. Lopputulokset ja johtopäätökset Ilmoita lopputuloksina tutkimasi kappaleen tilavuus ja määrittämäsi metallin tiheys sekä niiden absoluuttiset ja suhteelliset virheet. Työselostuksen tärkeässä Johtopäätökset kappaleessa voit tarkastella omia mittaustuloksiasi kriittisesti, kuinka luotettavia ne mielestäsi ovat. Voit myös pohtia sitä, arvasitko oikein, mitä metallia tutkimasi kappale oli. Tarkastele myös työn opetuksellisia tavoitteita, opitko niitä asioita, joista kappaleessa 1. kerrottiin. Tulisiko mieleesi jotain, millä oppimistasi voitaisiin parantaa?

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus

PERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus Oulun yliopisto Fysiikan opetuslaboratorio 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden

Lisätiedot

0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS

0.3 LOPPUTULOKSEN ESITTÄMISTARKKUUS 18 0. LOPPUTULOKSEN ESITTÄMISTARKKUUS Fysikaalisen mittauksen ja virheenarvioinnin seurauksena määritettävän suureen arvolle saadaan likiarvo ja virhe (epätarkkuus). Lopputulokseen ei ole tarpeen sisällyttää

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

1 TYÖNTÖMITTA. sisä mittakärjet tuuma-nonio lukitusruuvi. 1.1 Yleistä työntömitasta

1 TYÖNTÖMITTA. sisä mittakärjet tuuma-nonio lukitusruuvi. 1.1 Yleistä työntömitasta MITTAVAUNU MATERIAALIA 1( 35) 1 TYÖNTÖMITTA 1.1 Yleistä työntömitasta Työntömitta ( tönäri, mauseri ) kuuluu tekniikan alan perustyökaluihin, joten sen oikeaoppinen käyttö on jokaisen ammattilaisen osattava.

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

Koneistusyritysten kehittäminen. Mittaustekniikka. Mittaaminen ja mittavälineet. Rahoittajaviranomainen: Satakunnan ELY-keskus

Koneistusyritysten kehittäminen. Mittaustekniikka. Mittaaminen ja mittavälineet. Rahoittajaviranomainen: Satakunnan ELY-keskus Koneistusyritysten kehittäminen Mittaustekniikka Mittaaminen ja mittavälineet Rahoittajaviranomainen: Satakunnan ELY-keskus Yleistä Pidä työkalut erillään mittavälineistä Ilmoita rikkoutuneesta mittavälineestä

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

AKK-MOTORSPORT ry Katsastuksen käsikirja ISKUTILAVUUDEN MITTAAMINEN. 1. Tarkastuksen käyttö

AKK-MOTORSPORT ry Katsastuksen käsikirja ISKUTILAVUUDEN MITTAAMINEN. 1. Tarkastuksen käyttö ISKUTILAVUUDEN MITTAAMINEN 1. Tarkastuksen käyttö 2. Määritelmät 3. Välineet 4. Olosuhteet Kyseisen ohjeen tarkoituksena on ohjeistaa moottorin iskutilavuuden mittaaminen ja laskeminen. Kyseinen on mahdollista

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä Calculus Lukion 7 MAA Numeerisia ja algebrallisia menetelmiä Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Numeerisia ja algebrallisia menetelmiä

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

Työn tavoitteita. Yleistä. opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta

Työn tavoitteita. Yleistä. opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta FYSP102 / 1 VIERIMINEN Työn tavoitteita opetella suunnittelemaan itsenäisesti mittaus kurssin teoriatietojen pohjalta harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista

Lisätiedot

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

KUITUPUUN PINO- MITTAUS

KUITUPUUN PINO- MITTAUS KUITUPUUN PINO- MITTAUS Ohje KUITUPUUN PINOMITTAUS Ohje perustuu maa- ja metsätalousministeriön 16.6.1997 vahvistamaan pinomittausmenetelmän mittausohjeeseen. Ohjeessa esitettyä menetelmää sovelletaan

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS

FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS FYSIIKAN LABORAATIOTYÖ 4 LÄMMÖNJOHTAVUUDEN, LÄMMÖNLÄPÄISYKERTOI- MEN JA LÄMMÖNSIIRTYMISKERTOIMEN MÄÄRITYS Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SNC Ohjaaja: Ari Korhonen Työn tekopvm: 28.03.2008

Lisätiedot

2. Määritelmät Puristussuhde: Iskutilavuuden suhde puristustilavuuteen, suhdeluku.

2. Määritelmät Puristussuhde: Iskutilavuuden suhde puristustilavuuteen, suhdeluku. PALOTILAN JA PURISTUSSUHTEEN MITTAAMINEN 1. Tarkastuksen käyttö Tämän ohjeen tarkoituksena on ohjeistaa moottorin laskennallisen puristustilavuuden ja puristussuhteen laskeminen. Tarkastuksen voi tehdä

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele

Lisätiedot

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

FYSP104 / K2 RESISTANSSIN MITTAAMINEN

FYSP104 / K2 RESISTANSSIN MITTAAMINEN FYSP104 / K2 RESISTANSSIN MITTAAMINEN Työn tavoite tutustua erilaisiin menetelmiin, jotka soveltuvat pienten, keskisuurten ja suurten vastusten mittaamiseen Työssä tutustutaan useisiin vastusmittauksen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Karting tekniikkakoulutus KF 6

Karting tekniikkakoulutus KF 6 Karting tekniikkakoulutus KF 6 KF6 moottorin luokitus Tarkista aina ensin: Moottorin luokitusnumero esim. 3/KF6/14 Moottorin numero esim. 10022 Onko ko. moottori luokituskuvien mukainen ulkoisesti. 3 KF6

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

AKK-MOTORSPORT ry Katsastuksen käsikirja

AKK-MOTORSPORT ry Katsastuksen käsikirja NOKKA-AKSELIEN MITTAAMINEN 1. Tarkastuksen käyttö 2. Määritelmät 3. Välineet Kyseisen ohjeen tarkoituksena on ohjeistaa moottorin nokka-akseli(e)n mittaaminen ja ominaisuuksien laskeminen. Ns. A-(perusympyrä)

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

Laboratorioraportti 3

Laboratorioraportti 3 KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt Laboratorioraportti 3 Laboratorioharjoitus 1B: Ruuvijohde Ryhmä S: Pekka Vartiainen 427971 Jari Villanen 69830F Anssi Petäjä 433978 Mittaustilanne Harjoituksessa

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma Tuntemattoman kappaleen materiaalin määritys Janne Mattila Teemu Koitto Lari Pelanne Sisällysluettelo 1. Tutkimusongelma ja tutkimuksen

Lisätiedot

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE

Ene LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMASTOINTIKONEEN MITTAUKSET TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO ILMASTOINTIKONEEN MITTAUKSET...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 TUTUSTUMINEN

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO TILAVUUSVIRRAN MITTAUS...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 MITTAUSJÄRJESTELY

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Trestima Oy Puuston mittauksia

Trestima Oy Puuston mittauksia Trestima Oy Puuston mittauksia Projektissa tutustutaan puuston mittaukseen sekä yritykseen Trestima Oy. Opettaja jakaa luokan 3 hengen ryhmiin. Projektista arvioidaan ryhmätyöskentely, projektiin osallistuminen

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

SwemaMan 7 Käyttöohje

SwemaMan 7 Käyttöohje SwemaMan 7 Käyttöohje HUOM! Ennen mittausten aloittamista, lue kohta 6. Asetukset (SET). Vakiona k2-kompensointi on päällä. 1. Esittely SwemaMan 7 on mikro manometri paine-eron, ilmanvirtauksen sekä -nopeuden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Betonin suhteellisen kosteuden mittaus

Betonin suhteellisen kosteuden mittaus Betonin suhteellisen kosteuden mittaus 1. BETONIN SUHTEELLISEN KOSTEUDEN TARKOITUS 2. KOHTEEN LÄHTÖTIEDOT 3. MITTAUSSUUNNITELMA 4. LAITTEET 4.1 Mittalaite 4.2 Mittalaitteiden tarkastus ja kalibrointi 5.

Lisätiedot

Reijo Manninen, fysiikan lehtori. Tampereen Ammattikorkeakoulu. Insinöörikoulutuksen foorumi 2010 Hämeenlinna 17-18.3.2010

Reijo Manninen, fysiikan lehtori. Tampereen Ammattikorkeakoulu. Insinöörikoulutuksen foorumi 2010 Hämeenlinna 17-18.3.2010 Fysiikan laboratoriokurssit sujuvammiksi Reijo Manninen, fysiikan lehtori Sami Suhonen, fysiikan yliopettaja Tampereen Ammattikorkeakoulu Insinöörikoulutuksen foorumi 2010 Hämeenlinna 17-18.3.2010 Laboratoriotyöskentelyn

Lisätiedot

2. Sähköisiä perusmittauksia. Yleismittari.

2. Sähköisiä perusmittauksia. Yleismittari. TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

H 2 O. Kuva 1. Kalorimetri. missä on kalorimetriin tuotu lämpömäärä. Lämpökapasiteetti taas määräytyy yhtälöstä

H 2 O. Kuva 1. Kalorimetri. missä on kalorimetriin tuotu lämpömäärä. Lämpökapasiteetti taas määräytyy yhtälöstä KALORIMETRI 1 TEORIAA Kalorimetri on laite, jolla voidaan mitata lämpömääriä. Mittaus voidaan suorittaa tarkastelemalla lämpömuutoksia, faasimuutoksia, kemiallisia reaktioita jne. Kun mittaus perustuu

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

e pinnasta. Koska molekyylien väliset vetovoimat pienenevät nopeasti etäisyyden

e pinnasta. Koska molekyylien väliset vetovoimat pienenevät nopeasti etäisyyden Oulun yliopisto Fysiikan opetuslaboratorio 1 PINTAJÄNNITYS 1. Työn tavoitteet Nesteen ollessa levossa voi havaita sen pinnan muistuttavan jännitettyä, kimmoisaa kalvoa. Pinta pyrkii saavuttamaan mahdollisimman

Lisätiedot

KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619

KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619 KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619 2007 S&A MATINTUPA 1. ILMAVIRTAUKSEN MITTAUS Suora, 1:n pisteen mittaus a) Kytke mittalaitteeseen virta. b) Paina UNITS - näppäintä ja valitse haluttu mittayksikkö

Lisätiedot

VALKOHÄNTÄPEURA. CIC Suomen näyttely- ja trofeetyöryhmä. Tukitiedot 1. Piikkiluku oikea vasen 2. Kärkiväli 3. Suurin leveys

VALKOHÄNTÄPEURA. CIC Suomen näyttely- ja trofeetyöryhmä. Tukitiedot 1. Piikkiluku oikea vasen 2. Kärkiväli 3. Suurin leveys Odocoileus virgianus borealis Normaalisarvet CIC Suomen näyttely- ja trofeetyöryhmä TROFEEARVOSTELU CIC:n mukainen arvostelu Tukitiedot 1. Piikkiluku oikea vasen 2. Kärkiväli 3. Suurin leveys MITTAUS Yht.

Lisätiedot

Korkeus- ja syvyysmittaus

Korkeus- ja syvyysmittaus Korkeus- ja syvyysmittaus 38 39 40 41 42 43 44 45 47 48 Syvyystyöntömitat Syvyystyöntömitat yhdellä hakakielellä Syvyystyöntömitat kahdella hakakielellä Digitaaliset syvyystyöntömitat Sylvac systeemi Digitaaliset

Lisätiedot

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi!

Tee kokeen yläreunaan pisteytysruudukko. Valitse kuusi tehtävää seuraavista kahdeksasta. Perustele vastauksesi! MAA Loppukoe 70 Jussi Tyni Tee pisteytysruudukko konseptin yläreunaan! Vastauksiin välivaiheet, jotka perustelevat vastauksesi! Lue ohjeet huolellisesti! Tee kokeen yläreunaan pisteytysruudukko Valitse

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus

OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus OULUN YLIOPISTO, BIOLOGIAN LAITOS Puututkimus Puu on yksilö, lajinsa edustaja, eliöyhteisönsä jäsen, esteettinen näky ja paljon muuta. Tässä harjoituksessa lähestytään puuta monipuolisesti ja harjoitellaan

Lisätiedot

Purjelentokoneiden punnitus

Purjelentokoneiden punnitus Purjelentokoneiden punnitus 18-19. 3. 1995 Markku Hiedanpää 1 Miksi ilma-aluksia punnitaan Jotta voidaan määritellä onko ilma-alus tyyppihyväksymistodistuksen (so koelennoilla tositettujen) massa- ja massakeskiörajoitusten

Lisätiedot

4. Kertausosa. 1. a) 12

4. Kertausosa. 1. a) 12 . Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle

Lisätiedot

Mittaustekniikka (3 op)

Mittaustekniikka (3 op) 530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)

Lisätiedot

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

Energiapuun mittaus. Antti Alhola MHY Päijät-Häme

Energiapuun mittaus. Antti Alhola MHY Päijät-Häme Energiapuun mittaus Antti Alhola MHY Päijät-Häme Laki puutavaran mittauksesta Laki puutavaran mittauksesta (414/2013) Mittausta koskevista muuntoluvuista säädetään METLAN määräyksillä. Muuntoluvut ovat

Lisätiedot

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi 1 MITTAAMINEN I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I IV. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä: oma

Lisätiedot

PUUTAVARA- PÖLKKYJEN MITTAUS

PUUTAVARA- PÖLKKYJEN MITTAUS PUUTAVARA- PÖLKKYJEN MITTAUS PUUTAVARAPÖLKKYJEN MITTAUS Metsähallitus Metsäteollisuus ry Yksityismetsätalouden Työnantajat ry Puu- ja erityisalojen liitto Ohje perustuu alla lueteltuihin maa- ja metsätalousministeriön

Lisätiedot

Heinän ja säilörehun kosteusmittari

Heinän ja säilörehun kosteusmittari Heinän ja säilörehun kosteusmittari FI Käyttöohjeet KÄYTTÖOHJEET WILE 25 -KOSTEUSMITTARILLE 1. Toimitussisältö 2 - Wile 25 -kosteusmittari - kantolaukku - kantohihna - käyttöohje - paristo 9 V 6F22 (paikallaan

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

SwemaAir 5 Käyttöohje

SwemaAir 5 Käyttöohje SwemaAir 5 Käyttöohje 1. Esittely SwemaAir 5 on kuumalanka-anemometri lämpötilan, ilmanvirtauksen sekä -nopeuden mittaukseen. Lämpötila voidaan esittää joko C, tai F, ilmannopeus m/s tai fpm ja ilman virtaus

Lisätiedot

Jousen jousivoiman riippuvuus venymästä

Jousen jousivoiman riippuvuus venymästä 1 Jousen jousivoiman riippuvuus venymästä Mikko Vestola Koulun nimi Fysiikka luonnontieteenä FY3-Projektityö 12..2002 Arvosana: K+ (10) 2 1. Tutkittava ilmiö Tehtävänä oli tehdä oppikirjan tutkimustehtävä

Lisätiedot

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)

Lisätiedot

Harrasteilmailun ilma-alusten punnitus. 17.4.2013 Markku Hiedanpää

Harrasteilmailun ilma-alusten punnitus. 17.4.2013 Markku Hiedanpää Harrasteilmailun ilma-alusten punnitus 17.4.2013 Markku Hiedanpää Miksi ilma-aluksia punnitaan Jotta voidaan määritellä onko ilma-alus tyyppihyväksymistodistuksen (so. koelennoilla tositettujen), tyyppitodistuksen

Lisätiedot

KORKEUDEN- MITTAUS. Vaaituskojeet ja tasolaserit. Korkeudenmittaus Rakennusmittauksen perusteet - 1-1988-1997 M-Mies Oy

KORKEUDEN- MITTAUS. Vaaituskojeet ja tasolaserit. Korkeudenmittaus Rakennusmittauksen perusteet - 1-1988-1997 M-Mies Oy KORKEUDEN- MITTAUS Vaaituskojeet ja tasolaserit Rakennusmittauksen perusteet - 1-1988-1997 M-Mies Oy LAITTEISTO VAAITUSKOJE Vaaituskalusto muodostuu vaaituskojeesta, jalustasta ja tarvittaessa vaaituslatasta.

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista Matematiikan johdantokurssi, sks 07 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

Mittausepävarmuuden laskeminen

Mittausepävarmuuden laskeminen Mittausepävarmuuden laskeminen Mittausepävarmuuden laskemisesta on useita standardeja ja suosituksia Yleisimmin hyväksytty on International Organization for Standardization (ISO): Guide to the epression

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(

Lisätiedot

Kojemeteorologia (53695) Laskuharjoitus 1

Kojemeteorologia (53695) Laskuharjoitus 1 Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi

Lisätiedot

Ohje laboratoriotöiden tekemiseen. Sisältö. 1 Ennen laboratorioon tuloa 2. 2 Mittausten suorittaminen 2

Ohje laboratoriotöiden tekemiseen. Sisältö. 1 Ennen laboratorioon tuloa 2. 2 Mittausten suorittaminen 2 OHJE 1 (13) Ohje laboratoriotöiden tekemiseen Sisältö 1 Ennen laboratorioon tuloa 2 2 Mittausten suorittaminen 2 3 Mittauspöytäkirja 2 3.1 Mittauspöytäkirjan hyväksyminen................. 3 3.2 Tietokoneella

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot