ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015
Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet (ke) Etenevät (sinimuotoiset) aallot Osoittimet Notaatiovertailu Piirianalyysiin 2 (17)
Johdanto Ulaby 1.2 1.3 (ja vähän tulevaa)
Merkinnät a = a â Vektorilla a on suuruus (pituus) a = a ja suunta (yksikkövektori) â = a/a. Käsin kirjoitettuna vektori a ja yksikkövektori â. Osoittimien päälle merkitään aina mato. Aikasignaalia V (t) vastaava osoitin on Ṽ ja vektorikenttää E(t) vastaava osoitin on Ẽ, joka käsin kirjoitettuna on Ẽ. Seuraamme oppikirjan merkintätapoja. 4 (17)
Kenttäsuureet E = sähkökentänvoimakkuus H = magneettikentänvoimakkuus [E] = V/m [H] = A/m D = sähkövuontiheys [D] = C/m 2 = As/m 2 B = magneettivuontiheys [B] = T = Wb/m 2 = Vs/m 2 E ja B ovat (varsinkin fyysikoiden mielestä) primäärisiä suureita, koska kentät voidaan havainnoida voimavaikutuksen avulla: F = q (E + u B) (Loretzin voimalaki) D ja H ovat kuitenkin sekä matemaattisesti että käsitteellisesti hyödyllisiä kenttäteorian ymmärtämiseen. 5 (17)
Kenttien lähteet Pistevaraus +q tyhjiössä: Ääretön lankavirta I tyhjiössä: I +q E = ˆR q 4πε 0 R 2 B = ˆφ µ 0I 2πr Usein kokonaisvaraus Q tai kokonaisvirta I on jakautunut: ρ l = viivavaraustiheys [ρ l ] = C/m ρ s = pintavaraustiheys [ρ s ] = C/m 2 ρ v = tilavuusvaraustiheys [ρ v ] = C/m 3 J = virrantiheys [J] = A/m 2 [Q] = [q] = C = As 6 (17)
Maxwellin yhtälöt = kenttäteorian perusta E = B t H = J + D t D = ρ v B = 0 E dl = d B ds C dt S H dl = J ds + d C S dt D ds = Q = ρ v dv S V B ds = 0 S S D ds Pienin lisäoletuksin nämä yhtälöt selittävät kaikki sähkömagneettiset ilmiöt statiikasta optiikkaan! (Roottoriin F ja divergenssiin F tutustutaan 3. luentoviikolla.) 7 (17)
Väliaineyhtälöt Yksinkertainen väliaine D = εe = ε 0 ε r E ε 0 8.854 10 12 F/m B = µh = µ 0 µ r H µ 0 = 4π 10 7 H/m ) ( As Vm ( Vs Am ) Johtava aine J = σ E [σ ] = S/m = A Vm Materiaaliparametrit ε = permittiivisyys, µ = permeabiliteetti ja σ = johtavuus ovat yksinkertainen malli aineen (mikrorakenteen) sähkömagneettiselle vasteelle. Tyhjiössä ε r = µ r = 1 ja σ = 0. 8 (17)
Vuontiheys vai kentänvoimakkuus? Vuontiheydet D ja B (sekä virrantiheys J): Vuontiheyden pintaintegraali = kokonaisvuo pinnan läpi on mielekäs suure. Vuontiheyden divergenssi paljastaa lähteen ( D = ρ v ). Kentänvoimakkuudet E ja H: Kentänvoimakkuudet integroidaan polkua pitkin. (Tasajännite kahden pisteen välillä saadaan integroimalla E-kenttää.) Kentänvoimakkuuden roottori on mielekäs operaatio. Tähän palataan kurssin aikana useammin, mutta huomaa jo nyt merkittävä käsitteellinen ero. 9 (17)
Sähköinsinöörin SI-yksiköt Varaus ja sähkövuo Magneettivuo C = coulombi = As Wb = weber = Vs Magneettivuontiheys T = tesla = Wb/m 2 = Vs/m 2 Kapasitanssi Induktanssi Resistanssi Konduktanssi Teho Työ F = faradi = C/V = As/V H = henry = Wb/A = Vs/A Ω = ohmi = V/A S = siemens = 1/Ω = A/V W = watti = VA J = joule = Ws = VAs Volttia, ampeeria ja sekuntia kannattaa käyttää perusyksiköinä, ) kg m2 vaikkei voltti ole SI-perusyksikkö. (V = A s 3. 10 (17)
Aallot ja osoittimet Ulaby 1.4 1.7
Etenevät aallot Etenevä aalto siirtää energiaa ja sillä on tietty nopeus. Esim: y y u u p x x Transienttiaalto (pulssi) hetkellä t = 0 Jatkuva periodinen aalto (siniaalto) hetkellä t = 0 12 (17)
Yksinkertainen prototyyppiaalto y(x, t) = A cos (ωt βx) y hetkellä t = 0 y paikassa x = 0 A λ x A T t A = amplitudi ω = 2πf = kulmataajuus, f = taajuus = 1/T = 1/jakso β = 2π λ = etenemiskerroin, λ = aallonpituus Aalto etenee +x-suuntaan vaihenopeudella u p = ω/β (miksi?) 13 (17)
Vaimeneva aalto Yleisempi +x-suuntaan etenevä aalto: y(x, t) = A e αx cos (ωt βx + φ 0 ) α = vaimennuskerroin, φ 0 = referenssivaihe Esim: y A e αx (t = 0, φ 0 = 0) x A e αx 14 (17)
Osoittimet Osoitin = kompleksiluku/-vektori, jolla esitetään sinimuotoinen aikariippuvuus. Esim. jännite, virta-aalto ja sähkökenttä: v(t) = V 0 cos(ωt + φ 0 ) Ṽ = V 0 φ 0 i(x, t) = I 0 cos(ωt βx) Ĩ(x) = I 0 e jβx E(z, t) = ˆx E 0 cos(ωt kz) Ẽ(z) = ˆx E 0 e jkz Määritelmä { f (t) = Re F e +jωt} Osoittimien päälle merkitään aina mato. Aika- ja paikkariippuvuus jätetään usein merkitsemättä. Isojen ja pienten kirjainten osalta merkintätapa vaihtelee hieman. 15 (17)
Notaatiovertailu Jännitesignaali piirianalyysissa ja kenttäteoriassa Piirianalyysin osoittimissa käytetään sinireferenssiä ja tehollisarvoja: u(t) = û sin(ωt + ϕ) ˆ= U = û 2 ϕ û = huippuarvo! Tällä kurssilla käytämme kosinireferenssiä ja huippuarvoja: v(t) = V 0 cos(ωt + φ 0 ) Ṽ = V 0 φ 0 ( V 0 sin(ωt + φ 0 ) V 0 φ 0 90 = jv 0 φ 0 ) 16 (17)
Notaatiovertailu (jatkoa) Piirianalyysiin verrattuna: Osoitin aikasignaali -muunnokset ovat hieman erilaiset. Teholausekkeisiimme lisätään kerroin 1/2, koska käytämme huippuarvoja. Muuten kaikki piirianalyysissa opittu toimii sellaisenaan. 17 (17)