4. Gaussin laki. (15.4)

Koko: px
Aloita esitys sivulta:

Download "4. Gaussin laki. (15.4)"

Transkriptio

1 Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien kokeellisesti havaitut ominaisuudet on voitu esittää kenttien divergenssien ja roottoreiden avulla. aikki ne ilmiöt, joita tällä kurssilla on tähän mennessä tutkittu, näyttäisivät osoittavan, että sähkö- ja magneettikenttien ominaisuudet hallitaan täydellisesti seuraavien neljän yhtälön avulla: 1. Ampèren laki B = µ 0 j (15.1) 2. Faradayn laki E = B 3. Magneettivuon tiheyden lähteettömyys (15.2) B = 0 (15.3) 4. Gaussin laki E = ρ ε 0. (15.4) Tässähän on nimittäin annettu lausekkeet sekä sähkökentän että magneettivuon tiheyden roottorille ja divergenssille. Ne riippuvat sekä varaustiheydestä että virtatiheydestä. Tilannetta monimutkaistaa se, että Faradayn laki kytkee sähkökentän ja magneettivuon tiheyden toisiinsa. Tästä seuraa, että yleisessä tapauksessa nämä kaksi kenttää riippuvat toisistaan ja muodostavat yhdessä sähkömagneettisen kentän. Tosin löytyy erikoistapauksia, joissa joko sähkökenttä tai magneettivuon tiheys ovat nollia. Tällaiset tilanteet tulevat vastaan sähköstatiikassa ja magnetostatiikassa. c Tuomo Nygrén,

2 172 LUU 15. MAXWELLIN YHTÄLÖT R I C d 1 E - uva 15.1: ondensaattorin purkautuminen vastuksen kautta. Yksinkertaisen esimerkin avulla voidaan osoittaa, että Ampèren laki on virheellinen, joten yhtälöryhmä (15.1) (15.4) ei voi kuvata sähkömagneettista kenttää täydellisesti. uva 15.1 esittää varattua kondensaattoria, joka purkautuu vastuksen kautta. un kondensaattorin ylempi levy on positiivisesti varattu ja virran positiivinen suunta on määritelty kuvassa esitetyllä tavalla, on I = dq dt, (15.5) sillä kondensaattorin purkautuessa on varauksen aikaderivaatta negatiivinen. yntyvän virran vaikutuksesta syntyy magneettivuon tiheys, jonka pitäisi noudattaa Ampèren lakia. ovelletaan lakia käyrään, joka on pinnan 1 rajakäyrä. äyrä kiertää virtajohtimen ympäri joten virtajohdin kulkee pinnan 1 lävitse. Valitaan kiertosuunta sellaiseksi, että pinnan 1 pintavektori osoittaa kuvassa ylöspäin. Virta I kulkee pinnan 1 lävitse pintavektorin suuntaan, ja siksi on voimassa B ds = 1 µ 0 j d = µ 0 I. (15.6) Pinta 2 kulkee kondensaattorin levyjen välistä ja on myös sen rajakäyrä. Pinnan 2 läpi ei kulje sähkövirtaa. un sovelletaan Ampèren lakia pintaan 2 ja sen rajakäyrään, saadaan B ds = 0, (15.7) koska pinnan 2 lävitse kulkeva virta on nolla. ekä yhtälössä (15.6) että (15.7) viivaintegraali on laskettu pitkin samaa käyrää ja silti integraalille on kahdella tavalla laskettuna saaatu kaksi eri tulosta. Tämä osoittaa, että Ampéren laki on jollakin tavalla virheellinen. un kyseessä on levykondensaattori, on sen kapasitanssi Gaussin lain avulla saadaan levyjen väliseksi sähkökentäksi C = ε 0 d. (15.8) E = q ε 0. (15.9)

3 15.2. MAXWELLIN YHTÄLÖT JA VARAUEN ÄILYMILAI 173 un dq/dt on negatiivinen, on myös de/dt negatiivinen. Yhtälöiden (15.5 ja (15.9) perusteella I = ε 0 de dt = ε 0 d. (15.10) Tässä kaavassa esiintyvä miinusmerkki häviää integraaliesityksessä, sillä de/dt:n ollessa negatiivinen on / kondensaattorilevyjen välissä d:n suuntainen ja näinollen integraali tuottaa positiivisen virran. un tämä sijoitetaan yhtälöön (15.6), saadaan B ds = µ 0 ε 0 d. (15.11) 2 Tämän yhtälön oikealla puolella oleva integraali on laskettu yli pinnan, joka kulkee kondensaattorilevyjen välistä. Tulos paljastaa, millainen puute Ampèren laissa on. Ongelma häviää, jos Ampèren laki onkin muotoa B = µ 0 j + µ 0 ε 0, (15.12) un tätä sovelletaan pintaan 1 ei oikean puolen jälkimmäinen termi tuota mitään kontribuutiota, sillä se on kondensaattorin ulkopuolella nolla (paitsi äärettömän ohuena pidetyssä langassa). Näinollen tulokseksi saadaan yhtälö (15.6). Jos taas lakia sovelletaan pintaan 2, ei oikean puolen ensimmäinen termi tuota mitään kontribuutiota, sillä virtatiheys on kondensaattorin sisällä nolla. Tässä tapauksessa tulokseksi saadaan yhtälö (15.11). Edellä esitetty lasku osoittaa, että näiden yhtälöiden oikeat puolet ovat yhtä suuria Maxwellin yhtälöt ja varauksen säilymislaki Ampèren lakiin lisätystä termistä µ 0 ε 0 / käytetään nimitystä siirrosvirtatermi. un yhtälöitä (15.1) (15.4) täydennetään tällä termillä, saadaan sähkömagneettisen kenttäteorian perusyhtälöt 2 B = µ 0 j + µ 0 ε 0 (15.13) E = B (15.14) B = 0 (15.15) E = ρ ε 0. (15.16) James Clerk Maxwell (1862) huomasi, että hänen aikanaan tunnettu sähkömagnetismin teoria on sisäisesti ristiriitainen, ja korjasi asian siirrosvirtatermin avulla. aikki aiempi sähkömagnetismin teorian kehitys oli perustunut laboratoriokokeisiin. Maxwellin työ oli sikäli mullistava, että sen pohjana oli pelkkä teoreettinen ajattelu. Maxwellin työn merkittävyyden vuoksi kaaavoista (15.13) (15.16) käytetään yleisesti nimitystä Maxwellin yhtälöt.

4 174 LUU 15. MAXWELLIN YHTÄLÖT! j uva 15.2: Varauksen virtaus suljetun pinnan läpi. Ottamalla Ampèren laista puolittain divergenssi saadaan ( B) = µ 0 j + µ 0 ε 0 ( E) (15.17) un huomataan, että roottorin divergenssi on aina nolla, ja eliminoidaan sähkökenttä Gaussin lain avulla, saadaan tulos + j = 0. (15.18) Tästä kaavasta käytetään nimitystä kontinuiteettiyhtälö ja se sisältää sähkövarauksen säilymislain. ontinuiteettiyhtälön tulkinta voidaan ymmärtää seuraavalla tavalla. uvassa 15.2 on suljettu tilavuus, jonka pinnan läpi kulkee virtatiheys j(r, t) = qn(r, t)v(r, t). (15.19) Yleisessä tapauksessa voi avaruuden joihinkin kohtiin kertyä varausta ja joistakin kohdista poistua varausta. Tästä seuraa, että virtaavien varausten tiheys ja nopeus ovat sekä paikan että ajan funktioita. oska virtatiheyden vuo pinnan kautta ulos tilavuudesta on j:n integraali pinnan yli, on virtatiheyden vuo pinnan läpi tilavuuden V sisään Φ j = j d. (15.20) Jos sähkövaraus säilyy (ts. sitä ei voi syntyä tai se ei voi hävitä), voi tilavuuden sisältämä kokonaisvaraus muuttua ainoastaan siten, että se virtaa pinnan läpi. Tämän vuoksi kokonaisvarauksen muutosnopeus on yhtä suuri kuin virtatiheyden vuo. iis d dt ρ d = d = j d. (15.21)

5 15.3. MAXWELLIN YHTÄLÖT VÄLIAINEEA 175 un muunnetaan oikealla puolella oleva pintaintegraali Gaussin lain avulla tilavuusintegraaliksi, saadaan d = j d. (15.22) Tuloksen on oltava voimassa kaikilla tilavuuksilla V, ja siksi välttämättä = j, (15.23) mikä johtaa kontinuiteettiyhtälöön (15.18). Olettamalla sähkövarauksen säilyminen voitiin siis johtaa kontinuiteettiyhtälö, joten kontinuiteettiyhtälö on varauksen säilymislain matemaattinen muotoilu. On huomattava, että ilman siirrosvirtatermiä Ampèren laista seuraisi tulos j = 0. ontinuiteettiyhtälön perusteella tämä tarkoittaisi sitä, että / = 0, mikä edelleen tarkoittaisi, että varaustiheys ei voisi muuttua. Näinollen Maxwellin yhtälöt ilman siirrosvirtatermiä edellyttäisivät, että minkäänlaista varaustiheyttä ei voisi syntyä Maxwellin yhtälöt väliaineessa appleessa 8.2 havattiin, että magnetoituvan ja polarisoituvan väliaineen tapauksessa kokonaisvirtatiheys voidaan jakaa kolmeen osaan yhtälön j = j f + j M + j P (15.24) mukaisesti. Tässä j f on vapaa virtatiheys, joka aiheutuu väliaineessa vapaasti liikkumaan pääsevistä varauksista; metallien tapauksessa johde-elektronien liikkeestä. Toinen termin j M = M on magnetoitumavirtatiheys, ja se aiheuttaa atomien magneettimomentit. Polarisaatiovirtatiheys aiheutuu polarisaatiovarausten liikkeestä ja se on nolla sekä sähköstatiikassa että magnetostatiikassa. appaleessa 4.2 havaittiin, että polarisaatiovarauskatteen aiheuttama varaus pinnalla δ on voimassa δq P = σ P δ = P δ. (15.25) Tämä on voimassa sekä eritekappaleen ulkopinnalla että kappaleen sisälle kuvitellun tilavuuden pinnalla. Tämän varauksen muutosnopeus on d(δq P ) dt = P δ. (15.26) oska varauksen säilymislain täytyy olla erikseen voimassa polarisaatiovaraukselle, δq P voi muuttua vain siten, että polarisaatiovaraus kulkee pinnan δ läpi; ts. sitä kuljettaa polarisaatiovirta. iksi yhtälön (15.26) perusteella polarisaatiovirtatiheys on j P = P. (15.27)

6 176 LUU 15. MAXWELLIN YHTÄLÖT Ottamalla tästä yhtälöstä divergenssi saadaan j P = P = ( P) = P, (15.28) joten yhtälön (15.27) mukainen polarisaatiovirtatiheys todellakin toteuttaa kontinuiteettiyhtälön. un magnetoituma- ja polarisaatiovirtatiheyksien lausekkeet sijoitetaan Ampèren lakiin, saadaan mistä edelleen B = µ 0 j f + µ 0 M + µ 0 P + µ 0ε 0, (15.29) ( ) B M µ 0 = j f + (ε 0E + P). (15.30) Huomataan, että yhtälön vasemmalle puolelle derivaatan sisälle ilmestyi magneettikenttä H = B/µ 0 M ja oikealle puolelle sähkövuon tiheys D = ε 0 E + P. Ottamalla lisäksi huomioon väliaineessa kirjoitettu Gaussin laki saadaan Maxwellin yhtälöt väliaineessa muotoon H = j f + D (15.31) E = B (15.32) B = 0 (15.33) D = ρ f. (15.34) Näiden yhtälöiden ratkaisemiseksi ei siis tarvitse tuntea polarisaatiovaraustiheyttä eikä magnetoituma- ja polarisaatiovirtatiheyttä, vaan riittää kun tunnetaan vapaa varaustiheys ja vapaa virtatiheys sekä suhteellinen permittiivisyys ja permeabiliteetti. Maxwellin yhtälöiden lisäksi joudutaan käyttämään väliaineen ominaisuuksia kuvaavia yhtälöitä D = εε 0 E ja (15.35) B = µµ 0 H. (15.36) Yhtälössä (15.31) esiintyvän termin D/ yksikkö on virtatiheyden yksikkö A/m 2. Tämän vuoksi siitä käytetään nimitystä siirrosvirran tiheys. Edellä esitetyn perusteella siihen vaikuttaa Ampèren laissa (15.13) esiintyvän termin µ 0 ε 0 / lisäksi myös polarisaatiovirtatiheys. Tyhjiössä siirrosvirtatiheyden lauseke on pelkästään µ 0 ε 0 /, eli siihen ei liity mitään varausten liikettä.

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

Magneettikenttä ja sähkökenttä

Magneettikenttä ja sähkökenttä Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin

Lisätiedot

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT 1/32 2 VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT Kenttäilmiöt Sähkö- ja magneettikentät Vaikeasti havaittavissa ihmisen aistein!

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

Elektrodynamiikan tenttitehtäviä kl 2018

Elektrodynamiikan tenttitehtäviä kl 2018 Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

Coulombin laki ja sähkökenttä

Coulombin laki ja sähkökenttä Luku 1 Coulombin laki ja sähkökenttä 1.1 Sähkövaraus ja Coulombin voima Sähköisten ilmiöiden olemassaolo ilmenee niiden aiheuttamista mekaanisista vaikutuksista (osittain myös optisista vaikutuksista;

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

Elektrodynamiikka, kevät 2008

Elektrodynamiikka, kevät 2008 Elektrodynamiikka, kevät 2008 Painovirheiden ja epätäsmällisyyksien korjauksia sekä pieniä lisäyksiä luentomonisteeseen Sivunumerot viittaavat vuoden 2007 luentomonisteeseen. Sivun 18 loppu: Vaikka esimerkissä

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 7 / versio 28. lokakuuta 2015 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Moottori ja

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

Jakso 5. Johteet ja eristeet Johteista

Jakso 5. Johteet ja eristeet Johteista Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................

Lisätiedot

F x y z. F voidaan ymmärtää kahden vektorin. Divergenssi. Vektorikentän F( x, y, z ) divergenssi määritellään

F x y z. F voidaan ymmärtää kahden vektorin. Divergenssi. Vektorikentän F( x, y, z ) divergenssi määritellään 31 VEKTORIANALYYSI Luento 5 Divergenssi F Vektorikentän F(, y, z ) divergenssi määritellään F F F y z y F z. Divergenssistä käytetään usein myös merkintää div, Divergenssi pistetulona, F div F. F voidaan

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

KURSSIN TÄRKEIMPIÄ AIHEITA

KURSSIN TÄRKEIMPIÄ AIHEITA KURSSIN TÄRKEIMPIÄ AIHEITA varausjakauman sähköken/ä, Coulombin laki virtajakauman ken/ä, Biot n ja Savar8n laki erilaisten (piste ja jatkuvien) varaus ja virtajakautumien poten8aalienergia, poten8aali,

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite

Lisätiedot

Potentiaali ja potentiaalienergia

Potentiaali ja potentiaalienergia Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1)

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1) Luku 8 Magneettinen energia Oppimateriaali RMC Luku 1 ja CL 7.3; esitiedot KSII luvut 4 ja 5. Luvussa 4 todettiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita,

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

Kondensaattori ja vastus piirissä (RC-piiri)

Kondensaattori ja vastus piirissä (RC-piiri) Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

Sähkömagnetismi (ENG2)

Sähkömagnetismi (ENG2) Sähkömagnetismi (ENG2) Jami Kinnunen 6. helmikuuta 2019 Sisältö 1 Sähkökentät 2 1.1 Sähköinen voima, sähkökenttä ja sähköpotentiaali......................... 2 1.2 Coulombin voima............................................

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELECA4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 2 Gaussin laki (YF 22) Oppimistavoitteet Varaus

Lisätiedot

Magnetoituvat materiaalit

Magnetoituvat materiaalit Luku 8 Magnetoituvat materiaalit 8.1 Magnetoitumavirta Kappaleessa 7.8 esitetyn määritelmän perusteella virtasilmukan magneettimomentti voidaan esittää muodossa m = IS, (8.1) missä I on silmukassa kiertävä

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

2 Eristeet. 2.1 Polarisoituma

2 Eristeet. 2.1 Polarisoituma 2 Eristeet Eristeissä kaikki elektronit ovat sitoutuneita atomeihin tai molekyyleihin, eivätkä voi siis liikkua vapaasti kuten johdeelektronit johteissa. Ulkoinen sähkökenttä aiheuttaa kuitenkin vähäisiä

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

Elektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia

Elektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia Elektrodynamiikka 2010 Luennot 18.3.2010 Elina Keihänen Magneettinen energia Mainos Kesätyöpaikkoja tarjolla Planck-satelliittiprojektissa. Googlaa Planck kesätyöt Pääasiassa kolme vuotta tai kauemmin

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Sähkömagneettinen aaltoliike Ajasta riippuvat

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän

Lisätiedot

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1

PIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1 Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus

Lisätiedot

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit 9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =

Lisätiedot

Magneettikenttä väliaineessa

Magneettikenttä väliaineessa Luku 6 Magneettikenttä väliaineessa Tässä luvussa käsitellään magneettikentän ominaisuuksia väliaineessa (RMC luku 9 osittain; CL luku 7 osittain; esitiedot KII luku 4). 6.1 Magnetoituma Edellä rajoituttiin

Lisätiedot

Luku Sähköinen polarisoituma

Luku Sähköinen polarisoituma Luku 3 Sähkökenttä väliaineessa Tässä luvussa tutustutaan sähkökenttään väliaineessa (RMC luku 4, CL luku 4; esitiedot KSII luku 2, osa 2.9). Väliaineiden sähköisiin ja magneettisiin ominaisuuksiin tutustutaan

Lisätiedot

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2 MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän

Lisätiedot

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä. Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,

Lisätiedot

Elektrodynamiikka 2010 Luennot Elina Keihänen

Elektrodynamiikka 2010 Luennot Elina Keihänen Elektrodynamiikka 2010 Luennot 11.2.2010 Elina Keihänen Staattinen sähkökenttä - Eristepalkki levykondensaattorissa - Eristekappaleen energia - Maxwellin jännitystensori Staattinen magneettikenttä - Stationaariset

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot