Viikon aiheet. Pinta-ala

Samankaltaiset tiedostot
5 Epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Matematiikan tukikurssi

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

2.4 Pienimmän neliösumman menetelmä

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

2 Epäoleellinen integraali

Riemannin integraali

6 Integraalilaskentaa

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

Pertti Koivisto. Analyysi C

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Matematiikan tukikurssi

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Sarjat ja integraalit

Matematiikan tukikurssi

Johdatus reaalifunktioihin P, 5op

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

4. Reaalifunktioiden määrätty integraali

ANALYYSI 3. Tero Kilpeläinen

Riemannin integraalista

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

Lisää määrätystä integraalista Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

MS-A0102 Differentiaali- ja integraalilaskenta 1

Integraalilaskenta. Määrätty integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

Matematiikan tukikurssi. Hannu Kivimäki

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa

Jouni Sampo. 28. marraskuuta 2012

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

3 Integraali ja derivaatta

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten

Matemaattinen Analyysi

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

1+kx 2, x [0, 1] 4. f k (x) = (sin x) k, x R Tehtävä 2. Osoita suoraan määritelmään perustuen, että funktiojono (f k ), missä

4 Pinta-alasovelluksia

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa

ANALYYSIN TEORIA A JA B

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista

Analyysin perusteet kauppatieteilijöille P

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa

MS-A010X Di erentiaali- ja integraalilaskenta Lukujoukot. 1.2 Jonot. 1.2 Perusongelmat. 1.3 Suppeneminen I. 1.2 Jonojen ominaisuuksia

ANALYYSI I, kevät 2009

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

Ristitulo ja skalaarikolmitulo

BM20A5820 Integraalilaskenta ja sovellukset

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

Matematiikan tukikurssi

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 +

Pinta-alan laskeminen

4 Taso- ja avaruuskäyrät

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat / Jonot / 200. jossa / 200

Numeerinen integrointi

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

ANALYYSI I, kevät 2009

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Kertausta ja täydennystä

Numeerinen integrointi.

Koska sarjat ovat summien jonoja, kertaamme ensin jonojen teoriasta joitakin kohtia syksyltä.

Mat Matematiikan peruskurssi K2

BM20A5820 Integraalilaskenta ja sovellukset

π( f (x)) 2 dx π(x 2 + 1) 2 dx π(x 4 + 2x 2 + 1)dx ) = 1016π 15

Analyyttiset funktiot ja integrointiteorian alkeita

ANALYYSI I, kevät 2009

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

1. Viikko. K. Tuominen MApu II 1/17 17

Matematiikan tukikurssi

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

Sarjojen tasainen suppeneminen

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Transkriptio:

info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu Szbille ennen 23.10. Tenttimällä kurssin hlumsssi yleistenttitilisuudess. Arvosn: tentti. Määrätty integrli Muuttujn vihto j osittisintegrointi Käyrän pituus, pyörähdyskppleen vipn pint-l j tilvuus Srjt Geometrinen srj Srjn suppeneminen CDH: Luku 13.3, 6-6.3, Prujut2016: Luvut 4.3, 3.1, Prujut2008: s. 119-126 Pint-l 1 Pint-l 2 Tällä tvll määritellään Riemnnin integrli 3 Käyrän j x-kselin välinen pint-l välillä [, x] on A(x). Kun väliä pidennetään x:n verrn on A(x + x) A(x) + f (x) x 4

Pint-l Pint-l Infinitesimlisell rjll luseke on trkk jost rtkisemll f (x) Siis Näin ollen lim A(x + x) = A(x) + lim f (x) x x 0 x 0 f (x) = lim x 0 A(x + x) A(x) x f (x) = da dx A(x) = F(x) + C missä F(x) on f (x):n integrlifunktio. Pint-l Välillä [, b] käyrän j x- kselin väliin jäävä pint-l on A = F(b) F() [ ] b = F(x) [ = f (x)dx] = = / b F(x) missä punisell esitetyt merkintätvt esiintyvät fysiikss tyypillisesti. f (x)dx 5 Alkupisteessä siis Määrätty integrli A() = F() + C = 0 C = F() A(x) = F(x) F() Määrätyn integrlin, integrlifunktion j pint-ln välillä on siis yhteys A = f (x)dx = / b F(x) = F(b) F() Tämä tunnetn myös nlyysin perusluseen. Huom, että pint-l voidn kirjoit integroimisylärjn funktion: x x A(x) = f (x )dx = f (t)dt Tällöin pitää muist merkitä integroimismuuttuj jollin toisell symbolill. Pilkun lisääminen yo. tvll on tyypillinen tp. Tällöin A(x):ää kutsutn f (x):n kertymäfunktioksi. 6 7 8

Määrätty integrli lskusääntöjä Määrätty integrli lskusääntöjä Integroimislue c jetn khteen osn b, b c: F(c) F() = ( F(c) F(b) ) + ( F(b) F() ) Kun tehdään muuttujn vihto t = g(x) täytyy myös integroimisrjt muutt joten f (x)dx = f (x)dx + b f (x)dx Integroimisvälin kääntäminen iheutt merkinvihdon: F(c) F() = ( F() F(c) ) siis f (x)dx = f (x)dx c Osittisintegroinniss f (x)dx = f gdx = / b g(b) g() fg h(t)dt fg dx Epäoleellinen integrli 9 Epäoleellinen integrli 10 Määrätty integrli, jonk integroimisvälin päätepisteistä toinen ti molemmt ovt äärettömyydessä on epäoleellinen integrli. Käytännössä tämä trkoitt määrättyä integrli, joss sijoituksen jälkeen päätepiste viedään äärettömyyteen: 0 dx f (x) = lim L L 0 / L = lim L 0 dx f (x) F(x) = lim L ( F(L) F(0) ) Myös tpukset, joss integroimisvälillä ti välin päätepisteissä integroitvll funktioll f (x) on epäjtkuvuuskoht ovt epäoleellisi integrlej. Nämä lsketn myös ottmll rj-rvo integroimisen jälkeen: f (x):llä epäjtkuvuuskoht pisteessä x = b: t f (x)dx = lim f (x)dx t b Epäjtkuvuuskoht pisteessä x = b, < b < c: t f (x)dx = lim f (x)dx + lim f (x)dx t b t b + t 11 12

Määrätty integrli fysiikss Määrätty integrli fysiikss 2 Grvittiovuorovikutuksen tekemä työ 1-ulotteisesti liikkuvn kppleen nopeus v(t) = dx dt dx = v(t)dt Lskemll määrätty integrli jnhetkestä t = t 0, jolloin kpple oli pikss x = x 0 jnhetkeen t jolloin kpple on pikss x sdn x x 0 dx = t t 0 v(t )dt joss olemme ts tehneet pilkkumerkinnällä eron integroimismuuttujn j -rjn välillä. Määrätty integrli fysiikss 2 13 W = r2 r 1 G d r Mn pinnn lähellä G = mgĵ. Vlitn reitiksi pystysuor siirto korkeudelt y 0 korkeudelle y 1, jolloin d r = dyĵ j W = y1 y 0 mgdy = (mgy 1 mgy 0 ) Integrlifunktio U(y) = mgy tunnistetn kppleen j mn väliseksi grvittiovuorovikutuksen potentilienergiksi. Siis W = ( U(y 1 ) U(y 0 ) ) = U Jos kpple liikkuu korkemmlle y 1 > y 0 on U > 0. Tällöin W = K < 0 eli kppleen kineettinen energi pienenee. Määrätty integrli käyrän pituus 14 Huom, että mikäli integrlifunktio on olemss, niin tehty työ riippuu vin tämän integrlifunktion rvost lku- j loppupisteessä! W = U(y 1 ) + U(y 0 ) Vuorovikutuksi, joiden voimn integrlifuntkio on olemss kutsutn konservtiiviseksi vuorovikutukseksi. Näiden integrlifunktioit kutsutn vuorovikutuksen potentilienergiksi. Siirtymässä x x + x funktion rvo muuttuu y y + y. Pisteiden (x, y) j (x + x, y + y) välimtk s sdn Pythgorn luseen vull s = ( x) 2 + ( y) 2 = x 1 + ( y x )2 15 16

Määrätty integrli käyrän pituus Infinitesimlisell rjll skeleen pituus pitkin käyrää ds = dx 1 + ( dy dx )2 = dx 1 + (y ) 2 Pyörähdyskpple Kolmiulotteinen kpple muodostuu, kun funktio f (x) pyörähtää x-kselin ympäri. Pyörähdyksessä piste P = (x, f (x)) piirtää ympyränkren, jonk pituus on 2πf (x). Piirtyneen ympyrän säde on f (x). Viiploidn kpple dx pksuisiksi viipleiksi. Välillä x [, b] käyrän pituus on s = dx 1 + (y ) 2 Pyörähdyskpple Kunkin viipleen ulkopinnn (=vipn) pint-l on da = ( 2πf (x) ) ds = 2πf (x)dx 1 + (f ) 2 17 Srjt Olkoon ääretön srj S = n = 0 + 1 + 2 +... 18 Toislt kunkin viipleen tilvuus on Onko S äärellinen? Jos, niin se trkoitt, että ossummn dv = π ( f (x) ) 2 dx Pyörähdyskppleen vipn pint-l j kppleen tilvuus sdn lskettu välillä x [, b] A = 2π dx f (x) 1 + (f (x)) 2 V = π dx ( f (x) ) 2 19 S N = N 1 n (joss on siis N termiä) rj-rvo on äärellinen lim S N = S Srjn snotn suppenevn tähän rvoon. Muuss tpuksess srj hjntuu. 20

Srjt Srjn suppenemiselle lim n = 0 n on välttämätön, mutt ei riittävä ehto. Suppenemistestejä on lukuisi, MAPU I:llä käytetään vin suhdetestiä. Se kertoo, että srj S = n suppeneminen voidn testt peräkkäisten termien suhteell. lim n+1 = r n Srj suppenee itseisesti, jos r < 1 j hjntuu kun r > 1. Rjtpuksess r = 1 testi ei kerro juut eikä jt. Geometrinen srj Tutkitn geometrisen srjn suppenemist: lim n n = lim n q n = 0 vin kun q < 1. Suhdetesti n n+1 n = q n+1 q n = q jonk mukn on ts oltv q < 1. Eli geometrisen srjn päätellän suppenevn kyseisellä ehdoll. Srjn ossummt suppenevt rvoon ( N ) S = lim S N = lim = 1 = 1 ( 1 lim q N ) kun q < 1 21 23 Geometrinen srj Geometrinen srj on potenssisrj S N = Srjn summ löydetään esim. N 1 q n S N = 1 + q + q 2 +... + q N 2 + q N 1 qs N = q + q 2 +... + q N 2 + q N 1 + q N jost sdn vähentämällä lusekkeet toisistn S N qs N = N S N = N Hrmoninen srj Toinen esimerkkin on hrmoninen srj Termien rj-rvo: S = 1 + 1 2 + 1 3 +... = n=1 lim 1 n = lim n n n = 0 Tämä ehto täytyy. Suhdetesti: lim n+1 n n = lim n 1 n n n + 1 = 1 Suhdetestin perusteell ei ost sno suppeneeko srj. Hrmonisen srjn voidn (lukuisill tvoill) osoitt hjntuvn. 22 24