ELEC C4140 Kenttäteoria (syksy 2015)

Koko: px
Aloita esitys sivulta:

Download "ELEC C4140 Kenttäteoria (syksy 2015)"

Transkriptio

1 ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015

2 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset Maxwellin yhtälöt Vektoripotentiaali Magneettiset rajapintaehdot Induktanssi Magneettinen energia 2 (18)

3 Lorentzin voimalaki Kun varaus q liikkuu E- ja B-kentässä nopeudella u, siihen kohdistuu sähkömagneettinen voima F = q (E + u B) B F m q u Varaus voi magneettisen voiman F m = q u B takia esim. päätyä ympyräradalle. 3 (18)

4 Virtajohtimeen vaikuttava magneettinen voima A dv = A dl + + ρ v u + + I Tarkastellaan virtajohtimen pätkää ulkoisessa magneettikentässä. Virtajohtimessa on varaustiheys ρ v joka liikkuu nopeudella u. dl Varaukseen dq kohdistuu magneettinen voima J = ρ v u, I = A ρ v u df m = dq u B = ρ v A dl u B = ρ v Au dl B = I dl B. Integroimalla saadaan virtasilmukkaan kohdistuva magneettinen voima: F m = I dl B C 4 (18)

5 Magneettinen momentti ja vääntömomentti n Magneettinen momentti on A NI m = n m = n NIA, kun käämissä on N kierrosta. Jos käämi (tai virtasilmukka, N = 1) on tasaisessa ulkoisessa magneettikentässä, saadaan vääntömomentti T = m B Mekaaninen vääntömomentti on voima kertaa vipuvarsi: F d T = d F 5 (18)

6 Biot Savartin laki dh R R dl I Virtajohtimen alkio dl synnyttää magneettikenttäalkion dh = I 4π dl R R 2. (Huomaa oikean käden kiertosuunta ja etäisyysriippuvuus 1/R 2.) Integroimalla virtajohtimen yli saadaan Biot Savartin laki H = I dl R 4π l R 2 6 (18)

7 Suoran virtalangan magneettikenttä Biot Savartin lain avulla saadaan θ 2 H = φ I 4πr (cos θ 1 cos θ 2 ) I r H ja erikoistapauksena θ 1 = 0 ja θ 2 = π saadaan äärettömälle virtalangalle θ 1 H = φ I 2πr. 7 (18)

8 Magneettinen dipoli E H H + I N S (a) Electric dipole (b) Magnetic dipole (c) Bar magnet re 5-13 Sähköisen Patterns of (a) jathe magneettisen electric field of an electric dipolin dipole, kentät (b) the magnetic ovat hyvin field of asamalaiset magnetic dipole, and (c) netic field of a bar magnet. Far away from the sources, the field patterns are similar in all three cases. p E = ( R 4πεR 3 2 cos θ + θ ) sin θ, H = m ( R 4πR 3 2 cos θ + θ ) sin θ, missä R dipolin tai silmukan koko. 8 (18)

9 Magnetostaattiset Maxwellin yhtälöt Differentiaalimuodossa B = 0 H = J B =µh Integroimalla tilavuuden yli ja käyttämällä Gaussin lausetta saadaan integraalimuotoinen magneettinen Gaussin laki S B ds = 0 Magneettisia varauksia ei ole, joten magneettivuo on aina lähteetön. Sen sijaan magneettikentänvoimakkuus ei välttämättä ole konservatiivinen eli pyörteetön. 9 (18)

10 Lävistyslaki (integraalimuotoinen Ampèren laki) Integroidaan Ampèren laki mielivaltaisen pinnan S yli S H = J ( H) ds = S J ds = I Stokesin lauseen avulla saadaan lävistyslaki C H dl = I missä C on pinnan S oikean käden kiertosuunnan mukainen reunakäyrä ja I on kokonaisvirta pinnan S läpi. Milloin lävistyslailla voidaan laskea magneettikenttä? 10 (18)

11 Esim: ääretön suora virtajohdin Olkoon z-akselilla a-säteinen virtajohdin, jossa virtajakauma on tasainen ja kokonaisvirta +z-suuntaan on I. Symmetrian takia magneettikenttä on tällöin muotoa H = φ H(r ). (Miksi?) Valitsemalle r -säteinen ympyrä integrointipoluksi saadaan C H dl = 2π 0 πr 2 H(r ) φ φ r dφ = 2πr H(r ) = πa 2 I, r < a I, r a H I r I 2πa H = 2πa φ, I 2πr φ, r < a r a a r 11 (18)

12 Vektoripotentiaali Magneettivuontiheys on lähteetön, B = 0, joten se voidaan esittää vektorifunktion roottorin avulla B = A Vektoripotentiaali A on apusuure, joka ei liity potentiaalienergiaan. Vektoripotentiaalin divergenssi ei vaikuta B-kenttään, joten voidaan valita A = 0. Kun lisäksi oletetaan µ vakioksi, saadaan Poissonin yhtälö vektoripotentiaalille ( ) 1 H = J µ A = J ( A) 2 A = µ J 2 A = µ J 12 (18)

13 Annetun virtajakauman vektoripotentiaali Vertaamalla sähköstatiikan yhtälöihin 2 V = ρ V v ε, V = ρ v dv 4πεR, saadaan 2 A = µ J, A = V µ J dv 4πR missä R on etäisyys tarkastelu- ja integroimispisteen välillä. Kentän laskeminen vektoripotentiaalin kautta dv J A B voi olla helpompaa kuin suoraan Biot Savartin lailla. 13 (18)

14 Lankavirran vektoripotentiaali ja kenttä Jos virtajakauma on ohut virtajohdin, tilavuusintegraali muuttuu polkuintegraaliksi µi dl A = 4πR = µi dl 4π R, l missä R ja dl ovat kuten Biot Savartin laissa. Roottorin avulla voidaan laskea magneettikentänvoimakkuus H = 1 µ A = I 4π dl R, mistä saadaankin Biot Savartin laki H = I ( 1 ) dl = I ( 1R ) 4π R 4π 2 R dl = I 4π l l l l l dl R R (18)

15 Magneettiset rajapintaehdot Kahden väliaineen rajapinnalla Magneettivuontiheyden normaalikomponentti B norm on aina jatkuva. Magneettikentänvoimakkuuden tangentiaalikomponentti H tang on jatkuva, jos rajapinnalla ei ole pintavirtaa. (Pintavirta J s voi esiintyä vain ideaalijohteen pinnalla. Se ei ole kovin kiinnostava tapaus magnetostatiikassa.) 15 (18)

16 Induktanssi Tarkastellaan aluksi pintaa S, jonka reunalla C kulkee virta I, joka synnyttää magneettikentän. Laskemalla magneettivuo silmukan (pinnan S) läpi, Φ = B ds, voidaan määritellä silmukan induktanssi L = Φ/I. S Jos yksittäisen virtasilmukan sijaan on kela, jossa virta I kulkee N kierrosta, määritellään käämivuo ja itseisinduktanssi Λ = NΦ L = Λ I 16 (18)

17 Keskinäisinduktanssi Tarkastellaan kahden kelan järjestelmää: Kelassa 1 on N 1 kierrosta, jossa kulkee virta I 1. Tämä synnyttää magneettivuontiheyden B 1. Osa tästä magneettivuosta kulkee kelan 2 läpi, jolloin saadaan virran I 1 synnyttämä käämivuo kelassa 2: Λ 12 = N 2 Φ 12 = N 2 S 2 B 1 ds Tämän käämivuon avulla määritellään keskinäisinduktanssi L 12 = Λ 12 I 1 17 (18)

18 Magneettinen energia Kelaan varastoitunut energia voidaan ilmaista piirisuureiden avulla muodossa W m = 1 2 L I2 ja magneettikenttään varastoitunut energia on W m = 1 2 µ V H 2 dv Vertaa kondesaattorin sähköstaattiseen energiaan: W e = 1 2 C V 2, W e = 1 2 ε V E 2 dv. 18 (18)

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 7 / versio 28. lokakuuta 2015 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Moottori ja

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot

Lisätiedot

Magneettikenttä ja sähkökenttä

Magneettikenttä ja sähkökenttä Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Magneettikentän lähteet (YF 28) Liikkuvan

Lisätiedot

Elektrodynamiikka, kevät 2008

Elektrodynamiikka, kevät 2008 Elektrodynamiikka, kevät 2008 Painovirheiden ja epätäsmällisyyksien korjauksia sekä pieniä lisäyksiä luentomonisteeseen Sivunumerot viittaavat vuoden 2007 luentomonisteeseen. Sivun 18 loppu: Vaikka esimerkissä

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1)

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1) Luku 8 Magneettinen energia Oppimateriaali RMC Luku 1 ja CL 7.3; esitiedot KSII luvut 4 ja 5. Luvussa 4 todettiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita,

Lisätiedot

Elektrodynamiikan tenttitehtäviä kl 2018

Elektrodynamiikan tenttitehtäviä kl 2018 Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen

Lisätiedot

Elektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia

Elektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia Elektrodynamiikka 2010 Luennot 18.3.2010 Elina Keihänen Magneettinen energia Mainos Kesätyöpaikkoja tarjolla Planck-satelliittiprojektissa. Googlaa Planck kesätyöt Pääasiassa kolme vuotta tai kauemmin

Lisätiedot

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja

Lisätiedot

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä

Lisätiedot

4. Gaussin laki. (15.4)

4. Gaussin laki. (15.4) Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELECA4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 2 Gaussin laki (YF 22) Oppimistavoitteet Varaus

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Magneettikenttä väliaineessa

Magneettikenttä väliaineessa Luku 6 Magneettikenttä väliaineessa Tässä luvussa käsitellään magneettikentän ominaisuuksia väliaineessa (RMC luku 9 osittain; CL luku 7 osittain; esitiedot KII luku 4). 6.1 Magnetoituma Edellä rajoituttiin

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

Magneettinen induktio

Magneettinen induktio Luku 10 Magneettinen induktio 10.1 Faradayn laki Ajasta riippuvassa tilanteessa sähkö- ja magneettikenttä eivät ole toisistaan riippumattomia. Jos muuttuvaan magneettikenttään asetetaan johdinsilmukka,

Lisätiedot

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT 1/32 2 VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT Kenttäilmiöt Sähkö- ja magneettikentät Vaikeasti havaittavissa ihmisen aistein!

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

Staattinen magneettikenttä

Staattinen magneettikenttä Luku 5 Staattinen magneettikenttä Tässä luvussa tutustutaan liikkuvien sähkövarausten eli sähkövirtojen aiheuttamaan staattiseen magneettikenttään. Jos sähköstatiikka tuli opiskeltua huolellisesti, niin

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Staattinen magneettikenttä

Staattinen magneettikenttä Luku 5 Staattinen magneettikenttä 5.1 Sähkövirta Nykyaikana sähkövirta lienee tutumpi ilmiö kuin sähkövaraus. Todellisuudessa varauksia ja virtoja ei oikeastaan voi käsitellä erikseen. Edellisissä luvuissakin

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 14: Indusoitunut sähkömotorinen voima ja kertausta magneettikentistä ATE112 taattinen kenttäteoria kevät 217 1 / 5 Tehtävä 1. Alla esitetyn kuvan mukaisesti y-akselin suuntainen sauvajohdin yhdistää -akselin suuntaiset johteet (y = ja y =,5 m). a) Määritä indusoitunut jännite,

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet

Lisätiedot

VAASAN YLIOPISTO SATE.2010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE 2: AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT

VAASAN YLIOPISTO SATE.2010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE 2: AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT VAAAN YLIOPITO TEKNILLINEN TIEDEKUNTA ÄHKÖTEKNIIKKA Maarit Vesapuisto ATE.010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE : AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT Opetusmoniste (Raaka

Lisätiedot

Staattinen magneettikenttä

Staattinen magneettikenttä Luku 5 taattinen magneettikenttä Tässä luvussa tustustutaan tasavirtoihin ja niiden aiheuttamiin magneettikenttiin (RM luvut 7 ja 8, L luku 6; esitiedot KII luvut 5 ja 6). 5.1 ähkövirta Nykyaikana sähkövirta

Lisätiedot

Staattinen magneettikenttä

Staattinen magneettikenttä Luku 5 Staattinen magneettikenttä Tässä luvussa tutustutaan liikkuvien sähkövarausten eli sähkövirtojen aiheuttamaan staattiseen magneettikenttään. Jos sähköstatiikka tuli opiskeltua huolellisesti, niin

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 5 Tavoitteet Magneettikenttä ja magneettiset voimat Virtajohdin magneettikentässä Virtasilmukka magneettikentässä Tasavirtamoottori

Lisätiedot

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan

Lisätiedot

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 7 Sähkömagneettinen induktio (YF 29) Induktiokokeet

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Potentiaali ja potentiaalienergia

Potentiaali ja potentiaalienergia Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,

Lisätiedot

Kondensaattori ja vastus piirissä (RC-piiri)

Kondensaattori ja vastus piirissä (RC-piiri) Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 11 / versio 23. marraskuuta 2015 Aaltojohdot ja resonaattorit (Ulaby 8.6 8.11) TE-, TM- ja TEM-aaltomuodot Suorakulmaisen aaltoputken perusaaltomuoto

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 / M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän

Lisätiedot

SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki

SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki STE80 Kenttäteorian perusteet syksy 08 / 5 Tehtävä. Karteesisessa koordinaatistossa potentiaalin nollareferenssitaso on y = 4,5 cm. Määritä johteelle (y = 0) potentiaali ja varaustiheys, kun E = 6,67 0

Lisätiedot

Kondensaattori ja vastus piirissä (RC-piiri)

Kondensaattori ja vastus piirissä (RC-piiri) Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.

Lisätiedot

Staattinen magneettikenttä

Staattinen magneettikenttä Luku 5 taattinen magneettikenttä Tässä luvussa tutustutaan liikkuvien sähkövarausten eli sähkövirtojen aiheuttamaan staattiseen magneettikenttään. Jos sähköstatiikka tuli opiskelluksi huolellisesti, niin

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Luku 7 Sähkömagneettinen induktio Oppimateriaali RMC luku 11 ja CL 8.1; esitiedot KSII luku 5. Toistaiseksi olemme tarkastelleet vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

SATE.1060 STAATTINEN KENTTÄTEORIA

SATE.1060 STAATTINEN KENTTÄTEORIA SATE.1060 STAATTINEN KENTTÄTEORIA Maarit Vesapuisto Vaasan liopisto Teknillinen tiedekunta Sähkötekniikka Luentomoniste 010 SISÄLLYLUETTELO 1. Vektorianalsi Vektori ja skalaari 1 Yksikkövektori Vektori

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 5 Magneettikenttä ja magneettiset voimat (YF

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin

Lisätiedot

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 13: Rajapintaehdot ja siirrosvirta

SATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 13: Rajapintaehdot ja siirrosvirta ATE11 taattinen kenttäteoria kevät 17 1 / 6 askuharjoitus 13: ajapintaehdot ja siirrosvirta Tehtävä 1. Alue 1 ( r1 = 5) on tason 3 + 6 + 4z = 1 origon puolella. Alueella r =. 1 Olkoon H1 3, e,5 e z (A/m).

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Sähkömagnetismi (ENG2)

Sähkömagnetismi (ENG2) Sähkömagnetismi (ENG2) Jami Kinnunen 6. helmikuuta 2019 Sisältö 1 Sähkökentät 2 1.1 Sähköinen voima, sähkökenttä ja sähköpotentiaali......................... 2 1.2 Coulombin voima............................................

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet Faradayn laki Lenzin laki Liikkeen tuottama smv Indusoituneet sähkökentät

Lisätiedot

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit 9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset

Lisätiedot

Magneettikentät ja niiden määrittäminen

Magneettikentät ja niiden määrittäminen Magneettikentät ja niiden määrittäminen SSÄLTÖ: Magneettinen voima Varatun partikkelin liike sähkö- ja magneettikentässä Tasavirrat Magneettikentän voimavaikutus virtajohtimeen Magneettinen momentti iot-savartin

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka vastus on R. Liitetään virtapiiriin jännitelähde V.

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka vastus on R. Liitetään virtapiiriin jännitelähde V. Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni.

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni. Luku 14 Säteilevät systeemit Edellisessä luvussa käsiteltiin vain yhden varauksellisen hiukkasen säteilykenttiä. Nyt tutustutaan esimerkinomaisesti yksinkertaisiin antenneihin ja varausjoukon aiheuttamaan

Lisätiedot

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään

Lisätiedot

Elektrodynamiikka, kevät 2002

Elektrodynamiikka, kevät 2002 Elektrodynamiikka, kevät 2002 Painovirheiden ja epätäsmällisyyksien korjauksia sekä muita pieniä lisäyksiä luentomonisteeseen Tähän on korjattu sellaiset painovirheet ja epämääräisyydet, joista voi olla

Lisätiedot

Sähkömagnetismi (ENG2)

Sähkömagnetismi (ENG2) Sähkömagnetismi (ENG2) Jami Kinnunen 15. tammikuuta 2018 Sisältö 1 Sähkökentät 2 1.1 Sähköinen voima, sähkökenttä ja sähköpotentiaali......................... 2 1.2 Coulombin voima............................................

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

SOVELLUS: SYKLOTRNI- KIIHDYTIN

SOVELLUS: SYKLOTRNI- KIIHDYTIN SOVELLUS: SYKLOTRNI- KIIHDYTIN sähköken+ä levyjen välissä vaihtuu jaksollisesj taajudella f cyc, niin e+ä se kiihdy+ää vara+ua hiukkasta aina kun se kulkee välikön ohi. potenjaali ΔV oskilloi ns. syklotroni

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Luku 7 Sähkömagneettinen induktio Toistaiseksi on tarkasteltu vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen avulla, joten emme ole törmänneet mihinkään, mikä puolustaisi

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

FYSP1082 / K4 HELMHOLTZIN KELAT

FYSP1082 / K4 HELMHOLTZIN KELAT FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1)

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1) Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot