5 Magneettiset materiaalit

Koko: px
Aloita esitys sivulta:

Download "5 Magneettiset materiaalit"

Transkriptio

1 5 Magneettiset materiaalit 5.1 Magnetoituma Samoin kuin sähkökenttään asetettu eriste muuttaa sähkökenttää, muuttaa magneettikenttään asetettu aine magneettikenttää. Tämä aiheutuu atomien tai molekyylien magneettimomenteista. Atomin magneettimomentti koostuu elektronien rataliikkeeseen (ydintä kiertävä elektroni muodostaa virtasilmukan) ja sisäiseen impulssimomenttiin eli spiniin liittyvistä magneettimomenteista. Myös ytimellä on oma magneettimomenttinsa, mutta kahteen e.m. tekijään verrattuna se on vähäinen. Impulssimomentti, johon magneettimomentti liittyy, on kvantittunut suure;esimerkiksi spin-impulssimomentin komponentti tietyssä suunnassa voi saada vain arvot ± h/2, missä h = h/2π. Jos elektroniverhon kokonaisimpulssimomentti on nolla, ei atomilla ole permanenttia magneettimomenttia. Jos atomilla on permanentti magneettimomentti, aine on paramagneettista, jos ei ole, se on diamagneettista. Jos paramagneettinen aine asetetaan magneettikenttään, pyrkivät atomien magneettimomentit orientoitumaan sen suuntaan samaan tapaan kuin pooliset atomit sähkökentässä. Magneettikentän intensiteetti siis kasvaa hieman paramagneettisessa aineessa. Paramagneettisia aineita ovat mm. titaani ja happi. Erikoistapauksia paramagnetismista ovat ferromagneettiset aineet, joilla on voimakkaasti magneettikenttää vahvistava vaikutus. Mm. rauta, koboltti ja nikkeli ovat ferromagneettisia. Kaikki atomit ja molekyylit saavat magneettikentässä indusoidun magneettimomentin, joka on aina magneettikentälle vastakkaissuuntainen. Tämän vuoksi diamagneettiset aineet, joilla ei ole permanettia magneettimomenttia, heikentävät magneettikenttää. Diamagneettisia aineita ovat mm. kupari ja lasi. Jos atomin keskimääräinen magneettimomentti kentän suunnassa on m ja atomien lukumäärä tilavuusyksikössä onn,määritellään magnetoituma M yhtälöllä Magnetoituman yksikkö on M = N m. (5.1) [M] = 1 m 3 Am2 = A m. 81

2 Diamagnetismi ω ω Kuva 5.1 Diamagnetismin synty voidaan esittää tarkastelemalla elektronia sen kiertäessä ydintä oletetulla ympyräradalla. Jos atomin i:nnen elektronin vauhti on v i ja radan säde r i, se aiheuttaa virran I = ev i 2πr i ja magneettimomentin m i = IA = ev i 2πr i πr 2 i = e 2m e (m e v i r i )= e 2m e L i, missä L i = m e v i r i = m e ω i ri 2 on elektronin rataimpulssimomentti ja ω i = v i /r i kulmanopeus. Koska elektronilla on negatiivinen varaus, L i :n ja m i :n suunnat ovat vastakkaiset, joten m i = e L i. (5.2) 2m e Kaikkien atomin elektronien rataliikkeistä aiheutunut magneettimomentti on m = e L i = e L, (5.3) 2m e 2m e i missä L on elektronien kokonaisrataimpulssimomentti. Jos L = 0 ja jos lisäksi elektronien spinien summa = 0, ei atomilla ole permanenttia magneettimomenttia, jolloin se on diamagneettinen. Elektronin keskeiskiihtyvyys ympyräradalla on v 2 /r = ω0r, 2 joten mistä ratkaistuna ω 0 = m e ω 2 0r = ( Ze 2 Ze2 4πε 0 r 2, 4πε 0 m e r 3 ) 1/2. (5.4)

3 5.1. MAGNETOITUMA 83 ω = ω + ω ω = ω ω Kuva 5.2 Kuva 5.3 Jos atomi asetetaan magneettikenttään, kohdistuu elektroniin voima ev, joka on pieni Coulombin voimaan Ze 2 /(4πε 0 r 2 ) verrattuna. Tämä lisävoima kuitenkin muuttaa kulmanopeutta. Jos v, saadaan muuttunut kulmanopeus ω yhtälöstä m e ω 2 r = Ze2 4πε 0 r ± eωr, 2 missä plusmerkki on voimassa kuvan 5.2 ja miinusmerkki kuvan 5.3 tilanteessa. Säteen r pieni muutos voidaan jättää huomioimatta ja voidaan käyttää samaa arvoa kuin yhtälössä (5.4). Tämä on toisen asteen yhtälö ω:n suhteen ja normaalimuodossa se voidaan kirjoittaa josta ratkaistuna ω 2 e ω Ze2 m e 4πε 0 m e r =0, 3 ω = ± e ( e + 2m e 2m e ) 2 + Ze 2 4πε 0 m e r 3. Yhtäkön toinen juuri ei kelpaa, sillä se on negatiivinen. Koska magneettinen voima on pieni Coulombin voimaan verrattuna, saadaan approksimaatio ω ( Ze 2 4πε 0 m e r 3 ) 1/2 ± e 2m e = ω 0 ± ω L. (5.5) Suureesta ω L = e/(2m e )käytetään nimitystä Larmor-kulmataajuus. Huomaa, että se kulmataaajuus jolla vapaa elektroni kiertää rataansa magneettikentässä on e/m e, siis kaksinkertainen;tätäkin nimitetään joskus Larmor-kulmataajuudeksi. Nähdään, että kuvan 5.2 tapauksessa kulmanopeus ja sen mukana L kasvaa, ja kuvan 5.3 tapauksessa sekä kulmanopeus että L pienenevät. Kummassakin tapauksessa L saa magneettikentän suuntaisen lisän L = m e ω L r 2. Magneettikenttä siis indusoi magneettimomentin muutoksen m ind = e 2m e L = e 2m e m e ω L r 2 = e 2 Tämä muutos on kentälle vastakkaissuuntainen, eli e 2m e r 2 = e2 r 2 4m e. m ind = e2 r 2. (5.6) 4m e

4 84 Vaikka kentättömässä tilanteessa kuvien 5.2 ja 5.3 magneettimomentit kumoavatkin toisensa, kentän indusoimat momentit ovat samansuuntaisia, ja atomille saadaan kentän vaikutuksesta kentän suhteen vastakkaissuuntainen magneettimomentti. Aine on siis diamagneettinen. Yllä oletettiin yksinkertaisuuden vuoksi, että ja v ovat kohtisuorassa toisiaan vastaan. Atomissa eri elektronien kiertoradat voivat muodostaa erilaisia kulmia :n suhteen ja ratojen muoto ja koko voivat olla erilaisia. Voidaan osoittaa, että atomin indusoitu magneettimomentti on keskimäärin m = e2 Zr 2 0 6m e, (5.7) missä Z on atomin elektronien lukumäärä jar 2 0 on elektronien ratojen säteiden neliöiden keskiarvo. Tämä perusteella diamagneettisen aineen magnetoituma on M = Ne2 Zr0 2, (5.8) 6m e missä on paikallinen magneettivuon tiheys. Ei-ferromagneeettisissa aineissa se on useimmissa tapauksissa sama kuin makroskooppinen kenttä Paramagnetismi Jos atomin tai molekyylin elektronien kokonaisrataimpulssimomentti ilman ulkopuolista magneettikentää on eri suuri kuin nolla, aine on paramagneettista. Tyypillisesti paramagneettisen atomin L on suuruusluokkaa h, joten atomin magneettimomentti on suuruusluokkaa m = e h =9, Am 2. (5.9) 2m e Suureesta m (joskus merkitään µ )käytetään nimitystä ohrin magnetoni. Koska magneettimomentin potentiaalienergia U p = m pyrkii minimiin, kääntää magneettikenttä momentteja itsensä suuntaisiksi. Erittäin suuressa magneettikentässä, jossa =10T,m :n suuruisen magneettimomentin potentiaalienergian U p = m = J. Huoneenlämmössä terminen energia 3kT/ J, joten lämpöliikkeen energia on hallitseva. Magnetoituma voidaan siis laskea oltzmannin jakautuman avulla samalla tavalla kuin poolisen eristeen polarisoituma laskettiin kohdassa Tulos voidaan kirjoittaa suoraan kaavan (2.13) perusteella kun P, p ja E korvataan M:llä, m:llä ja:llä. Tulos on M = Nm2. (5.10) 3kT Atomin keskimääräinen kentän suuntainen magneettinen momentti on siis m = m2. (5.11) 3kT

5 5.1. MAGNETOITUMA 85 Tässäkin kaavassa voidaan käyttää keskimääräistä magneettivuon tiheyttä, sillä :n paikallinen arvo on paramagneettisissa aineissa suunnilleen keskimääräisen kentän suuruinen. Myös paramagneettisiin aineisiin syntyy indusoitunut magneettimomentti, joka aiheuttaa diamagneettisen efektin. Sen vuoksi konaismagnetoituma on ( m 2 M = N 3kT e2 Zr0 2 ). (5.12) 6m e Esim.: Jos tutkitaan ainetta jonka Z = 50, r mjam m, niin paramagneettinen magnetoituma on noin kaksinkertainen diamagneettiseen nähden. Koska diamagneettinen osa riippuu Z:sta, vastaavat kevyemmät aineet, joilla on permanenttia magnetoitumaa ovat vielä selvemmin paramagneettisia Ferromagnetismi Joissakin aineissa, kuten esimerkiksi raudassa, koboltissa ja nikkelissä, esiintyy hyvin voimakas paramagneettinen ilmiö, jota kutsutaan ferromagnetismiksi. Ilmiö aiheutuu siitä, että tietyn lämpötilan (Curie-lämpötila, Curie-piste) alapuolella aine on jakautunut suuruusluokkaa m 3 oleviin alueisiin, joita nimitetään Weissin alueiksi. Kussakin Weissin alueessa johde-elektronien spinit ja siis myös magneettimomentit ovat samansuuntaisia. Suuntautuminen johtuu johde-elektronien ja sidottujen elektronien vuorovaikutuksesta ja syntyy vain sellaisissa aineissa joiden sidotuilla elektroneilla on oikea orbitaalirakenne. Magnetoitumattomassa aineessa alueiden kokonaismagneettimomentit ovat satunnaisesti suuntautuneita ja eri alueet ovat suunnilleen samankokoisia. Heikossa magneettikentässä pieni enemmistö alueista on kentän suuntaisia, mutta silti ferromagneettinen vaikutus voi olla varsin suuri. Kun magneettikenttää kasvatetaan, laajenevat ne alueet, joiden magneettiset momentit ovat kentän suuntaisia, ja muut pienenevät. Näin saadaan entistä voimakkaampi keskimääräinen magnetoituma. Kun kenttä kasvaa riittävän suureksi, kentän suuntaan magnetoituneet Weissin alueet laajenevat niin, että kaikki muut alueet katoavat. Tämän jälkeen magnetoituma ei voi enää kasvaa, ja ainetta sanotaan saturoituneeksi. Curie-pisteen yläpuolella ferromagneettinen aine muuttuu paramagneettiseksi. On myös aineita, jotka ovat erittäin vähän magnetoituvia ja joita sen vuoksi kutsutaan antiferromagneettisiksi. Niissä on atomitasolla voimakas magneettinen

6 86 vuorovaikutus, mutta vierekkäisten atomien magneettimomentit ovat vastakkaissuuntaiset. Tällainen rakenne vastustaa tehokkaasti ulkoisen magneettikentän magnetoivaa vaikutusta. Ferrimagneetit ovat epätäydellisiä antiferromagneetteja. Niilläkin on vastakkaissuuntaisia magneettimomentteja, jotka eivät kuitenkaan ole aivan samansuuruisia eivätkä siis täysin kumoa toisiaan. 5.2 Makroskooppinen magneettikenttä aineessa Sähkökentän kanssa analogisesti voidaan aineessa vaikuttavalle magneettikentälle määritellä atomaarinen kenttä at, joka vaihtelee atomin suuruusluokkaa olevassa mittakaavassa makroskooppinen kenttä, joka on at :n keskiarvo niin laajan alueen yli, että se sisältää suuren määrän atomeja paikallinen kenttä loc, jonka aineen yksittäinen atomi kokee. Jos makroskooppinen magneettivuon tiheys ilman väliainetta on 0 ja väliaineen kanssa, on voimassa = 0 + M, (5.13) missä M on väliaineen magnetoituman M aiheuttama muutos. Muutos aiheutuu tietenkin atomien magneettimomenttien kentistä ja suurimmaksi osaksi siitä voimakkaasta kentästä, joka vaikuttaa atomin sisällä ja on sen magneettimomentin suuntainen (kuva 5.5). Ferromagneetttisia aineita lukuunottamatta muutos M on varsin pieni. Paramagneettiset aineet voimistavat ja diamagneettiset aineet heikentävät kenttää. E 0 0 E 0 0 Kuva 5.4 Kuva 5.5 Verrataan tilannetta sähködipoliin (kuva 5.4). Eristeissä atomin dipolimomentit ovat kentän suuntaisia, joten dipolin sisällä oleva voimakas kenttä pyrkii pienentämään ulkoista sähkökenttää.

7 5.2. MAKROSKOOPPINEN MAGNEETTIKENTTÄ AINEESSA 87 Koska :n kenttäviivat ovat jatkuvia, ei tällaista kentän suunnan vaihtumista tapahdu magneettimomentin sisällä, ja paramagneettisissa aineissa (kuva 5.5), joissa M on :n suuntainen, kasvaa M:n vaikutuksesta. Diamagneettisissa aineissa magneettimomenttien suunnat ovat kentän suunnalle vastakkaisia, ja sen vuoksi ne heikentävät kenttää Magnetoituneen kappaleen pintavirrat Koska väliaineen aiheuttamat magneettikentän muutokset johtuvat atomien tai molekyylien magneettimomenteista ja magneettimomentit puolestaan voidaan kuvata pienten virtasilmukoiden avulla, jotka yhdessä muodostavat virtajärjestelmän, on mahdollista löytää virtasysteemi, joka aiheuttaa saman kentän muutoksen kuin väliaine. L r r i s δx (A) () I Esim.: Tarkastellaan homogeenista magneettikenttää paramagneettisella aineella täytetyssä pitkässä solenoidissa. Solenoidissa kulkevan virran I aiheuttama magneettivuon tiheys solenoidin sisällä on 0 = µ 0 NI, (5.14) missä N on kierrosten lukumäärä/pituusyksikkö. Paramagneettiseen aineeseen syntyy homogeeninen magnetoituma M, joka on :n suuntainen. Jaetaan paramagneettinen sauva δx:n paksuisiksi liuskoiksi. Kunkin kokonaismagneettimomentti on πr 2 δxm, missä r on solenoidin säde. Jokainen liuska koostuu suuresta määrästä magneettimomentteja (kuva A), joita voidaan kuvata pienillä virtasilmukoilla. Nämä virrat kumoavat toisensa muualla, paitsi aineen pinnalla (kuva ), jonne syntyy magnetoituman pintavirta. Jos i S on pintavirran suuruus pituusyksikköä kohti, on yhden liuskan magneettimomentti πr 2 i S δx. Tämän tulee olla yhtä suuri kuin πr 2 δxm, eli i S = M. Ampèren lain mukaan tämän virran aiheuttama magneettivuon tiheys M voidaan laskea ehdosta M l = µ 0 i S l = µ 0 Ml, josta M = µ 0 M. (5.15) Kokonaismagneettivuon tiheys on solenoidin virran I ja magnetoituman pintavirran i S aiheuttamien kenttien summa = 0 + M = µ 0 NI + µ 0 M = µ 0 (NI + M).

8 88 Osoitamme seuraavaksi, että para- ja diamagneettisissa aineissa magnetoitumasta aiheutuva kenttä M on paljon pienempi kuin 0, ja aiheuttaa siihen vain pienen muutoksen. Jos näin on, niin sisäinen kenttä loc on miltei sama kuin makroskooppinen kenttä. Tällöin voimme käyttää yhtälössä (5.12) makroskooppista kenttää 0, jolloin ( m 2 M = µ 0 M = µ 0 N 3kT e2 Zr0 2 ) 0. 6m e Kuten aikaisemmin näimme, diamagneettinen termi on yleensä paramagneettista pienempi. Jos se jätetään huomioimatta, on M 0 = µ 0Nm 2 3 kt. Kiinteissä aineissa atomien lukumäärätiheys on suuruusluokkaa N = m 3. Jos lisäksi m = m ja T = 300 K, on M / Diamagneettisen termin huomioiminen pienentäisi tätä suhdetta edelleen, joten paramagneettisessa aineessa on todellakin M Magnetoitumavirtatiheys Edellä käsitelty magnetoituman aiheuttama pintavirta homogeenisessa kappaleessa on analoginen homogeeniseen eristeeseen syntyvän polarisoituman aiheuttaman pintavarauksen σ p kanssa. Epähomogeenisessa sähkökentässä epätasaisesti polarisoituneessa eristeessä voi pintavarauksen lisäksi eristeen sisällä olla myös polarisaatiovarauksen tiheys ρ p = P. Samoin epähomogeenisesti magnetoituneessa aineessa on magneettikenttiä, jotka aiheutuvat magnetoituman synnyttämistä aineen sisällä kulkevista virroista. z M z I2 - I1 I3 - I2 I4 - I3 I5 - I4 I1 I2 I3 I4 I5 x x Kuva 5.6 Kuva 5.7 Kuvat 5.6 ja 5.7 valaisevat magnetoitumavirtatiehyden syntyä. Kuvan 5.6 magnetoituma on y-suuntainen ja vakio y- ja z-suunnassa mutta kasvaa x-suunnassa. Tällainen magentoituma aiheutuu pienistä virtasilmukoista, joiden virran suuruus kasvaa x-akselin suuntaan kuljettaessa. Tuloksena on z-akselin suuntaan kulkeva

9 5.2. MAKROSKOOPPINEN MAGNEETTIKENTTÄ AINEESSA 89 makroskooppinen nettovirta, jonka tiheyttä j M nimitetään magnetoitumavirtatiheydeksi. Kuvan 5.6 tapauksessa magnetoitumavirtatiheys on kaikkialla z suuntainen. Pisteessä (x, y, z) olevan alkion A (kuva 5.8) läpi menevä z-suuntainen kokonaisvirta on siis j Mz δxδy. Alkion magneettimomentti on M y δxδyδz, missä M y on magnetoituman y-komponentti. Tämä magneettimomentti saadaan myös pintavirrasta M y δy, joka kiertää alkion A pinnalla. M(x-δx,y,z)δy z M(x,y,z)δy y δy δz M(x,y,z) δx A Kuva 5.8 x Alkion A läpi kulkeva z-suuntainen nettovirta voidaan laskea seuraavasti. Lasketaan A:n vasemmalla sivulla ylöspäin menevän virran M y (x, y, z)δy ja pisteessä (x δx, y, z) sijaitsevan alkion alaspäin suunnatun virran M y (x δx,y,z)δy erotus. Lasketaan myös vastaava erotus A:n päinvastaiselta puolelta. Näiden kahden erotuksen summana saadaan z-suuntainen nettovirta, joka jakautuu kahden alkion kesken. Alkion A osuus on j Mz δxδy = 1 2 δy [M y(x, y, z) M y (x δx, y, z)+m y (x + δx,y,z) M y (x, y, z)], josta j Mz = M y x. Vastaavasti x-akselin suuntainen magnetoituma tuottaisi z-suuntaisen virtatiheyden M x / y. Koska z-suuntaiseen magnetoitumaan liittyvät virrat ovat xytasossa, ainoastaan magnetoituman x-jay-komponentit vaikuttavat z-suuntaiseen virtaan. Magnetoitumavirtatiheyden z-komponentti on siis j Mz = M y x M x y =( M) z. (5.16) Sama tulos voidaan johtaa muillekin komponenteille, joten j M = M. (5.19) Epähomogeeninen magnetoituma aiheuttaa siis tällaisen virtatiheyden aineeseen. Vastaavasti epähomogeeninen polarisoituma synnyttää aineeseen polarisaatiovaraustiheyden ρ P = P.

10 90 Palataan vielä tarkastelemaan magnetoituman pintavirtaa i S. Kuten edellä esitetystä solenoidiesimerkistä nähdään, solenoidin akselin suuntaiseen magnetoitumaan M liittyy sitä vastaan kohtisuora vaipalla kulkeva virta i S. Vaippapinnan normaali n on kohtisuorassa sekä i S :ää että M:ää vastaan. Toisaalta solenoidin päissä, missä n M, ei pintavirtoja kulje. Tämä on yleinen tulos: jos magnetoituma M on pinnan normaalin suuntainen, niin pienten pinta-alkioiden ympäri kulkevat virrat kumoutuvat ja pintavirta häviää. On siis voimassa i S M n. (5.20) Solenoidiesimerkki osoittaa,että kun M n, joten yleisesti i s = M, (5.21) i S = M n. (5.22) Magneettinen suskeptiivisuus Kuten edellä osoitettiin, ei-ferromagneettisten aineiden magnetoituma on verrannollinen magneettivuon tiheyteen ja ( m 2 M = N 3kT e2 Zr0 2 ). (5.12) 6m e Voidaan siis määritellä magneettinen suskeptiivisuus χ yhtälöllä M = χ µ 0. (5.23) Näiden kaavojen avulla saadaan ( m 2 χ = µ 0 N 3kT e2 Zr0 2 ). (5.24) 6m e Ferromagneettisilla aineilla M:n ja :n välinen riippuvuus on epälineaarinen, joten suskeptiivisuus ei ole vakio. Mittaamalla magneettinen suskeptiivisuus eri lämpötiloissa saadaan siis tietoa atomien magneettimomenteista ja keskimääräisistä säteistä. Tämä on verrattavissa kappaleessa esitettyyn mentelmään, jonka avulla sähköisestä suskeptiivisuudesta voitiin määrittää atomin dipolimonetti ja polarisoituvuus. Magneettinen suskeptiivisuus mitataan yleensä asettamalla aine epähomogeeniseen magneettikenttään ja mittaamalla siihen kohdistuva voima. Esimerkiksi happi on kohtalaisen voimakkaasti paramagneettinen. Mitatusta hapen suskeptiivisuudesta saadaan sen permanentin magneettisen momentin arvoksi m 2, Am 2 eli noin 2,5 m. Toisaalta kaikki jalokaasut ovat diamagneetteja. Niiden suskeptiivisuudesta saadaan arvio säteelle r 0, joka on kaikille jalokaasuille on noin 0, m.

11 5.3. MAGNEETTIKENTÄN VOIMAKKUUS H Magneettikentän voimakkuus H Samoin kuin eriste vaikuttaa polarisaatiovarausten avulla sisällään olevaan sähkökenttään, vaikuttaa magnetoitunut väliaine magnetoitumavirran välityksellä magneettikenttään. :n laskeminen aineessa on ongelmallista, koska :n aiheuttama magnetoituma riippuu :stä mutta myös vaikuttaa siihen. Samoin kuin vastaavanlaisessa sähkökenttäongelmassa käytetään sähkövuon tiheyttä D, otetaan magneettikentän laskemisessa avuksi magneettikentän voimakkuus H Ampèren laki H-kentälle Esim.: Paramagneettisella aineella täytetty pitkä solenoidi. Kuvan 5.9 osoittamaa tietä pitkin laskettuna :n viivaintegraali on dl = ( 0 + M ) dl. Yhtälön (5.15) nojalla A D L Kuva 5.9 C I M = µ 0 M, joten dl = 0 dl + µ 0 M dl, eli ( µ 0 M) dl = 0 dl. Toisaalta yhtälön (5.14) mukaan 0 = µ 0 NI. Voidaan siis kirjoittaa ( µ 0 M) dl = µ 0 I f, (5.26) missä I f = NIL on integroimistien läpi kulkeva vapaa virta. Vapaata virtaa on kaikki se virta, joka ei ole magnetoitumisvirtaa, ja se aihutuu vapaiden varausten liikkeestä. Tässä tapauksessa vapaata virtaa on solenoidissa kulkeva virta. Kun määritellään magneettikentän voimakkuus H yhtälöllä H = 1 µ 0 M, (5.27) saadaan Ampèren laki muotoon H dl = I f.

12 92 Näin on määritelty uusi kenttävektori H, jonka kiertointegraali riippuu vain vapaasta virrasta eli vapaiden varausten liikkeestä. Magneettikentän voimakkuuden yksikkö on [H] =[M] = A m. Yleisessä tapauksessa mielivaltaisen suljetun tien läpi kulkeva kokonaisvirta I koostuu vapaasta virrasta I f ja magnetoitumavirrasta I M, joten Ampèren laki voidaan kirjoittaa dl = µ 0 I f + µ 0 I M. Kun virrat ilmaistaan virtatiheyksien avulla, tämä saadaan muotoon dl = µ 0 j f ds + µ 0 j M ds, (5.28) C S missä integroimistie C on pinnan S rajakäyrä. Yhtälön (5.19) mukaan j M = M, joten dl = µ 0 j f ds + µ 0 M ds = µ 0 j f ds + µ 0 M dl, mistä S S ( ) M dl = µ 0 Määritelmän (5.27) avulla saadaan H dl = S S S S j f ds. j f ds, (5.29) mikä on Ampèren lain integraalimuoto H-kentälle. Soveltamalla Stokesin lausetta yhtälön vasempaan puoleen saadaan H ds = j f ds. S Koska tämä on voimassa kaikille pinnoille S, on integrandien oltava yhtä suuret jokaisessa avaruuden pisteessä, eli Tämä on Ampèren lain differentiaalimuoto H-kentälle. Dia- ja paramagneettisissa aineissa on voimassa S H = j f. (5.30) M = χ µ 0. (5.31) Tätä yhtälöä voidaan soveltaa likimääräisesti myös ferromagneettisiin aineisiin. Niiden magneettinen suskeptiivisuus riippuu kuitenkin :stä, ja sitä voidaan pitää vakiona ainoastaan, mikäli vaihtelee pienellä välillä jonkin arvon ympäristössä.

13 5.3. MAGNEETTIKENTÄN VOIMAKKUUS H 93 eli Kaavojen (5.27) ja (5.31) perusteella H = 1 µ 0 M = 1 µ 0 χ µ 0 = 1 χ µ 0, = µµ 0 H, (5.32) missä µ =(1 χ ) 1 (5.33) on aineen suhteellinen permeabiliteetti. Diamagneettisten aineiden suhteellinen permeabiliteetti on hiukan pienempi kuin 1 ja paramagneettisten aineiden hiukan suurempi kuin 1. Ferromagneettisten aineiden permeabiliteetti on paljon suurempi kuin 1, tyypillisesti suuruusluokkaa Ampèren laki saadaan yhtälön (5.32) avulla muotoon ( ) = j f. µµ 0 Jos µ on vakio, tästä seuraa = µµ 0 j f. (5.34) Tämä on vakiota µ lukuunottamatta saamaa muotoa kuin yhtälö (4.47), joka vastaa tilannetta µ = 1. Koko avaruuden täyttävän väliaineen läsnäolo muuttaa siis magneettivuon tiheyden µ-kertaiseksi. H Kuva 5.10 Toisin kuin -kentän tapauksessa, H-kentän kenttäviivat eivät aina ole jatkuvia, sillä H:n määritelmästä H = /µ 0 M saadaan H = 1 µ 0 M = M, joten H 0, jos M 0. Tämä on mahdollista epähomogeenisessa väliaineessa. H-kentällä voi siis olla lähteitä, joten sen kenttäviivat voivat olla epäjatkuvia;siis ne voivat alkaa jostakin ja loppua jonnekin. Summa H + M = /µ 0 on kuitenkin lähteetön. Samoin aineen rajapinnalla H:n kenttäviivat ovat epäjatkuvia. Esimerkiksi solenoidin sisällä olevan paramagneettisen sauvan (kuva 5.10) läpi kulkevat :n kenttäviivat ovat jatkuvia, mutta M:n kenttäviivat ovat epäjatkuvia, sillä M 0 sauvan sisällä jam = 0 sen ulkopuolella. Koska H = /µ 0 M, kulkee sauvan sisällä vastaavasti vähemmän H:n kenttäviivoja kuin sen päistä lähtee ulkopuoliseen avaruuteen.

14 ja H-kenttien rajaehdot Koska = 0,ovat:n kenttäviivat jatkuvia ja :n kokonaisvuo suljetun pinnan läpi on nolla. Tämän vuoksi :lle δs on kahden aineen rajapinnalla voimassa 1 δs sama ehto kuin D:lle sellaisella pinnalla, µ2 jolla ei ole vapaita varauksia. Tarkastellaan pientä sylinteriä, jonka pohjat ovat 1 kahden aineen rajapinnan vastakkaisilla δs2 2 puolilla. Kun sylinterin pohjien annetaan lähestyä rajapintaa kummaltakin puolelta, magneettivuo sylinterin vaipan lävitse lähestyy nollaa. Tällöin sylinterin pinnan lävitse kulkeva kokonaismagneettivuo on sama kuin sylinterin pohjien lävitse Kuva 5.11 kulkeva vuo, joten ds = 1 ds + 2 ds = 1 δs δs 2 =0. (5.36) δs 1 δs 2 µ 1 θ 1 θ 2 Koska 1 δs 1 = 1 δs ja 2 δs 2 = 2 δs, missä 1 ja 2 ovat pohjan normaalin suuntaiset 1 :n ja 2 :n komponentit, saadaan 1 δs 2 δs =0. Tämä on voimassa aina, kun δs 1 ja δs 2 lähestyvät toisiaan pinnan vastakkaisilta puolilta, joten 1 = 2 (5.37) eli on jatkuva rajapinnalla. µ 1 µ 2 δl 2 H 1 δs 1 θ 1 δl 1 δs 2 Kuva 5.12 θ 2 H 2 Yhtälön H dl = I f (5.38) avulla voidaan johtaa E:n tangentiaalikomponentin jatkuvuutta vastaava ehto H-kentälle. Valitaan suorakulmion muotoinen suljettu integroimistie C, joka on H 1 :n ja H 2 :n määrittelemässä tasossa lähellä rajapintaa. Kun annetaan δl 1 :n ja δl 2 :n lähestyä pintaa S kummaltakin puolelta, lähestyy silmukan pinta-ala nollaa. Silloin myös silmukan käpi kulkeva vapaa virta lähestyy nollaa, mikäli pinnalla S ei ole vapaata virtakatetta;siis äärettömän ohuessa kerroksessa S:n pinnalla ei kulje äärellistä virtaa).

15 5.4. MAGNEETIT 95 Kun I f = 0, (5.38):n avulla sadaan H dl = H 1 δl 1 + H 2 δl 2 =0. Koska H 1 δl 1 = H 1 δl ja H 2 δl 2 = H 2 δl, on H 1 δl H 2 δl =0 eli Siis H on jatkuva rajapinnalla S. H 1 = H 2. (5.39) 5.4 Magneetit Sähkömagneetit I H r r a b Tarkastellaan toroidin muotoista kappaletta, jonka ympärille on kiedottu tiheä käämi. Käämissä kulkeva virta I aiheuttaa magneettikentän H. Lasketaan H:n viivaintegraali pitkin toroidin sisällä olevaa r-säteistä ympyrää. Tämän läpi kulkee vapaa virta N t I, missä N t on käämin kierrosten lukumäärä. Siis H dl = N t I. (5.40) Kuva 5.13 Symmetriasta johtuen H:lla on kaikkialla r-säteisen ympyrän kehällä sama arvo ja se on ympyrän tangentin suuntainen. Näinollen 2πrH = N t I, mistä H = N ti 2πr. Magneettivuon tiheys toroidin sisällä on siis = µµ 0 H = µµ 0N t I. 2πr Jos a b b, on kenttä toroidin sisällä suunnilleen vakio. Kun Ampèren lakia sovelletaan r -säteiseen ympyrään ja r >atai r <b,on H dl =2πr H =0,

16 96 joten H = 0. Näinollen toroidin ulkopuolella ei ole magneettikenttää. Yleensä sähkömagneetissa on ilmarako. Esimerkiksi sähkömoottorissa ankkuri voidaan asettaa pyörimään tällaiseen rakoon. Tutkitaan toroidin muotoista sähkömagneettia, jonka sydämeen on leikattu L:n mittainen ilmarako. Oletetaan I r b L a rako niin pieneksi, että :n jatkuvat kenttäviivat pysyvät raon alueella suunnilleen ympyröinä. Jos rako olisi suuri, kenttäviivat kaartuisivat ulkopuoliseen avaruuteen. Kun kaartumista ei tapahdu, magneettivuon Kuva 5.14 tiheydellä on sama arvo magneetin sydämessä ja ilmaraossa. Sen sijaan H saa sydämessä arvon H r = /(µµ 0 ) ja ilmaraossa arvon H i = /µ 0. Soveltamalla Ampèren lakia H dl = N t I toroidin lävitse kulkevaan r-säteiseen ympyrään saadaan (2πr L) µµ 0 + L µ 0 = N t I, (5.41) mistä = µµ 0 N t I 2πr L + µl. (5.42) Ei-ferromagneettisissa aineissa µ 1, jolloin magneettivuon tiheys toroidin muotoisessa magneetissa ei oleellisesti eroa tyhjän ja sydämellä varustetun toroidin vuon tiheydestä. Ferromagneettisissa aineissa µ riippuu :n ja H:n arvoista, mutta on suuruusluokkaa Jos µ 1, yhtälö (5.42) yksinkertaistuu muotoon: = Mikäli L ei ole liian pieni, on µl 2πr, ja µµ 0N t I 2πr + µl. = µ 0N t I L. Näin ollen ferromagneettisella aineella täytetyn sähkömagneetin ilmaraossa voi kasvaa 2πr/L -kertaiseksi tyhjän solenoidin kenttään verratuna.

17 5.4. MAGNEETIT 97 µ 0 N t I/L = (H) kulmakerroin: µ 0 (2πr -L)/L Todellisuudessa ferromagneettisissa aineissa :n ja H:n välinen riippuvuus = (H) on epälineaarinen (kuva 5.16). Jos magneettikentän voimakkuus sydämessä on H ja magneettivuon tiheys, voidaan yhtälö (5.41) kirjoittaa muotoon Kuva 5.16 H (2πr L) H + L µ 0 = N t I, mistä = µ 0 (2πr L) H + µ 0N t I L L. (5.43) ja H saadaan siis ratkaistuksi yhtälöryhmästä = (H) = µ 0 (2πr L) H + µ 0N t I L L. Tämän graafinen ratkaisu on H-koordinaatistoon piirrettyjen kuvaajien leikkauspiste. Sähkömagneetin sydämen ei tarvitse olla renkaanmuotoinen. Käämi voi myös peittää vain osan rautasydämestä. Tästä huolimatta rajoittuu suurimmaksi osaksi sydämen ja ilmaraon alueelle. Tämä johtuu ferromagneettisen sydämen suuresta permeabiliteetista. Jos nimittäin magneettikenttävektorit jossakin kohdasssa sydämen pinnan ulkopuolella ja sisäpuolella ovat H out ja H in, on pinnalla kentän jatkuvuusehtojen nojalla voimassa ehto H out = H in. Koska in = µµ 0 H in,on in µ 0 H out = out. Näinollen :n arvo rautasydämen ulkopuolella on pieni. Tämä tarkoittaa sitä, että vain harvat :n voimaviivat pääsevät sydämestä sen ulkopuolelle, joten magneettivuo sydämen jokaisen poikkipinnan läpi on suunnilleen vakio. Koska rautasydämen paksuus ja magneettiset ominaisuudet voivat vaihdella, jaetaan sydän osiin; n:nnen osan pituus on L n, poikkipinta S n ja suhteellinen permeabiliteetti µ n. Kussakin osassa nämä ominaisuudet ovat vakioita. Koska -kentän voimaviivat pysyvät suurimmaksi osaksi sydämessä, jokaisen poikkipinnan läpi kulkee sama magneettivuo Φ= n S n, (5.44) missä n on :n keskiarvo poikkipinnalla S n. Magneettikenttä n:nnessä osassa on H n = n µ n µ 0 = Φ µ n µ 0 S n,

18 98 joten Ampèren laki saadaan muotoon H dl = H n L n = n n ΦL n µ n µ 0 S n =Φ n L n µ n µ 0 S n = N t I. Tästä ratkaistuna magneettivuo on Φ= N t I L n /(µ n µ 0 S n ). (5.45) n Jos määritellään F m = N t I ja R m = L/(µµ 0 S), saadaan yhtälö (5.45) muotoon Φ= F m n (R m) n. Tämä on samaa muotoa kuin Ohmin laki I = V/R, joten analogisesti sähköisten virtapiirien kanssa voidaan sähkömagneettia pitää magneettisena piirinä, jossa F m on magneettijännite eli magnetomotorinen voima ja R m on reluktanssi eli magneettivastus. Magneettijännitteen yksikkö on[f m ] = A ja reluktanssin yksikkö [R m ]= A/Vs. 5.5 Hysteresiskäyrä d r c b e 0 H k Kuva 5.18 a H Ferromagneettisissa aineissa :n ja H:n välinen relaatio on epälineaarinen ja lisäksi se riippuu aineen aiemmasta magneettisesta tilasta. Aine siis jossakin määrin muistaa magneettisen menneisyytensä. Aina on kuitenkin voimassa yhtälö = µ 0 (H + M). Jos magnetoitumatonta rautaa ruvetaan magnetoimaan kasvattamalla käämin virta ja sen mukana H:ta, kasvaa pitkin neitseellistä käyrää 0 a. Koko tällä välillä H:n lisäksi kasvaa myös M. Magnetoituman kasvu tarkoittaa sitä, että :n suuntaisia magneettisia momentteja sisältävät Weissin alueet kasvavat. Pisteessä a on M saavuttanut kyllästymisarvonsa M s, jolloin kaikki magneettimomentit ovat kentän suuntaisia. Kyllästymiseen tarvittava magneettikenttä on suuruusluokkaa H 10 4 A/m, jolloin 1, 5T. Jos käämin virtaa kasvatetaan vielä kyllästymisen jälkeen, M ei enää kasva, mutta kasvaa lineaarisesti H:n funktiona.

19 5.5. HYSTERESISKÄYRÄ 99 Kun H:n annetaan magnetoimisen jälkeen pienetä nollaan, pienenee myös pitkin käyrää a b mutta aine jää magnetoituneeseen tilaan. Jäljelle jäänyt magnetoituma aiheuttaa magneettivuon tiheyden arvon r, jota nimitetään remanenssiksi. Jotta saataisiin nollaksi, on H:n suuntaa muutettava. Sitä magneettikentän arvoa H k, joka tarvitaan :n pienentämiseksi nollaan, sanotaan koersitiivivoimaksi. Jatkamalla magnetoimista tähän suuntaan saadaan :n suunta muuttumaan, ja pisteessä d on aine saturoitunut vastakkaiseen suuntaan. Pienentämällä H:ta sekä muuttamalla uudelleen sen suuntaa palautuu aine e:n kautta a:han. Käyrää abcdea kutsutaan aineen päähysteriskäyräksi. Jos magnetointia ei suoriteta kyllästymiseen asti, saadaan pienempi hysteresiskäyrä, joka on pääkäyrän sisällä. Näitä pienempiä hysteresiskäyriäonäärettömän monta. Ne eivät leikkaa toisiaan ja ne rajoittuvat päähysteresiskäyrän sisälle. Tästä seuraa mm. että -kenttä voi aineen magneettisesta historiasta riippuen saada äärettömän monta eri arvoa samalla H-kentän arvolla. Voimakkaita kenttiä voidaan nykyisin saada aikaan suprajohteilla, joissa magnetointivirran ylläpitämiseen ei liity tehohäviöitä. Tämä johtuu siitä, että suprajohteiden vastus häviää täysin tietyn lämpötilan alapuolella. Suprajohtavissa magneeteissa ei käytetä rautasydäntä, joten niissä ei esiinny myöskään hysteresistä Kestomagneetit Hysteresisilmiöstä johtuen ferromagneettiset aineet jäävät magneettisiksi virran katkaisemisen jälkeen, jolloin syntyy kestomagneetti. Remanenssin eli jäännösmagnetismin suuruus vaihtelee eri aineilla;meltoraudalla se on pieni, teräksellä suuri. Kestomagneetin magnetoituma M ei aiheudu ulkoisesta kentästä. Magnetoituma itse aiheuttaa kentät ja H, joille on voimassa = µ 0 (H + M). H Kuva 5.20 Tarkastellaan nyt sauvan muotoista kestomagneettia. -kentän voimaviivat ovat jatkuvia, ne kulkevat sauvan lävitse ja sulkeutuvat sauvan ulkopuolella. Magneetin ulkopuolella H = /µ 0, joten H:n ja :n kenttäviivat ovat siellä samanmuotoiset ja samansuuntaiset. Koska kestomagneetissa ei ole vapaata virtaa, on jokaista magneetin läpi kulkevaa suljettua tietä pitkin voimassa H dl =0. (A)

20 100 Tämä voi toteutua vain, jos H:n suunnta on kestomagneetin sisällä :n suunnalle vastakkainen, eli H vaihtaa suuntaansa sauvan päissä. Näinollen H:n kenttäviivat ovat epäjatkuvia magneetin rajapinnalla. d Jos toroidin muotoiseen kestomagneettiin on tehty ohut ilmarako, on :llä sen normaalikomponentin jatkuvuuden vuoksi sama arvo magneetissa ja ilmaraossa. Silloin H:n arvo ilmaraossa on L H i H m H i = /µ 0. ja kaavan (A) perusteella H m d + H i L =0, missä H m on H:n arvo magneetissa. Tästä seuraa, että H m = L d H i = L µ 0 d, (5.46) joten H i ja H m ovat vastakkaissuuntaiset. Yhtälö (5.46) ja tieto H i = /µ 0 eivät riitä määrittämään H- ja-kenttien arvoja, vaan ne riippuvat aineen magneettisesta tilasta. -kentän suurin mahdollinen arvo edellyttää, että tila sijaitsee päähysteresiskäyrällä. Tämä tila sijaitsee 2. tai 4. neljänneksessä, missä ja H m ovat vastakkaissuuntaisia. :n ja H m :n arvot saadaan kuvaajien leikkauspisteistä graafisesti, kun piirretään hysteresiskäyrä ja yhtälö (5.46) samaan koordinaatistoon. m H = -L/(µ 0 d) H H m Kuva 5.21 H :n arvoa voidaan vaihdella säätelemällä suhdetta L/d, mutta 1 T:n suuruusluokkaa suurempia arvoja ei voida saavuttaa. Tavallisesti magneetti mitoitetaan siten, että ilmaraon kentän energian suhde käytetyn magneettisen materiaalin määrään on maksimissaan. Myöhemmin osoitetaan, että magneettikentän energiatiheys on H/2, joten ilmaraon kentän energiaksi saadaan kaavan (5.46) avulla U = 1 2 H ial = 1 2 d L H m AL = 1 2 H m Ad. Koska Ad on magneetin tilavuus, on maksimoitava suure U Ad = 1 2 H m

21 5.6. MAGNETOSTATIIKAN YHTEENVETO 101 Piirtämällä aineen hysteresiskäyrän avulla tulo H kentän funktiona voidaan maksimin tuottava :n arvo määrittää. Suhde L/d on valittava siten, että suora H = L/(µ 0 d) leikkaa hysteresiskäyrän tällä :n arvolla. 5.6 Magnetostatiikan yhteenveto Lorentz-voima: -kenttä onlähteetön: Ampèren laki: F = qe + qv (4.16) ds =0 (4.18) S =0 (4.19) dl = µ 0 I (integraalimuoto) (4.31) Magnetoituma: Magnetoitumavirran tiheys: = µ 0 j (differentiaalimuoto) (4.47) M = N m (5.1) M = χ µ 0 (5.23) j M = M (5.19) dl = µ 0 I f + µ 0 I M = µ 0 j f + µ 0 M Magneettikentän voimakkuus: H = 1 M µ 0 (5.27) H = j f (5.30) Kenttien rajaehdot: jatkuva (5.37) H jatkuva (5.39) Ei-ferromagneettisille materiaaleille: = µµ 0 H (5.32) µ =(1 χ ) 1 (5.33) Joskus on tapana määritellä magneettinen suspektiivisuus χ H kaavalla

22 102 M = χ H H. Tällöin joten = µ 0 (H + M) =µ 0 (1 + χ H )H = µµ 0 H, µ =(1+χ H ).

Magnetoituvat materiaalit

Magnetoituvat materiaalit Luku 8 Magnetoituvat materiaalit 8.1 Magnetoitumavirta Kappaleessa 7.8 esitetyn määritelmän perusteella virtasilmukan magneettimomentti voidaan esittää muodossa m = IS, (8.1) missä I on silmukassa kiertävä

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

Magneettikenttä väliaineessa

Magneettikenttä väliaineessa Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Magneettikenttä väliaineessa

Magneettikenttä väliaineessa Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa

Lisätiedot

tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin

tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

FERROMAGNEETTISET MATERIAALIT

FERROMAGNEETTISET MATERIAALIT FERROMAGNEETTISET MATERIAALIT MAGNEETTITEKNOLOGIAKESKUS Harri Kankaanpää DIAMAGNETISMI Vesi, elohopea, kulta, vismutti,... Magneettinen suskeptibiliteetti negatiivinen: 10-9...10-4 (µ r 1) Heikentää/hylkii

Lisätiedot

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän

Lisätiedot

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen 34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin

tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne aiheuttaa todellisuudessa kullekin atomille ominaisen magneettisen dipolimomentin Luku 6 Magneettikenttä väliaineessa 6.1 Magnetoituma Edellä rajoituttiin magneettikentän määrittämiseen magneettisilta ominaisuuksiltaan tyhjiönkaltaisessa väliaineessa. Aineen mikroskooppinen rakenne

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

4. Gaussin laki. (15.4)

4. Gaussin laki. (15.4) Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Magneettikentän lähteet (YF 28) Liikkuvan

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

2 Eristeet. 2.1 Polarisoituma

2 Eristeet. 2.1 Polarisoituma 2 Eristeet Eristeissä kaikki elektronit ovat sitoutuneita atomeihin tai molekyyleihin, eivätkä voi siis liikkua vapaasti kuten johdeelektronit johteissa. Ulkoinen sähkökenttä aiheuttaa kuitenkin vähäisiä

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jouko Esko n85748 Juho Jaakkola n86633 Dynaaminen Kenttäteoria GENERAATTORI Sivumäärä: 10 Jätetty tarkastettavaksi: 06.03.2008 Työn tarkastaja Maarit

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

Magneettikenttä väliaineessa

Magneettikenttä väliaineessa Luku 6 Magneettikenttä väliaineessa Tässä luvussa käsitellään magneettikentän ominaisuuksia väliaineessa (RMC luku 9 osittain; CL luku 7 osittain; esitiedot KII luku 4). 6.1 Magnetoituma Edellä rajoituttiin

Lisätiedot

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jani Vitikka p87434 Hannu Tiitinen p87432 Dynaaminen kenttäteoria SATE2010 KESTOMAGNEETTI Sivumäärä: 10 Jätetty tarkastettavaksi: 16.1.2008 Työn tarkastaja

Lisätiedot

Aineen magneettinen luonne mpötilan vaikutus magnetoitumaan

Aineen magneettinen luonne mpötilan vaikutus magnetoitumaan Aineen magneettinen luonne ja lämpl mpötilan vaikutus magnetoitumaan Jaana Knuuti-Lehtinen 3.4.2009 2.4.20092009 1 Johdanto Magnetoitumisilmiö Mistä johtuu? Mitä magnetoitumisessa tapahtuu? Magneettiset

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

Magneettikentät ja niiden määrittäminen

Magneettikentät ja niiden määrittäminen Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia.

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia. Ch2 Magnetism Ydinmagnetismin perusominaisuuksia. Sähkömagneettinen kenttä NMR-spectroskopia perustuu ulkoisten SM-kenttien ja ytimen magneettisen momentin väliseen vuorovaikutukseen. Sähkökenttä E ja

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................

Lisätiedot

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Potentiaali ja potentiaalienergia

Potentiaali ja potentiaalienergia Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,

Lisätiedot

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän

Lisätiedot

Sähköiset ja magneettiset materiaalit

Sähköiset ja magneettiset materiaalit Luku 10 Sähköiset ja magneettiset materiaalit Aiemmat 9 lukua ovat esitelleet klassisen elektrodynamiikan peruskäsitteet ja teorian perusrakenteen. Alamme nyt perehtyä elektrodynamiikan käyttöön erilaisissa

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

Kiinteiden materiaalien magneettiset ominaisuudet

Kiinteiden materiaalien magneettiset ominaisuudet Kiinteiden materiaalien magneettiset ominaisuudet Peruskäsite: Yhdisteessä elektronien orbtaaliliike ja spin vaikuttavat magneettisiin ominaisuuksiin (spinin vaikutus on merkittävämpi) Diamagnetismi Kaikki

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Magneettiset materiaalit ja magneettikentän energia

Magneettiset materiaalit ja magneettikentän energia agneettiset ateriaait ja agneettikentän energia ateriaait jaetaan agneettisten oinaisuuksiensa ukaan koeen uokkaan: diaagneettiset, paraagneettiset ja ferroagneettiset aineet. ateria koostuu atoeista,

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Elektrodynamiikka, kevät 2008

Elektrodynamiikka, kevät 2008 Elektrodynamiikka, kevät 2008 Painovirheiden ja epätäsmällisyyksien korjauksia sekä pieniä lisäyksiä luentomonisteeseen Sivunumerot viittaavat vuoden 2007 luentomonisteeseen. Sivun 18 loppu: Vaikka esimerkissä

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA

Lisätiedot

Magneettikenttä ja sähkökenttä

Magneettikenttä ja sähkökenttä Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

Elektrodynamiikan tenttitehtäviä kl 2018

Elektrodynamiikan tenttitehtäviä kl 2018 Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Magneettikentät ja niiden määrittäminen

Magneettikentät ja niiden määrittäminen Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin

Lisätiedot

Magneettinen induktio

Magneettinen induktio Luku 10 Magneettinen induktio 10.1 Faradayn laki Ajasta riippuvassa tilanteessa sähkö- ja magneettikenttä eivät ole toisistaan riippumattomia. Jos muuttuvaan magneettikenttään asetetaan johdinsilmukka,

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit

Lisätiedot

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Jakso 5. Johteet ja eristeet Johteista

Jakso 5. Johteet ja eristeet Johteista Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)

Lisätiedot

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä

Lisätiedot

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään

Lisätiedot

4 Tasavirrat ja magneettikentät

4 Tasavirrat ja magneettikentät 4 Tasavirrat ja magneettikentät Edellisissä luvuissa käsiteltiin paikallaan olevien sähkövarausten välisiä voimia. Jos varaus on liikkeessä, se voi kokea myös magneettisen voiman. Magneettinen voima johtuu

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =!  0 E loc (12.4) 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

2 Raja-arvo ja jatkuvuus

2 Raja-arvo ja jatkuvuus Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

3.4 Rationaalifunktion kulku ja asymptootit

3.4 Rationaalifunktion kulku ja asymptootit .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun

Lisätiedot