Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta

Koko: px
Aloita esitys sivulta:

Download "Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta"

Transkriptio

1 Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta

2 Johdantoa peliteoriaan - ka ytetyt termit Peliteoria tutkii pelaajien toimintaa peleissa. Mika on peli? Mika on pelaaja? Peli tarkasti ma a ritelty valintatilanne. Pelissa pa a ma a ra. Pelaaja toimija ta ssa tilanteessa. Pelaaja voi olla ihminen, tekoa ly, ela in, joukko ihmisia...

3 Strategiapelit Peli on strategiapeli jos siina on interaktiivista pa a to ksen tekoa. pelaajalla monta valintaa valintaa voi vaihtaa? sama kuin monta valintaa sa a nno t ja pa a ma a ra ma a ritelty ja rajattu pelaajan pa a to s vaikuttaa muihin pelaajiin pelaaja saa tieta a muiden pa a to kset, ainakin seurausten kautta muiden pa a to kset tietoon vasta oman pa a to ksen ja lkeen

4 Strategiapelit taulukkona A a rellinen strategiapeli voidaan esitta a taulukkona. pelaajien pa a to kset akseleilla, vain kaksi pelaajaa 2-ulotteisessa taulukossa taulukossa numerot pelaajien hyo ty pa a to ksilla t1 t2 t1 1,2 2,4 t2 1,2 2,4 t1 ja t2 mahdolliset pa a to kset 1,2, tarkoittaa etta rivin valitsija hyo tyy 1, sarakkeen 2

5 Nashin tasapaino Tilanne strategiapelissa jossa yksika a n pelaajan ei hanki muuttamalla strategiaansa. oletus etta pelaajia a a rellinen ma a ra, va hinta a n 1 pelaajat rationaalisia ja itsekka ita pyrkiva t jokaisella valinnalla suoraan hyo tyyn pelaajat tieta va t muutkin rationaalisiksi Pelaaja ei voi pa a sta parempaan tilanteeseen jos kaikki pyrkiva t parhaaseen.

6 Strategiapeli formaalisti Ma a ritelma 11.1 Strategiapeli on kolmikko hn, (Ai), ( i)i: a a rellinen joukko pelaajia N epa tyhja joukko Ai mahdollisia toimintoja i N toiminnan hyo dyn ja rjestysrelaatio i A:ssa i N

7 Seuraus toimien sijaan. Joskus pelaajien toimet parempi esitta a toimien seurauksina kuin itse toimina. Ma a ritella a n etta C on kaikkien toimien seurasten joukko. Kytketa a n toimet ja seuraus yhteen funktiolla: g:a C Ja ma a ritella a n hyo dyn ja rjestysrelaatio myo s seurauksille: aj i ak jos ja vain jos g(aj ) i g(ak )

8 Satunnaistatapahtuma Joskus teon seuraukseen vaikuttaa satunnaistapahtuma. satunnaistapahtumaa ei voi etuka teen ennustaa Funktiossa g satunnaistapahtuma on otettava huomioon. Olkoon Ω todena ko isyysavaruus satunnaistapahtumalle. Ma a ritella a n viela funktio g uudelleen: g :A Ω C Nyt g(a, ω) on seuraus kun: a A satunnaistapahtuma on ω Ω

9 Seuraus hyo tyna Yleensa ja rjestysrelaatio on parempi kuvata pelaajan toimintojen seurausten sijasta hyo tyna pelaajalle. Hyo ty voidaan kytkea toimintaan hyo tyfunktiolla: ui : A R Ma a ritella a n funktio ja rjestysrelaation kautta: pelaajan hyo ty ui(a) ui(b) aina kun a i b Yleensa pelia ka sitella a n ja rjestysrelaation sijasta hyo tyfunktiolla.

10 Nashin tasapainon ma a ritelma Nashin tasapaino strategiapelissa hn, (Ai), ( i)i on tekojen mahdollisuus(profiili) a A jolla on ominaisuus jokaiselle pelaajalle i N: (a i, a i ) i (a i, ai) : ai A a i on kaikki muut paitsi pelaajan :n toimintamahdollisuudet ai pelaajan i toiminta Tilanne on Nashin tasapaino kun: a i ei paranna pelaajan i mahdollisuuksia Siis mika a n pelaajan toiminta ei paranna ha nen asemaansa nykyisesta tilanteesta. koskee kaikkia pelaajia

11 Vaihtoehtoinen ma a ritelma lle Nashin tasapainon voi ma a ritella myo s vastauksena muiden tekemiin siirtoihin. Mille tahansa a i A i : B(a i) on joukko parhaita siirtoja pelaajalle i kun a i: Bi(a i) = ai A : (a i, ai) i (a i, a0i) a0i A kutsutaan Bi parhaan vastauksen funktioksi pelaajalle i a i muiden kuin pelaaja i:n teot Nyt jos a i Bi(a i) i N niin: a i on pelaaja i:n paras vastaus muiden pelaajien siirtoihin jos vain yksi alkio, Nashin tasapaino mahdollista lo yta a Jos a i ei paranna pelaajan mahdollisuuksia, on tilanne Nashin tasapaino.

12 Kakutanin kiintopistelause(fixed point theorem) Onko pelissa Nashin tasapaino? Kakutanin kiintopistelause kertoo. Olkoon X euklidisen avaruuden alijoukko joka on epa tyhja rajoitettu ja suljettu konveksi. Olkoon f : X X siten etta : f (x) epa tyhja konveksi kaikilla x X f :n pita a olla suljettu Jos molemmat ehdot ta yttyva t, niin pelissa on va hinta a n yksi Nashin tasapaino. kertoo olemassaolon, ei ma a ra a

13 Vangin dilemma Klassinen peli jossa Nashin tasapaino. Kaksi epa iltya eri eristysselleissa. jos molemmat tunnustavat, saavat molemmat 3 vuotta linnaa jos molemmat ovat tunnustamatta, saavat molemmat 1 vuoden linnaa jos toinen tunnustaa toista vastaan, vapautuu tunnustanut ja toinen saa 4 vuotta tunnustaa ei tunnusta tunnustaa 3,3 0,4 ei tunnusta 4,0 1,1

14 Kivi - paperi - sakset Kaikissa peleissa ei ole Nashin tasapainoa. Esimerkkina kivi-paperisakset, johon tehty muutos. Ajatuksena etta pa a to ksensa voi muuttaa. kivi paperi sakset kivi 0,0-1,1 1,-1-1,1 paperi 1,-1 0,0 sakset -1,1 1,-1 0,0 Pelaaja joka saa -1, kannattaa aina vaihtaa pa a to sta a n. Pelissa ei pa a se syntyma a n tasapainoa.

15 Yhteenveto Strategiapelit interaktiivisia valintatilanteita. Ne on mahdollista esitta a formaalisti kolmikkona hn, (Ai), ( i)i. Nashin tasapaino on tilanne. ei va ltta ma tta edullisin tilanne Nashin tasapaino esiintyy joissakin strategiapeleissa. Kakutanin kiintopistelause paljastaa onko sita pelissa

16 Kysymyksia Mihin ta ta nyt ka yteta a n? Mita hyo tya? Miten pa a dyta a n Nashin tasapainoon?

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Peliteorian seminaari Erityispiirteitä Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tero Sirkka Peliteoriaa Informaatiotieteiden yksikkö Matematiikka Toukokuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö Sirkka, Tero: Peliteoriaa Pro gradu

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Luento 5: Peliteoria

Luento 5: Peliteoria Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

FINDRI REF- TECHNOLOGY. Findri Ref-Control. Lauhduttimien ja nesteja a hdyttimien puhaltimien seka pumppujen ohjauskeskus

FINDRI REF- TECHNOLOGY. Findri Ref-Control. Lauhduttimien ja nesteja a hdyttimien puhaltimien seka pumppujen ohjauskeskus Findri Ref-Control Lauhduttimien ja nesteja a hdyttimien puhaltimien seka pumppujen ohjauskeskus Kohteeseen kuin kohteeseen optimoitavat Findri Ref-Control -ohjauskeskukset Oy Yleiskylma -Findri tarjoaa

Lisätiedot

Peliteoria ja huutokauppamekanismit

Peliteoria ja huutokauppamekanismit Peliteoria ja huutokauppamekanismit Satu Ruotsalainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Satu Ruotsalainen, Peliteoria ja huutokauppamekanismit

Lisätiedot

PELITEORIAN PERUSTEITA

PELITEORIAN PERUSTEITA PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit

Epätäydellisen tiedon jatkuvat pelit Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Helsinki 4..2006 Peliteorian seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto 2 Epätäydellisen tiedon jatkuva peli 2. Jatkuvan

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

SISÄLTÖ. 1. Yleista s Lataus s Ka ytto s Lisa tietoja s Lakka Pihakivet GDL ohjeet

SISÄLTÖ. 1. Yleista s Lataus s Ka ytto s Lisa tietoja s Lakka Pihakivet GDL ohjeet SISÄLTÖ 1. Yleista s. 3 2. Lataus s. 3 3. Ka ytto s. 4 4. Lisa tietoja s. 7 2 Lakka Pihakivet GDL ohjeet 1. Yleistä Lakka Pihakivet GDL objekti toimii Archicad ohjelmistossa ja se on tehty helpottamaan

Lisätiedot

Paljonko maksat eurosta -peli

Paljonko maksat eurosta -peli Paljonko maksat eurosta -peli - Ajattele todellinen tilanne ja toimi oman näkemyksesi mukaisesti - Tee tarjous eurosta: * Korkein tarjous voittaa euron. * Huonoimman tarjouksen esittäjä joutuu maksamaan

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

Yleinen tietämys ja Nashin tasapaino

Yleinen tietämys ja Nashin tasapaino Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä

Lisätiedot

Kuka hyötyy biotaloudesta? Professori Hanna-Leena Pesonen Jyväskylän yliopisto BIOCLUS-hankkeen loppuseminaari 22.10.2012

Kuka hyötyy biotaloudesta? Professori Hanna-Leena Pesonen Jyväskylän yliopisto BIOCLUS-hankkeen loppuseminaari 22.10.2012 Kuka hyötyy biotaloudesta? Professori Hanna-Leena Pesonen Jyväskylän yliopisto BIOCLUS-hankkeen loppuseminaari 22.10.2012 Sisältö I. Biotalous osana kestävää taloutta: Talouskasvun irrottaminen luonnonvarojen

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen ---------------------------------------- TEHTÄVÄKORI Monisteita matikkaan Riikka Mononen ---------------------------------------- Tehtäväkori 2016 TEHTÄVÄKORI Monisteita matikkaan -materiaali on kokoelma

Lisätiedot

Johdanto peliteoriaan Kirja kpl. 2

Johdanto peliteoriaan Kirja kpl. 2 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

HINATTAVAN LAITTEEN/ KYLPYTYNNYRIN VUOKRASOPIMUSEHDOT

HINATTAVAN LAITTEEN/ KYLPYTYNNYRIN VUOKRASOPIMUSEHDOT Vuokra-aika HINATTAVAN LAITTEEN/ KYLPYTYNNYRIN VUOKRASOPIMUSEHDOT Vuokra-aika alkaa vuokrauksen kohteena olevan HINATTAVAN LAITTEEN eli kylpytynnyrin sovitulla luovutushetkella ja kesta a siihen saakka,

Lisätiedot

SEKASTRATEGIAT PELITEORIASSA

SEKASTRATEGIAT PELITEORIASSA SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer

Lisätiedot

Rationalisoituvuus ja yleinen tieto rationaalisuudesta

Rationalisoituvuus ja yleinen tieto rationaalisuudesta Rationalisoituvuus ja yleinen tieto rationaalisuudesta Keskeiset termit: Rationalizability rationalisoituvuus ratkaisukonsepti peliteoriassa Rationalizable rationalisoituva Rationality rationaalisuus pelaajat

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Pelit matematiikan opetuksessa

Pelit matematiikan opetuksessa Pelit matematiikan opetuksessa Vadim Kulikov Helsingin Yliopisto Matematiikan ja tilastotieteen laitos Epsilonit kirjaa tutkimassa, 28.01.2012 Millaisia pelejä? pärjääminen edellyttää ongelmanratkaisukykyä,

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Luento 7. June 3, 2014

Luento 7. June 3, 2014 June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.

Lisätiedot

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =.

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =. Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki tai < tai =. 1 Valitse ruutuun oikea merkki tai < tai =. ------------------------------------------------------------------------------

Lisätiedot

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos. TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Nollasummapelit ja muut yleisemmät summapelit

Nollasummapelit ja muut yleisemmät summapelit Nollasummapelit ja muut yleisemmät summapelit Teemu Orjatsalo Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Teemu Orjatsalo, Nollasummapelit

Lisätiedot

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a

Lisätiedot

Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2)

Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2) Yhteistyöryhmä 1 16.01.2013 Kunnanhallitus 71 04.02.2013 Yhteistyöryhmä 14 24.10.2013 Kunnanhallitus 289 02.12.2013 Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2) 26/01.01.03/2013 Yhteistyöryhmä

Lisätiedot

Johtajuuden uusi aika miksi johtajuuden pita a muuttua?

Johtajuuden uusi aika miksi johtajuuden pita a muuttua? Johtajuuden uusi aika miksi johtajuuden pita a muuttua? Niina Andersin Hallituksen puheenjohtaja, johdon konsultti, valmentaja, coach Avidia Oy 1 Passion For Progress Alhaisen toimeenpanokyvyn tunnusmerkkejä

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

EUROOPPANUORET RY. SÄÄNNÖT 1 YHDISTYKSEN NIMI, KOTIPAIKKA JA KIELI

EUROOPPANUORET RY. SÄÄNNÖT 1 YHDISTYKSEN NIMI, KOTIPAIKKA JA KIELI SÄÄNNÖT 1 YHDISTYKSEN NIMI, KOTIPAIKKA JA KIELI Yhdistyksen nimi on Eurooppanuoret ry, Unga Europeer rf. Kansainva lisissa yhteyksissa liitosta voidaan ka ytta a nimitysta JEF Finland. Na issa sa a nno

Lisätiedot

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w Epainn muis (1.1., 6.12.) # œ œ œ œ œ # œ w i nun Kris lis sä py hää muis tus Tofia (6.1.) jo Jo pai a, y lis n [Ba li nu a, os,] kun ni, l nä ru k, i dän Ju ma lis, y lis ka i dän h tm h nk sl nu a, o

Lisätiedot

Johdatus politologiaan. Turun yliopisto, sl 2012 Maija Setälä Luento VII: Politiikan tutkimuksen lähestymistapoja: Rationaalisen valinnan teoria

Johdatus politologiaan. Turun yliopisto, sl 2012 Maija Setälä Luento VII: Politiikan tutkimuksen lähestymistapoja: Rationaalisen valinnan teoria Johdatus politologiaan Turun yliopisto, sl 2012 Maija Setälä Luento VII: Politiikan tutkimuksen lähestymistapoja: Rationaalisen valinnan teoria Rationaalisen valinnan teoria Rationaalisen valinnan teoria

Lisätiedot

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Konsulttidemokratia asiantuntijuutta korvaamassa. Hanna Kuusela, tutkijatohtori Suomen Akatemia / Tampereen yliopisto Kevätneuvokki 2014

Konsulttidemokratia asiantuntijuutta korvaamassa. Hanna Kuusela, tutkijatohtori Suomen Akatemia / Tampereen yliopisto Kevätneuvokki 2014 Konsulttidemokratia asiantuntijuutta korvaamassa Hanna Kuusela, tutkijatohtori Suomen Akatemia / Tampereen yliopisto Kevätneuvokki 2014 Mikä konsulttidemokratia? Teknokratiasta konsulttidemokratiaan. Konsulttidemokratiassa

Lisätiedot

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka 1. Selitä mitä tarkoittavat a) M2 b) vaihtoehtoiskustannus. Anna lisäksi esimerkki vaihtoehtoiskustannuksesta. (7 p) Vastaus: a) Lavea raha. (1 p) M1 (Yleisön hallussa olevat lailliset maksuvälineet ja

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

1. Kaikki kaatuu, sortuu August Forsman (Koskimies)

1. Kaikki kaatuu, sortuu August Forsman (Koskimies) olo q» date reliioso olo 7 K (2003) KE2a7 1. Kaikki kaatuu, sortuu uust Forsma (Koskimies) olo 14 olo 21 3 3 3 3 3 3 3 3 Ÿ ~~~~~~~~~~~ π K (2003) KE2a7 uhlakataatti (kuoro) - 2 - Kuula: - 3 - uhlakataatti

Lisätiedot

Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016

Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016 Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016 TILOJEN VUOKRAAMINEN TORNION SAIRASKOTISÄÄTIÖLTÄ PÄIVÄKESKUSTOIMINTAA VARTEN/TILOJEN VUOKRAAMINEN VUODELLE 2014/TILOJEN VUOKRAAMINEN

Lisätiedot

EVÄITÄ ELÄMÄLLE -OHJELMA

EVÄITÄ ELÄMÄLLE -OHJELMA EVÄITÄ ELÄMÄLLE -OHJELMA Raportti vuodelta 2014 Pelastakaa Lapset tukee Eva ita Ela ma lle -ohjelmalla syrja ytymisvaarassa olevien lasten koulunka yntia ja harrastamista. Ohjelma edista a lasten yhdenvertaisuutta,

Lisätiedot

Tasapaino epätäydellisen tiedon peleissä

Tasapaino epätäydellisen tiedon peleissä hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

SÄÄNTÖMÄÄRÄISEN VUOSIKOKOUKSEN ESITYSLISTA

SÄÄNTÖMÄÄRÄISEN VUOSIKOKOUKSEN ESITYSLISTA SÄÄNTÖMÄÄRÄISEN VUOSIKOKOUKSEN ESITYSLISTA Aika: 10.12.2016 klo 15:00 Paikka: Allianssi talo, Asemapa a lliko nkatu 1, 00520 Helsinki 1. KOKOUKSEN AVAUS Esitys: Eurooppanuorten puheenjohtaja Jesse Ja a

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Matematiikan johdantokurssi, sks 06 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

TOIMINTASUUNNITELMA VUODELLE 2017

TOIMINTASUUNNITELMA VUODELLE 2017 TOIMINTASUUNNITELMA VUODELLE 2017 POLIITTISEN TOIMINNAN PAINOPISTEET JÄRJESTÖLLINEN TOIMINTA VIESTINTÄ JA JULKAISUT HALLINTO JA TALOUS Toimintasuunnitelma ma a rittelee Eurooppanuorten peruslinjat vuodeksi

Lisätiedot

Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)

Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Hammastekniikka tutuksi

Hammastekniikka tutuksi Hammastekniikka tutuksi Hammasteknikko on suun terveydenhuollon ammattilainen, joka suunnittelee ja valmistaa erilaisia hammasproteeseja ja -kojeita yhteistyössä hammaslääkärin kanssa. Hammasteknisessä

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Rakennus- ja ympäristölautakunta 252 16.12.2015 655/11.01.00/2014. Rakennus- ja ympäristölautakunta 16.12.2015 252

Rakennus- ja ympäristölautakunta 252 16.12.2015 655/11.01.00/2014. Rakennus- ja ympäristölautakunta 16.12.2015 252 Rakennus- ja ympäristölautakunta 252 16.12.2015 Päätös / ympäristölupahakemus / Syväsatama, jätteiden loppusijoittaminen ja hyödyntäminen satamakentän rakenteissa, Kokkolan Satama / Länsi- ja Sisä-Suomen

Lisätiedot

SISÄISTEN VUOKRIEN LASKUTUS Laskutuskuukaudel Vuokra-ajalta 1.1.-31 122014

SISÄISTEN VUOKRIEN LASKUTUS Laskutuskuukaudel Vuokra-ajalta 1.1.-31 122014 Hallinto 5320 _ SISÄISTEN VUOKRIEN LASKUTUS Laskutuskuukaudel -ajalta 1.1.-31 2014 20 14 KUNNANVIRASTO 5320 5309 3470-999 5320'. TA;n 2014 muk Jako-% Kust. Laskutus ajalta [kuukaudet 1.1-31..2014-111151

Lisätiedot

Johdatus peliteoriaan

Johdatus peliteoriaan Johdatus peliteoriaan Kahden pelaajan nollasummapelien ratkaiseminen ja Nashin tasapainojen olemassaolo usean pelaajan yleisessä summapelissä Henri Nousiainen Matematiikan pro gradu Jyväskylän yliopisto

Lisätiedot

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Urheilua ja elämyksiä. Lentopalloliiton strategia 2016-2020

Urheilua ja elämyksiä. Lentopalloliiton strategia 2016-2020 Urheilua ja elämyksiä Lentopalloliiton strategia 2016-2020 Huippu-urheilu Beach volley ja lentopallo ovat suomalaisia menestyslajeja. Fanit ja media seuraavat edustusjoukkueitamme kotimaassa ja ulkomailla.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

Sivistyslautakunta 38 03.03.2015 Kunnanhallitus 84 30.03.2015 Kunnanhallitus 103 13.04.2015. Varhaiskasvatusjohtajan viran hoito 1.9.

Sivistyslautakunta 38 03.03.2015 Kunnanhallitus 84 30.03.2015 Kunnanhallitus 103 13.04.2015. Varhaiskasvatusjohtajan viran hoito 1.9. Sivistyslautakunta 38 03.03.2015 Kunnanhallitus 84 30.03.2015 Kunnanhallitus 103 13.04.2015 Varhaiskasvatusjohtajan viran hoito 1.9.2015 alkaen 768/01.01.03/2015 SIVLTK 03.03.2015 38 Asian valmistelija:

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

TAMPEREEN YLIOPISTO Matematiikan pro gradu -ty Marko Vehmas Ryhmien perusominaisuuksista Matematiikan, tilastotieteen ja losoan laitos Matematiikka Hu

TAMPEREEN YLIOPISTO Matematiikan pro gradu -ty Marko Vehmas Ryhmien perusominaisuuksista Matematiikan, tilastotieteen ja losoan laitos Matematiikka Hu Tampereen yliopisto Informaatiotieteiden laitos VEHMAS, MARKO: Ryhmien perusominaisuuksista Pro gradu -ty, 22 s. Matematiikka Huhtikuu 2002 TIIVISTELM T m n ty n luvussa 2 perehdyt n abstraktin algebran

Lisätiedot

Paljastetut preferenssit ja peliteoria. Ks. esim. Grüne-Yanoff & Lehtinen (tulossa) tai Hausman 2000, 2005, Guala 2006

Paljastetut preferenssit ja peliteoria. Ks. esim. Grüne-Yanoff & Lehtinen (tulossa) tai Hausman 2000, 2005, Guala 2006 Paljastetut preferenssit ja peliteoria Ks. esim. Grüne-Yanoff & Lehtinen (tulossa) tai Hausman 2000, 2005, Guala 2006 Peruskysymys Voidaanko peliteorian palkkiot ymmärtää paljastettuina preferensseinä

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Evolutiivinen stabiilisuus populaation

Evolutiivinen stabiilisuus populaation Antti Toppila sivu 1/20 Optimointiopin seminaari Syksy 2008 Evolutiivinen stabiilisuus populaation määrittämisessä Antti Toppila 24.9.2008 Antti Toppila sivu 2/20 Optimointiopin seminaari Syksy 2008 Sisältö

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

kivikoriaita h500mm VIERAS JÄTEKATOS JÄTEKATOS +135,10 +135,10 lumet lumet 5 svk asf lumet PULL-UP PULL-UP 31 AIR AIR WALKER WALKER jumppa

kivikoriaita h500mm VIERAS JÄTEKATOS JÄTEKATOS +135,10 +135,10 lumet lumet 5 svk asf lumet PULL-UP PULL-UP 31 AIR AIR WALKER WALKER jumppa h500mm kivikoriaita kivikoriaita h500mm 11 h500mm kivikoriaita kivikoriaita h500mm 22 33 44 66 55 77 88 10 10 99 11 11 12 12 kivikoriaita h500mm 13 13 14 14 15 15 VIERAS JÄTEATOS JÄTEATOS +135,10 +135,10

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Opas kuntouttavaan tyo toimintaan

Opas kuntouttavaan tyo toimintaan Opas kuntouttavaan tyo toimintaan Yleistä 2 Eurajoen kunta ja rjesta a kuntouttavaa tyo toimintaa pitkään työttömänä olleille ja sen tarkoituksena on parantaa asiakkaan ela ma nhallintaa, työelämävalmiuksia

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

Laukaan kunnan perusturvalautakunnan selvitys lastensuojelun määräraikojen ylittymisen vuoksi

Laukaan kunnan perusturvalautakunnan selvitys lastensuojelun määräraikojen ylittymisen vuoksi Perusturvalautakunta 30 08.05.2014 Laukaan kunnan perusturvalautakunnan selvitys lastensuojelun määräraikojen ylittymisen vuoksi 89/05.09.00/2013 Perusturvalautakunta 30 Valmistelija: perusturvajohtaja

Lisätiedot

Seudullinen rakennusjärjestysmalli. Kangasala, Lempäälä, Nokia, Pirkkala, Orivesi, Tampere, Ylöjärvi ja Vesilahti

Seudullinen rakennusjärjestysmalli. Kangasala, Lempäälä, Nokia, Pirkkala, Orivesi, Tampere, Ylöjärvi ja Vesilahti Seudullinen rakennusjärjestysmalli Kangasala, Lempäälä, Nokia, Pirkkala, Orivesi, Tampere, Ylöjärvi ja Vesilahti Tampereen kaupunkiseutuun kuuluu kahdeksan kuntaa: Kangasala, Lempäälä, Orivesi, Pirkkala,

Lisätiedot

Toimintakatteen toteumat tulosalueittain:

Toimintakatteen toteumat tulosalueittain: Perusturvalautakunta 27 26.04.2016 Perusturvalautakunnan talouden seuranta 2-3 /2016 Perusturvalautakunta 26.04.2016 27 Kaupunginhallitus on kokouksessaan 11.01.2016 4 hyväksynyt talous ar vion 2016 täytäntöönpano-ohjeen.

Lisätiedot

Valmistelija hallintopäällikkö Marja-Leena Larsson:

Valmistelija hallintopäällikkö Marja-Leena Larsson: Kaupunginhallitus 251 05.10.2015 Kaupunginhallitus 291 09.11.2015 Kaupunginhallitus 305 23.11.2015 Kaupunginhallitus 325 18.12.2015 Kaupunginhallitus 35 01.02.2016 SOSIAALITYÖN JOHTAJAN VIRAN TÄYTTÄMINEN

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

Miksi draamatarinoita?

Miksi draamatarinoita? Jouni Piekkari Metropolia AMK/ KAMU - kaveriohjausta maahanmuuttajille -hanke Miksi draamatarinoita? Draaman käytöstä kotoutumisen ja kohtauttamisen välineenä. KAMU-hankkeessa tutkitaan ja kokeillaan erityisesti

Lisätiedot

Alkeispelastuksen sa a nno t 2015 2015-01-13

Alkeispelastuksen sa a nno t 2015 2015-01-13 Alkeispelastuksen sa a nno t 2015 2015-01-13 Oleelliset muutokset vuoden 2014 sa a nto ihin: 1.5 Hidasteet osa on päivitetty. 2.3 Rakentaminen osa on pa ivitetty. Muita muutoksia ei ole. Johdanto Alue

Lisätiedot

Formula 18 Ranking 21.5., 28.5., Suomalainen Pursiseura ry ( SPS )

Formula 18 Ranking 21.5., 28.5., Suomalainen Pursiseura ry ( SPS ) Formula 18 Ranking 21.5., 28.5., 4.6.2015 Suomalainen Pursiseura ry ( SPS ) Purjehdusohje 1. Säännöt 1.1. Kilpailussa noudatetaan Purjehduksen kilpailusa a nno issa ma a riteltyja sa a nto ja. 1.2. Kielten

Lisätiedot

Kirjainkiemurat - mallisivu (c)

Kirjainkiemurat - mallisivu (c) Aa Ii Uu Ss Aa Ii Uu Ss SII-LIN VII-LI-KUP-PI I-sot, pie-net kir-jai-met, sii-li neu-voo aak-ko-set. Roh-ke-as-ti mu-kaan vaan, kaik-ki kyl-lä op-pi-vat! Ss Har-joit-te-le kir-jai-mi-a li-sää vih-koo-si.

Lisätiedot

Miten tavoitan asiakkaani verkossa?

Miten tavoitan asiakkaani verkossa? Miten tavoitan asiakkaani verkossa? Jere Kuusinen,lehtori Satakunnan AMK Tee ainakin nämä asiat: Paranna www-sivujasi Opettele hakukoneoptimointi Laita itsesi Googlen kartalle Hanki sivuillesi linkkejä

Lisätiedot

Evolutiivisesti stabiilin strategian oppiminen

Evolutiivisesti stabiilin strategian oppiminen Evolutiivisesti stabiilin strategian oppiminen Janne Laitonen 8.10.2008 Maynard Smith: s. 54-60 Johdanto Käytös voi usein olla opittua perityn sijasta Tyypillistä käytöksen muuttuminen ja riippuvuus aikaisemmista

Lisätiedot