Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta"

Transkriptio

1 Strategiapelit ja Nashin tasapaino. Esitta ja : Sebastian Siikavirta

2 Johdantoa peliteoriaan - ka ytetyt termit Peliteoria tutkii pelaajien toimintaa peleissa. Mika on peli? Mika on pelaaja? Peli tarkasti ma a ritelty valintatilanne. Pelissa pa a ma a ra. Pelaaja toimija ta ssa tilanteessa. Pelaaja voi olla ihminen, tekoa ly, ela in, joukko ihmisia...

3 Strategiapelit Peli on strategiapeli jos siina on interaktiivista pa a to ksen tekoa. pelaajalla monta valintaa valintaa voi vaihtaa? sama kuin monta valintaa sa a nno t ja pa a ma a ra ma a ritelty ja rajattu pelaajan pa a to s vaikuttaa muihin pelaajiin pelaaja saa tieta a muiden pa a to kset, ainakin seurausten kautta muiden pa a to kset tietoon vasta oman pa a to ksen ja lkeen

4 Strategiapelit taulukkona A a rellinen strategiapeli voidaan esitta a taulukkona. pelaajien pa a to kset akseleilla, vain kaksi pelaajaa 2-ulotteisessa taulukossa taulukossa numerot pelaajien hyo ty pa a to ksilla t1 t2 t1 1,2 2,4 t2 1,2 2,4 t1 ja t2 mahdolliset pa a to kset 1,2, tarkoittaa etta rivin valitsija hyo tyy 1, sarakkeen 2

5 Nashin tasapaino Tilanne strategiapelissa jossa yksika a n pelaajan ei hanki muuttamalla strategiaansa. oletus etta pelaajia a a rellinen ma a ra, va hinta a n 1 pelaajat rationaalisia ja itsekka ita pyrkiva t jokaisella valinnalla suoraan hyo tyyn pelaajat tieta va t muutkin rationaalisiksi Pelaaja ei voi pa a sta parempaan tilanteeseen jos kaikki pyrkiva t parhaaseen.

6 Strategiapeli formaalisti Ma a ritelma 11.1 Strategiapeli on kolmikko hn, (Ai), ( i)i: a a rellinen joukko pelaajia N epa tyhja joukko Ai mahdollisia toimintoja i N toiminnan hyo dyn ja rjestysrelaatio i A:ssa i N

7 Seuraus toimien sijaan. Joskus pelaajien toimet parempi esitta a toimien seurauksina kuin itse toimina. Ma a ritella a n etta C on kaikkien toimien seurasten joukko. Kytketa a n toimet ja seuraus yhteen funktiolla: g:a C Ja ma a ritella a n hyo dyn ja rjestysrelaatio myo s seurauksille: aj i ak jos ja vain jos g(aj ) i g(ak )

8 Satunnaistatapahtuma Joskus teon seuraukseen vaikuttaa satunnaistapahtuma. satunnaistapahtumaa ei voi etuka teen ennustaa Funktiossa g satunnaistapahtuma on otettava huomioon. Olkoon Ω todena ko isyysavaruus satunnaistapahtumalle. Ma a ritella a n viela funktio g uudelleen: g :A Ω C Nyt g(a, ω) on seuraus kun: a A satunnaistapahtuma on ω Ω

9 Seuraus hyo tyna Yleensa ja rjestysrelaatio on parempi kuvata pelaajan toimintojen seurausten sijasta hyo tyna pelaajalle. Hyo ty voidaan kytkea toimintaan hyo tyfunktiolla: ui : A R Ma a ritella a n funktio ja rjestysrelaation kautta: pelaajan hyo ty ui(a) ui(b) aina kun a i b Yleensa pelia ka sitella a n ja rjestysrelaation sijasta hyo tyfunktiolla.

10 Nashin tasapainon ma a ritelma Nashin tasapaino strategiapelissa hn, (Ai), ( i)i on tekojen mahdollisuus(profiili) a A jolla on ominaisuus jokaiselle pelaajalle i N: (a i, a i ) i (a i, ai) : ai A a i on kaikki muut paitsi pelaajan :n toimintamahdollisuudet ai pelaajan i toiminta Tilanne on Nashin tasapaino kun: a i ei paranna pelaajan i mahdollisuuksia Siis mika a n pelaajan toiminta ei paranna ha nen asemaansa nykyisesta tilanteesta. koskee kaikkia pelaajia

11 Vaihtoehtoinen ma a ritelma lle Nashin tasapainon voi ma a ritella myo s vastauksena muiden tekemiin siirtoihin. Mille tahansa a i A i : B(a i) on joukko parhaita siirtoja pelaajalle i kun a i: Bi(a i) = ai A : (a i, ai) i (a i, a0i) a0i A kutsutaan Bi parhaan vastauksen funktioksi pelaajalle i a i muiden kuin pelaaja i:n teot Nyt jos a i Bi(a i) i N niin: a i on pelaaja i:n paras vastaus muiden pelaajien siirtoihin jos vain yksi alkio, Nashin tasapaino mahdollista lo yta a Jos a i ei paranna pelaajan mahdollisuuksia, on tilanne Nashin tasapaino.

12 Kakutanin kiintopistelause(fixed point theorem) Onko pelissa Nashin tasapaino? Kakutanin kiintopistelause kertoo. Olkoon X euklidisen avaruuden alijoukko joka on epa tyhja rajoitettu ja suljettu konveksi. Olkoon f : X X siten etta : f (x) epa tyhja konveksi kaikilla x X f :n pita a olla suljettu Jos molemmat ehdot ta yttyva t, niin pelissa on va hinta a n yksi Nashin tasapaino. kertoo olemassaolon, ei ma a ra a

13 Vangin dilemma Klassinen peli jossa Nashin tasapaino. Kaksi epa iltya eri eristysselleissa. jos molemmat tunnustavat, saavat molemmat 3 vuotta linnaa jos molemmat ovat tunnustamatta, saavat molemmat 1 vuoden linnaa jos toinen tunnustaa toista vastaan, vapautuu tunnustanut ja toinen saa 4 vuotta tunnustaa ei tunnusta tunnustaa 3,3 0,4 ei tunnusta 4,0 1,1

14 Kivi - paperi - sakset Kaikissa peleissa ei ole Nashin tasapainoa. Esimerkkina kivi-paperisakset, johon tehty muutos. Ajatuksena etta pa a to ksensa voi muuttaa. kivi paperi sakset kivi 0,0-1,1 1,-1-1,1 paperi 1,-1 0,0 sakset -1,1 1,-1 0,0 Pelaaja joka saa -1, kannattaa aina vaihtaa pa a to sta a n. Pelissa ei pa a se syntyma a n tasapainoa.

15 Yhteenveto Strategiapelit interaktiivisia valintatilanteita. Ne on mahdollista esitta a formaalisti kolmikkona hn, (Ai), ( i)i. Nashin tasapaino on tilanne. ei va ltta ma tta edullisin tilanne Nashin tasapaino esiintyy joissakin strategiapeleissa. Kakutanin kiintopistelause paljastaa onko sita pelissa

16 Kysymyksia Mihin ta ta nyt ka yteta a n? Mita hyo tya? Miten pa a dyta a n Nashin tasapainoon?

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari

Epätäydellisen tiedon jatkuvat pelit. Mika Viljanen Peliteorian seminaari Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Peliteorian seminaari Erityispiirteitä Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista Erityispiirteitä Epätäydellinen tieto aiemmista toiminnoista

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tero Sirkka. Peliteoriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tero Sirkka Peliteoriaa Informaatiotieteiden yksikkö Matematiikka Toukokuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö Sirkka, Tero: Peliteoriaa Pro gradu

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

FINDRI REF- TECHNOLOGY. Findri Ref-Control. Lauhduttimien ja nesteja a hdyttimien puhaltimien seka pumppujen ohjauskeskus

FINDRI REF- TECHNOLOGY. Findri Ref-Control. Lauhduttimien ja nesteja a hdyttimien puhaltimien seka pumppujen ohjauskeskus Findri Ref-Control Lauhduttimien ja nesteja a hdyttimien puhaltimien seka pumppujen ohjauskeskus Kohteeseen kuin kohteeseen optimoitavat Findri Ref-Control -ohjauskeskukset Oy Yleiskylma -Findri tarjoaa

Lisätiedot

Peliteoria luento 3. May 27, Peliteoria luento 3

Peliteoria luento 3. May 27, Peliteoria luento 3 May 27, 2015 Dominanssi Mitkä ovat uskottavia tulemia? Ja miksi? Yksi päätösteoreettinen periaate on dominanssi. Kuten lähes kaikkia taloustieteessä kiinnostavia käsitteitä niitä on kahta lajia. Aito ja

Lisätiedot

Luento 5: Peliteoria

Luento 5: Peliteoria Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

Peliteoria ja huutokauppamekanismit

Peliteoria ja huutokauppamekanismit Peliteoria ja huutokauppamekanismit Satu Ruotsalainen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Satu Ruotsalainen, Peliteoria ja huutokauppamekanismit

Lisätiedot

PELITEORIAN PERUSTEITA

PELITEORIAN PERUSTEITA PELITEORIAN PERUSTEITA Matti Estola 29. marraskuuta 2013 Sisältö 1 Johdanto 2 2 Peliteoreettisen analyysin vaiheet 2 3 Staattiset pelit täydellisen informaation vallitessa 3 4 Pelin ratkaiseminen 4 4.1

Lisätiedot

Epätäydellisen tiedon jatkuvat pelit

Epätäydellisen tiedon jatkuvat pelit Epätäydellisen tiedon jatkuvat pelit Mika Viljanen Helsinki 4..2006 Peliteorian seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto 2 Epätäydellisen tiedon jatkuva peli 2. Jatkuvan

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

SISÄLTÖ. 1. Yleista s Lataus s Ka ytto s Lisa tietoja s Lakka Pihakivet GDL ohjeet

SISÄLTÖ. 1. Yleista s Lataus s Ka ytto s Lisa tietoja s Lakka Pihakivet GDL ohjeet SISÄLTÖ 1. Yleista s. 3 2. Lataus s. 3 3. Ka ytto s. 4 4. Lisa tietoja s. 7 2 Lakka Pihakivet GDL ohjeet 1. Yleistä Lakka Pihakivet GDL objekti toimii Archicad ohjelmistossa ja se on tehty helpottamaan

Lisätiedot

Paljonko maksat eurosta -peli

Paljonko maksat eurosta -peli Paljonko maksat eurosta -peli - Ajattele todellinen tilanne ja toimi oman näkemyksesi mukaisesti - Tee tarjous eurosta: * Korkein tarjous voittaa euron. * Huonoimman tarjouksen esittäjä joutuu maksamaan

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

Yleinen tietämys ja Nashin tasapaino

Yleinen tietämys ja Nashin tasapaino Yleinen tietämys ja Nashin tasapaino 24.3.2010 Nashin tasapaino Ratkaisumalli kahden tai useamman pelaajan pelille. Yleisesti: Jos jokainen pelaaja on valinnut strategiansa eikä yksikään pelaaja voi hyötyä

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Kuka hyötyy biotaloudesta? Professori Hanna-Leena Pesonen Jyväskylän yliopisto BIOCLUS-hankkeen loppuseminaari 22.10.2012

Kuka hyötyy biotaloudesta? Professori Hanna-Leena Pesonen Jyväskylän yliopisto BIOCLUS-hankkeen loppuseminaari 22.10.2012 Kuka hyötyy biotaloudesta? Professori Hanna-Leena Pesonen Jyväskylän yliopisto BIOCLUS-hankkeen loppuseminaari 22.10.2012 Sisältö I. Biotalous osana kestävää taloutta: Talouskasvun irrottaminen luonnonvarojen

Lisätiedot

Sekastrategia ja Nash-tasapainon määrääminen

Sekastrategia ja Nash-tasapainon määrääminen May 24, 2016 Sekastrategia Monissa peleissä ei ole Nash-tasapainoa puhtaissa strategioissa H T H 1, 1 1, 1 T 1, 1 1, 1 Ratkaisu ongelmaan löytyy siitä, että laajennetaan strategiat käsittämään todennäköisyysjakaumat

Lisätiedot

Kunta HYTE -hanke. Toteutusaika Pohjois-Karjalan kansanterveys ry

Kunta HYTE -hanke. Toteutusaika Pohjois-Karjalan kansanterveys ry Kunta HYTE -hanke Toteutusaika 1.2.2017-30.7.2019 Pohjois-Karjalan kansanterveys ry Sisä llys 1 Täustää... 3 2 Tävoitteet... 5 3 Toimintä vuonnä 2017... 5 4 Toimintä vuosinä 2018-2019... 7 5 Hänkkeen hyo

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

Yhdistyksen tarkoituksena on toimia sosiaalialalle soveltuvaa korkeakoulututkintoa opiskelevien ammatillisena yhdistyksena ja siina tarkoituksessa

Yhdistyksen tarkoituksena on toimia sosiaalialalle soveltuvaa korkeakoulututkintoa opiskelevien ammatillisena yhdistyksena ja siina tarkoituksessa SA A NNO T NIMI JA TOIMIALUE 1 Yhdistyksen nimi on. Yhdistyksesta ka yteta a n na issa sa a nno issa nimitysta yhdistys. Yhdistys on Sosiaalialan korkeakoulutettujen ammattija rjesto Talentia ry Fackorganisationen

Lisätiedot

Johdanto peliteoriaan Kirja kpl. 2

Johdanto peliteoriaan Kirja kpl. 2 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu

Lisätiedot

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen ---------------------------------------- TEHTÄVÄKORI Monisteita matikkaan Riikka Mononen ---------------------------------------- Tehtäväkori 2016 TEHTÄVÄKORI Monisteita matikkaan -materiaali on kokoelma

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Kommunikaatio MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 2.11.2016 Visa Linkiö The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista Matematiikan johdantokurssi, sks 07 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

SEKASTRATEGIAT PELITEORIASSA

SEKASTRATEGIAT PELITEORIASSA SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer

Lisätiedot

Pelit matematiikan opetuksessa

Pelit matematiikan opetuksessa Pelit matematiikan opetuksessa Vadim Kulikov Helsingin Yliopisto Matematiikan ja tilastotieteen laitos Epsilonit kirjaa tutkimassa, 28.01.2012 Millaisia pelejä? pärjääminen edellyttää ongelmanratkaisukykyä,

Lisätiedot

Luento 7. June 3, 2014

Luento 7. June 3, 2014 June 3, 2014 Peli, jossa on kaksi Nash-tasapainoa. Yksi tasapaino on (1; 2) ja toinen (2; 1); P1:n valinta on ilmoitettu ensin. Ensimmäinen tasapaino ei vaikuta hyvältä; se perustuu epäuskottavaan uhkaukseen.

Lisätiedot

Kotitalous vl luokka. Laaja-alainen osaaminen. Tavoitteisiin liittyvät sisältöalueet. Opetuksen tavoitteet

Kotitalous vl luokka. Laaja-alainen osaaminen. Tavoitteisiin liittyvät sisältöalueet. Opetuksen tavoitteet Kotitalous vl.7-9 7.luokka Opetuksen tavoitteet Käytännön toimintataidot T1 ohjata oppilasta suunnittelemaan, organisoimaan ja arvioimaan tyo ta ja toimintaa T2 ohjata oppilasta harjoittelemaan kotitalouden

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.

Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos. TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste

Lisätiedot

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =.

Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =. Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki tai < tai =. 1 Valitse ruutuun oikea merkki tai < tai =. ------------------------------------------------------------------------------

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen

Lisätiedot

HINATTAVAN LAITTEEN/ KYLPYTYNNYRIN VUOKRASOPIMUSEHDOT

HINATTAVAN LAITTEEN/ KYLPYTYNNYRIN VUOKRASOPIMUSEHDOT Vuokra-aika HINATTAVAN LAITTEEN/ KYLPYTYNNYRIN VUOKRASOPIMUSEHDOT Vuokra-aika alkaa vuokrauksen kohteena olevan HINATTAVAN LAITTEEN eli kylpytynnyrin sovitulla luovutushetkella ja kesta a siihen saakka,

Lisätiedot

Nollasummapelit ja muut yleisemmät summapelit

Nollasummapelit ja muut yleisemmät summapelit Nollasummapelit ja muut yleisemmät summapelit Teemu Orjatsalo Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2013 Tiivistelmä: Teemu Orjatsalo, Nollasummapelit

Lisätiedot

Rationalisoituvuus ja yleinen tieto rationaalisuudesta

Rationalisoituvuus ja yleinen tieto rationaalisuudesta Rationalisoituvuus ja yleinen tieto rationaalisuudesta Keskeiset termit: Rationalizability rationalisoituvuus ratkaisukonsepti peliteoriassa Rationalizable rationalisoituva Rationality rationaalisuus pelaajat

Lisätiedot

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

Johtajuuden uusi aika miksi johtajuuden pita a muuttua?

Johtajuuden uusi aika miksi johtajuuden pita a muuttua? Johtajuuden uusi aika miksi johtajuuden pita a muuttua? Niina Andersin Hallituksen puheenjohtaja, johdon konsultti, valmentaja, coach Avidia Oy 1 Passion For Progress Alhaisen toimeenpanokyvyn tunnusmerkkejä

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2)

Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2) Yhteistyöryhmä 1 16.01.2013 Kunnanhallitus 71 04.02.2013 Yhteistyöryhmä 14 24.10.2013 Kunnanhallitus 289 02.12.2013 Vapaaehtoiset palkattomat virkavapaat ja työlomat (5+2) 26/01.01.03/2013 Yhteistyöryhmä

Lisätiedot

EUROOPPANUORET RY. SÄÄNNÖT 1 YHDISTYKSEN NIMI, KOTIPAIKKA JA KIELI

EUROOPPANUORET RY. SÄÄNNÖT 1 YHDISTYKSEN NIMI, KOTIPAIKKA JA KIELI SÄÄNNÖT 1 YHDISTYKSEN NIMI, KOTIPAIKKA JA KIELI Yhdistyksen nimi on Eurooppanuoret ry, Unga Europeer rf. Kansainva lisissa yhteyksissa liitosta voidaan ka ytta a nimitysta JEF Finland. Na issa sa a nno

Lisätiedot

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w Epainn muis (1.1., 6.12.) # œ œ œ œ œ # œ w i nun Kris lis sä py hää muis tus Tofia (6.1.) jo Jo pai a, y lis n [Ba li nu a, os,] kun ni, l nä ru k, i dän Ju ma lis, y lis ka i dän h tm h nk sl nu a, o

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Yykaakoo 1A opettajan oppaan liitteet

Yykaakoo 1A opettajan oppaan liitteet Yykaakoo A opettajan oppaan liitteet Kopiointipohjat. Laskemisen tukimateriaali 2 a. Kymppiruudukot 2 b. Pistenapit 3 c. Lukunapit 4 d. Geometriset tasokuviot 5 e. Rahat 6 2. Ruutupohjia 7 a. Ruutupohja

Lisätiedot

Johdatus politologiaan. Turun yliopisto, sl 2012 Maija Setälä Luento VII: Politiikan tutkimuksen lähestymistapoja: Rationaalisen valinnan teoria

Johdatus politologiaan. Turun yliopisto, sl 2012 Maija Setälä Luento VII: Politiikan tutkimuksen lähestymistapoja: Rationaalisen valinnan teoria Johdatus politologiaan Turun yliopisto, sl 2012 Maija Setälä Luento VII: Politiikan tutkimuksen lähestymistapoja: Rationaalisen valinnan teoria Rationaalisen valinnan teoria Rationaalisen valinnan teoria

Lisätiedot

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

2 Konveksisuus ja ratkaisun olemassaolo

2 Konveksisuus ja ratkaisun olemassaolo 2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan

Lisätiedot

- 16 Kokouksen avaaminen Pöytäkirjantarkastajien valinta Työjärjestyksen hyväksyminen. Vt. kaupunginjohtajan päätösehdotus:

- 16 Kokouksen avaaminen Pöytäkirjantarkastajien valinta Työjärjestyksen hyväksyminen. Vt. kaupunginjohtajan päätösehdotus: Kaupunginhallitus 198 12.06.2017 Kaupunginvaltuuston kokouksen 24.4.2017 päätösten täytäntöönpano 1898/00.02.01/2017 KHALL 12.06.2017 198 Kuntalain (410/2015) 39 :n 1 momentin mukaan kunnanhallitus vas

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka 1. Selitä mitä tarkoittavat a) M2 b) vaihtoehtoiskustannus. Anna lisäksi esimerkki vaihtoehtoiskustannuksesta. (7 p) Vastaus: a) Lavea raha. (1 p) M1 (Yleisön hallussa olevat lailliset maksuvälineet ja

Lisätiedot

Konsulttidemokratia asiantuntijuutta korvaamassa. Hanna Kuusela, tutkijatohtori Suomen Akatemia / Tampereen yliopisto Kevätneuvokki 2014

Konsulttidemokratia asiantuntijuutta korvaamassa. Hanna Kuusela, tutkijatohtori Suomen Akatemia / Tampereen yliopisto Kevätneuvokki 2014 Konsulttidemokratia asiantuntijuutta korvaamassa Hanna Kuusela, tutkijatohtori Suomen Akatemia / Tampereen yliopisto Kevätneuvokki 2014 Mikä konsulttidemokratia? Teknokratiasta konsulttidemokratiaan. Konsulttidemokratiassa

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

Opettaminen ja oppiminen

Opettaminen ja oppiminen Opettaminen ja oppiminen MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 19.10.2016 Nina Gunell The document can be stored and made available to the public on the open internet pages of Aalto

Lisätiedot

1. Kaikki kaatuu, sortuu August Forsman (Koskimies)

1. Kaikki kaatuu, sortuu August Forsman (Koskimies) olo q» date reliioso olo 7 K (2003) KE2a7 1. Kaikki kaatuu, sortuu uust Forsma (Koskimies) olo 14 olo 21 3 3 3 3 3 3 3 3 Ÿ ~~~~~~~~~~~ π K (2003) KE2a7 uhlakataatti (kuoro) - 2 - Kuula: - 3 - uhlakataatti

Lisätiedot

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA

YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S

Lisätiedot

Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016

Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016 Sosiaali- ja terveysltk 201 09.12.2014 Sosiaali- ja terveysltk 22 26.01.2016 TILOJEN VUOKRAAMINEN TORNION SAIRASKOTISÄÄTIÖLTÄ PÄIVÄKESKUSTOIMINTAA VARTEN/TILOJEN VUOKRAAMINEN VUODELLE 2014/TILOJEN VUOKRAAMINEN

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Tasapaino epätäydellisen tiedon peleissä

Tasapaino epätäydellisen tiedon peleissä hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet

Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely)

Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Peliteorian soveltaminen hajautettujen järjestelmien protokollasuunnittelussa (valmiin työn esittely) Riku Hyytiäinen 23.02.2015 Ohjaaja: Harri Ehtamo Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa

Lisätiedot

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Matematiikan johdantokurssi, sks 06 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

SÄÄNTÖMÄÄRÄISEN VUOSIKOKOUKSEN ESITYSLISTA

SÄÄNTÖMÄÄRÄISEN VUOSIKOKOUKSEN ESITYSLISTA SÄÄNTÖMÄÄRÄISEN VUOSIKOKOUKSEN ESITYSLISTA Aika: 10.12.2016 klo 15:00 Paikka: Allianssi talo, Asemapa a lliko nkatu 1, 00520 Helsinki 1. KOKOUKSEN AVAUS Esitys: Eurooppanuorten puheenjohtaja Jesse Ja a

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

9 Matriisit. 9.1 Matriisien laskutoimituksia

9 Matriisit. 9.1 Matriisien laskutoimituksia 9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä

Lisätiedot

A 1 Yli esteiden Nimi

A 1 Yli esteiden Nimi A Yli esteiden Nimi Ym-py-röi oi-ke-a lu-ku. Käy-tä ku-vi-a las-ke-mi-sen tu-ke-na. Lu-vun ja lu-ku-mää-rän yh-te-ys Lu-vun ja lu-ku-mää-rän yh-te-ys Lu-vun ja lu-ku-mää-rän yh-te-ys Vä-ri-tä oi-ke-a mää-rä.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Yhteistyötä sisältämätön peliteoria

Yhteistyötä sisältämätön peliteoria Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot

Quick Report. 1) Which DSC are you from? Text Responses. 2) Viestinta. Helsinki Finland Helsinki Helsinki Helsinki1 DSC

Quick Report. 1) Which DSC are you from? Text Responses. 2) Viestinta. Helsinki Finland Helsinki Helsinki Helsinki1 DSC Quick Report ) Which DSC are you from? Helsinki Finland Helsinki Helsinki Helsinki DSC ) Viestinta 5 Standard Deviation Responses Weighted Average DiEM5:n ja senet saatetaan tietoisiksi ajankohtaisista

Lisätiedot

Hammastekniikka tutuksi

Hammastekniikka tutuksi Hammastekniikka tutuksi Hammasteknikko on suun terveydenhuollon ammattilainen, joka suunnittelee ja valmistaa erilaisia hammasproteeseja ja -kojeita yhteistyössä hammaslääkärin kanssa. Hammasteknisessä

Lisätiedot

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6) Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p

Lisätiedot