ELEC C4140 Kenttäteoria (syksy 2016)
|
|
- Hannes Väänänen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviiko 7 / versio 26. lokakuuta 2016
2 Aallot ja osoittimet (Ulaby, ) Etenevät (sinimuotoiset) aallot Osoittimet ja notaatiovertailu Piirianalyysiin Siitojohtojen kertaus (Ulaby, luku 2) Siirtojohto taajuustasossa Piirimallista yleiseen ratkaisuun Häviötön TEM-siirtojohto Heijastuskerroin ja seisovat aallot Sisäänmenoimpedanssi Tehon eteneminen Impedanssisovitus 2 (27)
3 Aallot ja osoittimet Ulaby
4 Etenevät aallot Etenevä aalto siirtää energiaa ja sillä on tietty nopeus. Esim: y y u u p x x Transienttiaalto (pulssi) hetkellä t = 0 Jatkuva periodinen aalto (siniaalto) hetkellä t = 0 Lisäksi sähkömagneettiset (ja akustiset) aallot ovat lineaarisia. 4 (27)
5 Yksinkertainen prototyyppiaalto y(x, t) = A cos (ωt βx) y hetkellä t = 0 y paikassa x = 0 A λ x A T t A = amplitudi ω = 2πf = kulmataajuus, f = taajuus = 1/T = 1/jakso β = 2π λ = vaihekerroin, λ = aallonpituus Aalto etenee +x-suuntaan vaihenopeudella u p = ω/β (miksi?) 5 (27)
6 Vaimeneva aalto Yleisempi +x-suuntaan etenevä aalto: y(x, t) = A e αx cos (ωt βx + φ 0 ) α = vaimennuskerroin, φ 0 = referenssivaihe Esim: y A e αx (t = 0, φ 0 = 0) x A e αx 6 (27)
7 Sähkömagneettinen spektri 100% Atmosphere opaque Atmospheric opacity Optical window Infrared windows Radio window Ionosphere opaque 0 X-rays Medical diagnosis Gamma rays Ultraviolet Cancer therapy Sterilization Visible Infrared Heating, night vision Radio spectrum Communication, radar, radio and TV broadcasting, radio astronomy 1 fm 1 pm 1 Å 1 nm mm 1 mm 1 m 1 km 1 Mm EHz 1 PHz 1 THz 1 GHz 1 MHz 1 khz 1 Hz Wavelength (m) Frequency (Hz) Figure 1-16 The electromagnetic spectrum. (Ulaby & Ravaioli, 2015) Huom: 10 6 m = 1 µm Vapaan tilan aallonpituus λ = c/f, esim: λ = 1 m f = 300 MHz, f = 1 GHz λ = 30 cm. 7 (27)
8 Sähkömagneettinen spektri [Hz] Käyttö vielä jakamatta GHz 100 GHz 200 GHz 300 GHz FWA RLAN WLAN MVV 3500 FWA GHz 10 GHz 20 GHz 30 GHz Virve PMR GSM1800 DECT UMTS MVV 2500 RLAN MVV GSM GPS Sat. UMTS WLAN Televisio nav Blue- Tuulikeilaimet Tooth R 300 MHz 1 GHz 2 GHz 3 GHz a d 10 9 i o 10 8 s PMR PMR p FM-radio HD Televisio e 10 7 RHA68 k t MHz 100 MHz 200 MHz 300 MHz r i Ei allokoitu LA PR-27 CB khz 30 khz 300 khz 3 MHz 30 MHz Siirtyvä liikenne Kiinteä satelliittiliikenne Radionavigointisatelliittiliikenne VLF (Very Low Frequency) VHF (Very High Frequency) LF (Low Frequency) UHF (Ultra High Frequency) Siirtyvä meriradioliikenne Siirtyvä satelliittiliikenne Merenkulun radionavigointi MF (Medium Frequency) SHF (Super High Frequency) HF (High Frequency) EHF (Extremely High Frequency) Siirtyvä ilmailuradioliikenne Yleisradiosatelliittiliikenne Ilmailun radionavigointi Siirtyvä maaradioliikenne Ilmatieteen satelliittiliikenne Radionavigointi Yleisradioliikenne Kaukokartoitussatelliittiliikenne Radiopaikannus Huomautus: Kuvassa esitetty taajuuksien jako eri liikennelajeille ja käyttötavat antavat ainoastaan yleiskuvan taajuuksien Radioamatööriliikenne Satelliittien ohjausliikenne Avaruustutkimus käytöstä. Tarkemmat tiedot selviävät Viestintäviraston määräyksestä 4 ja sen liitteenä olevasta taajuusjakotaulukosta. Viestintävirasto, Radioastronomia Satelliittien välinen liikenne Kiinteä liikenne Radiotaajuuksien käyttö Suomessa Radiotaajuuksien käyttö EHF SHF UHF VHF FWA Viestintävirasto, attachments/radiotaajuuksien_ kaytto.pdf VLF LF MF HF Kiinnostuneille tarkemmat tiedot: Viestintäviraston radiotaajuusmääräys 4 ja sen liitteenä oleva taajuusjakotaulukko (9 khz 400 GHz), päivitetty : taajuusjakotaulukko.html 8 (27)
9 Osoittimet Osoitin = kompleksiluku/-vektori, jolla esitetään sinimuotoinen aikariippuvuus. Esim. jännite, virta-aalto ja sähkökenttä: v(t) = V 0 cos(ωt + φ 0 ) Ṽ = V 0 e jφ 0 = V 0 φ 0 i(x, t) = I 0 cos(ωt βx) Ĩ(x) = I 0 e jβx E(z, t) = ˆx E 0 cos(ωt kz) Ẽ(z) = ˆx E 0 e jkz Määritelmä { f (t) = Re F e +jωt} Osoittimien päälle merkitään aina mato. Käsin kirjoitettuna esim: Ẽ. (Aika- ja paikkariippuvuus jätetään usein merkitsemättä. Isojen ja pienten kirjainten osalta merkintätapa vaihtelee hieman.) 9 (27)
10 Osoittimet Määritelmästa f (t) = Re { F e +jωt} seuraa esim: A cos(ωt) A B sin(ωt) jb t f (t) jω F f (t) dt 1 jω F 2 t 2 f (t) ω2 F missä A ja B ovat reaalisia ja ajasta riippumattomia. 10 (27)
11 Notaatiovertailu Jännitesignaali piirianalyysissa ja kenttäteoriassa Piirianalyysin osoittimissa käytetään sinireferenssiä ja tehollisarvoja: u(t) = û sin(ωt + ϕ) ˆ= U = û 2 ϕ û = huippuarvo! Tällä kurssilla käytämme kosinireferenssiä ja huippuarvoja: v(t) = V 0 cos(ωt + φ 0 ) Ṽ = V 0 φ 0 ( V 0 sin(ωt + φ 0 ) V 0 φ 0 90 = jv 0 φ 0 ) 11 (27)
12 Notaatiovertailu (jatkoa) Piirianalyysiin verrattuna: Osoitin aikasignaali -muunnokset ovat hieman erilaiset. Teholausekkeisiimme lisätään kerroin 1/2, koska käytämme huippuarvoja. Muuten kaikki piirianalyysissa opittu toimii sellaisenaan. 12 (27)
13 Siirtojohtojen kertaus Ulaby 2.x
14 Siirtojohtoesimerkkejä oppikirjasta Metal 2b 2a Dielectric spacing (a) Coaxial line Metal w d h D Dielectric spacing Dielectric spacing (b) Two-wire line (c) Parallel-plate line Metal Metal strip conductor w Metal Dielectric spacing (d) Strip line h Metal ground plane Dielectric spacing (e) Microstrip line TEM Transmission Lines Metal ground plane Dielectric spacing (f) Coplanar waveguide Metal Concentric dielectric layers (g) Rectangular waveguide (h) Optical fiber Higher-Order Transmission Lines Figure 2-4 A few examples of transverse electromagnetic (TEM) and higher-order transmission lines. (Ulaby & Ravaioli, 2015)
15 Siirtojohdon malli taajuustasossa Z g Ĩ(z) + Ṽ g Ṽ (z) Z 0, γ Z L generaattori siirtojohto kuorma l 0 z Z 0 = ominaisimpedanssi, γ = (kompleksinen) etenemiskerroin Pituus l ei ole häviävän pieni aallonpituuteen verrattuna. Huomaa jännitteen ja virran referenssisuunnat. 15 (27)
16 Siirtojohdonpätkän piirimalli taajuustasossa Oletetaan sinimuotoinen heräte ja käytetään osoittimia Ĩ Z dz Ĩ + dĩ Z = R + jωl = sarjaimpedanssi pituusyksikköä kohti Ṽ z Y dz z + dz Ṽ + dṽ Y = G + jωc = rinnakkaisadmittanssi pituusyksikköä kohti lennätinyhtälöt aaltoyhtälöt dṽ dz = Z Ĩ dĩ dz = Y Ṽ ( ) (Ṽ ) d 2 dz 2 γ2 = 0 γ 2 = Z Y Ĩ yleinen ratkaisu muotoa e ±γz 16 (27)
17 Kompleksinen etenemiskerroin γ Merkitään γ = α + jβ ja oletetaan, että α, β 0. Tällöin jänniteaalto Ṽ = V 0 e γz = V 0 e }{{ αz e }} jβz {{} amplitudi vaihe kuvaa +z-suuntaan etenevää ja vaimenevaa aaltoa. α = vaimennuskerroin β = vaihekerroin [α] = Np/m [β] = rad/m Huom: Kun α = 0 käytetään usein myös nimitystä β = (reaalinen) etenemiskerroin. 17 (27)
18 Yleinen sinimuotoinen ratkaisu siirtojohdossa Aaltoyhtälöiden yleinen ratkaisu jännite- ja virtaosoittimille on Kertoimet V ± 0, I± 0 joten dṽ dz = Z Ĩ dĩ dz = Y Ṽ Ṽ (z) = V + 0 e γz + V 0 e+γz, Ĩ(z) = I + 0 e γz + I 0 e+γz. eivät kuitenkaan ole riippumattomia V + 0 I + 0 = V 0 I 0 = Ĩ(z) = V + 0 Z 0 e γz V 0 Z 0 e +γz. Z Y = Z 0, Huomaa miinusmerkki! 18 (27)
19 Aallot häviöttömässä TEM-siirtojohdossa Häviötön α = 0, TEM L C = εµ Ṽ (z) Ĩ(z) Z 0, β β = ω L C = ω µε L Z 0 = C u p = ω β λ = 2π β Yleinen ratkaisu koostuu tulevasta (+) ja palaavasta ( ) aallosta Ṽ (z) = V + 0 e jβz + V 0 e+jβz, Ĩ(z) = V + 0 Z 0 e jβz V 0 Z 0 e +jβz. Tulevan ja palaavan aallon kompleksiset amplitudikertoimet V 0 + ja V0 määräytyvät generaattorin ja kuorman perusteella. (Kaksi kerrointa ja kaksi reunaehtoa.) 19 (27)
20 Heijastuskerroin Γ Z 0 Γ 0 Z L z Notaatiosta: Γ on (jännitteen) heijastuskerroin kuorman kohdalla (z = 0), ellei toisin selvästi mainita. Kuormaimpedanssi toimii reunaehtona kohdassa z = 0: Z L = Ṽ (0) Ĩ(0) = + V 0 + V 0 ( V + 0 V 0 ) /Z 0 Ratkaisemalla V 0 /V + 0 saadaan heijastuskerroin Γ = Z L Z 0 Z L + Z 0 = V 0 V + 0 = I 0 I (27)
21 Seisovat aallot Tuleva ja heijastunut aalto yhdessä muodostavat seisovan aallon (kun Γ 0): Ṽ Seisovan aallon suhde λ/2 V max S = V max = 1 + Γ V min 1 Γ d Ĩ I min I min λ λ/2 d min λ/4 d max 0 V 0 V min Jännitemaksimi vastaa virtaminimiä ja päinvastoin. (d = z on etäisyys kuormasta) 21 (27)
22 Seisovat aallot: minimien ja maksimien paikat Merkitään Γ = Γ e jθ r ja kirjoitetaan jänniteosoitin kuormasta mitatun etäisyyden d = z funktiona [ ] Ṽ (d) = V 0 + ejβd + V0 e jβd = V 0 + e jβd + Γ e j(θ r βd). Jänniteosoittimen itseisarvon maksimin paikka d max löytyy kun tuleva ja heijastunut aalto on samassa vaiheessa: βd max = θ r βd max + n2π d max = θ rλ 4π + nλ 2, n = 0, 1, 2,... θ r 0 n = 1, 2,... θ r < 0 Minimin paikka d min löytyy vastaavasti kun aaltojen vaihe-ero on ±π, ±3π,... d min = d max ± λ (27)
23 Sisäänmenoimpedanssi Z in Z in Z 0, β Z L Z in l 0 z Yleisen ratkaisun ja Γ = V 0 /V + 0 avulla saadaan Z in = Ṽ ( l) Ĩ( l) = V + 0 e jβ( l) + V0 e+jβ( l) V 0 + Z 0 e jβ( l) V 0 = Z 0 e +jβ( l) joka sievenee Piirianalyysi II:sta tuttuun muotoon: Z in = Z 0 Z L + jz 0 tan(βl) Z 0 + jz L tan(βl) e +jβl + Γ e jβl e +jβl Γ e jβl Z 0, 23 (27)
24 Tärkeitä erikoistapauksia Oikosuljettu johto (Z L = 0) Avoin johto (Z L = ) Z in = Z 0 Z L + jz 0 tan(βl) Z 0 + jz L tan(βl) Z in = jz 0 tan(βl) Z in = jz 0 cot(βl) Lyhyt (l < λ/4) oikosuljettu johto on induktiivinen kuorma ja avoin on kapasitiivinen. Neljännesaaltomuuntaja (l = λ/4 βl = π/2) Z in = Z2 0 Z L 24 (27)
25 Tehon eteneminen Hetkellinen teho joka siirtyy +z-suuntaan siirtojohdossa on P(z, t) = v(z, t)i(z, t) = Re [Ṽ (z)e jωt ] Re [Ĩ(z)e jωt ]. Kompleksiluvun reaaliosa saadaan ovelasti kompleksikonjugoinnin avulla, Re [γ] = 1 2 [γ + γ ], joten P(z, t) = 1 [Ṽ e jωt + Ṽ e jωt] 1 [Ĩe jωt + Ĩ e jωt] 2 2 = 1 [Ṽ Ĩ + Ṽ Ĩ] + 1 [Ṽ Ĩe j2ωt + Ṽ Ĩ e j2ωt] 4 4 = 1 [Ṽ 2 Re Ĩ ] + 1 [Ṽ }{{} 2 Re Ĩe j2ωt]. }{{} ajasta riippumaton tuplataajuus Tämän tehon aikakeskiarvo on siis P av = 1 2 Re [Ṽ Ĩ ]
26 Keskimääräinen etenevä teho johdossa Sijottamalla jännite- ja virtaosoittimet Ṽ = V + 0 saadaan: ( e jβz + Γ e +jβz), Ĩ = V + 0 Z 0 ( e jβz Γ e +jβz), P av = 1 [Ṽ 2 Re Ĩ ] = 1 [Ṽ Ĩ + Ṽ Ĩ] 4 V [( = e jβz + Γ e +jβz) ( e +jβz Γ e jβz) 4Z 0 (e +jβz + Γ e jβz) ( e jβz Γ e +jβz)] = V [ 2Z 0 + V Γ 2] = Γ 2 2Z }{{ 0 } tuleva Tehon heijastuskerroin on siis Γ 2. V Z }{{ 0 } heijastunut
27 Impedanssisovitus Idea on hyvin yksinkertainen Heijastuskerroin Γ = 0 jos ja vain jos Z L = Z 0. Ellei näin ole, lisätään väliin sovituspiiri, joka voi sisältää sekä siirtojohtoja että (häviöttömiä) keskitettyjä komponentteja. (Vastaavasti generaattori on sovitettu siirtojohtoon jos ja vain jos Z g = Z 0.) 27 (27)
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu
LisätiedotSATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa
ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)
Lisätiedot521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 11 / versio 23. marraskuuta 2015 Aaltojohdot ja resonaattorit (Ulaby 8.6 8.11) TE-, TM- ja TEM-aaltomuodot Suorakulmaisen aaltoputken perusaaltomuoto
LisätiedotScanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki
Lisätiedot1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset:
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 4 1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: f [MHz] [Ω] 870 120-j100 875 100-j80 880 80-j55 885 70-j30 890 70-j15 895 65+j10 900 70+j30
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähkömagneettiset aallot Aikaharmoniset kentät
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt
LisätiedotLineaarialgebra MATH.1040 / Piirianalyysiä 2
Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα
LisätiedotSATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa
SATE2010 Dynaaminen kenttäteoria syksy 2010 1 /8 Tehtävä 1. Häviötön linja (70 Ω), joka toimii taajuudella 280 MHz, on päätetty kuormaan Z = 60,3 /30,7 Ω. Käytä Smithin karttaa määrittäessäsi, kuinka suuri
LisätiedotSinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla
LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään
LisätiedotS /142 Piirianalyysi 2 2. Välikoe
S-55.0/4 Piirianalyysi. Välikoe.5.006 Laske tehtävät eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan osaston
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja
Lisätiedotd+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen
MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,
Lisätiedotl s, c p T = l v = l l s c p. Z L + Z 0
1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Siirtojohdot, Transmission Lines Luento, vrt. laboratoriotyö nr. 3. Siirtojohdon käsite Esim. antenni- tai muu koaksiaalikaapeli, ATK-verkko Aaltojen
LisätiedotJohdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
LisätiedotSinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot
LisätiedotLuento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNKKA JA KTONKKA Tentti 5.5.008: tehtävät,3,4,6,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
LisätiedotKenttäteoria. Viikko 10: Tasoaallon heijastuminen ja taittuminen
Kenttäteoria Viikko 10: Tasoaallon heijastuminen ja taittuminen Tämän viikon sisältöä Todellinen aalto vai tasoaalto Desibelit Esitehtävä Kohtisuora heijastus metalliseinästä Kohtisuora heijastus ja läpäisy
LisätiedotELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 8 Sähkömagneettiset aallot (YF 32) Maxwellin
LisätiedotParikaapeli. Siirtomedia. Sähkömagneettinen spektri. EIA/TIA kategoriat
Siirtomedia Ohjattu siirto; kaapelisiirto parikaapeli, koaksiaalikaapeli, valokuitu siirtomerdian ominaisuudet tärkeitä Ohjaamaton siirto; langaton siirto ilma tai tyhjiö: radio, infrapuna, valo lähetin/vastaanottimen
LisätiedotTietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
LisätiedotSATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi
SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto
LisätiedotR = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
Lisätiedot2. Miten aaltomuodot luokitellaan? Millaisia aaltomuotoja etenee koaksiaalijohdossa, suorakulmaisessa aaltoputkessa ja mikroliuskajohdossa?
TIETOLIIKENNELABORATORIO RADIOTEKNIIKAN PERUSTEET Tentti 3.4.27 1. Selosta lyhyesti: a) Symbolit ja yksiköt sähkökentälle, magneettikentälle, sähkövuon tiheydelle ja magneettivuon tiheydelle. b) Kenttien
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto
LisätiedotAaltoputket ja mikroliuska rakenteet
Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa
LisätiedotVAASAN YLIOPISTO SATE.2010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE 2: AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT
VAAAN YLIOPITO TEKNILLINEN TIEDEKUNTA ÄHKÖTEKNIIKKA Maarit Vesapuisto ATE.010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE : AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT Opetusmoniste (Raaka
LisätiedotAntennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008
Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja
Lisätiedot= ωε ε ε o =8,853 pf/m
KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotAaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun.
Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun. Lähd etään hakem aan ratkaisua y htälöistä (2 ) ja (3 ), kuten T E M -siirtolinjojen y htey d essä. N y t aaltoputkien tapauksessa z-kom
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 7 / versio 28. lokakuuta 2015 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Moottori ja
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
LisätiedotPIENTAAJUISET SÄHKÖ- JA MAGNEETTIKENTÄT HARJOITUSTEHTÄVÄ 1. Pallomaisen solun relaksaatiotaajuus 1 + 1
Aalto-yliopisto HARJOITUSTEHTÄVIEN Sähkötekniikan korkeakoulu RATKAISUT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 8.1.016 vaikutukset ja mittaukset ELEC-E770 Lauri Puranen Säteilyturvakeskus
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
LisätiedotELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen
LC C21 SÄHKÖTKNKKA JA LKTONKKA Kimmo Silvonen 2. välikoe 8.12.21. Tehtävät 1 5. Saat vastata vain neljään tehtävään! Sallitut: Kako, [gr.] laskin, [MAOL], [sanakirjan käytöstä on sovittava valvojan kanssa!]
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia
LisätiedotELEC-E8419 syksy 2016 Jännitteensäätö
ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on
LisätiedotLuento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.
LisätiedotRadiotekniikan perusteet BL50A0301
Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho
LisätiedotSIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
LisätiedotSIGNAALITEORIAN KERTAUSTA OSA 1
1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen
LisätiedotSÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-6 2017, Kimmo Silvonen Osa VI, 30.10.2017 Otan mielelläni esim. sähköpostilla (kimmo.silvonen@aalto.fi) vastaan pieniäkin korjauksia (kuten painovirheet), tekstisisältötoiveita
Lisätiedot+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden
5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa
LisätiedotRadioamatöörikurssi 2014
Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 11.11.2014 Juha, OH2EAN 1 / 42 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 42 Siirtojohto Mikä
LisätiedotRF-tekniikan perusteet BL50A0300
RF-tekniikan perusteet BL50A0300 1. Luento 26.8.2013 Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto DI Juho Tyster Opetusjärjestelyt Luentoja 14h, laskuharjoituksia 14h, 1.periodi Luennot ja harjoitukset
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.11 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti.1.11: tehtävät 1,3,5,6,1. 1. välikoe: tehtävät 1,,3,4,5.. välikoe: tehtävät 6,7,8,9,1. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotAaltojen heijastuminen ja taittuminen
Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan
LisätiedotMHz. Laske. = 1,5 j1,38
. Z a Z 0, l Z Johto, jonka ominaisimpedanssi on Z 0 = Ω, on päätetty impedanssilla Z = (75 j69) Ω. Johdon pituus on l = 3,5 m ja sitä syötetään taajuudella f = MHz. Laske (a) syöttöpisteimpedanssi Z a
LisätiedotKompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori
LisätiedotKeskitaajuudella rinnakkaisreaktanssi kasvaa ideaalisena äärettömän suureksi:
TURUN AMMATTIKORKEAKOULU SUURTAAJUUSPIIRIEN PERUSTEET 230BS05 2007-08 Henry Gylén Resonanssipiirit (vain tiivistetty yhteenveto) Rinnakkaisresonanssipiiri muodostuu kelasta ja kondensaattorista rinnakkain.
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotRF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen
RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin
Lisätiedotd) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?
-08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin
LisätiedotS Piirianalyysi 2 2. välikoe
S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien
SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Laboratoriotyöt Ti 8 10, Ti 10 12, To 10 12, Pe 8 10 (vain A) 4 labraa joka toinen viikko, 2 h 15 min, ei koeviikolla. Labrat alkavat ryhmästä riippuen
LisätiedotSATE1120 Staattinen kenttäteoria kevät / 6 Laskuharjoitus 13: Rajapintaehdot ja siirrosvirta
ATE11 taattinen kenttäteoria kevät 17 1 / 6 askuharjoitus 13: ajapintaehdot ja siirrosvirta Tehtävä 1. Alue 1 ( r1 = 5) on tason 3 + 6 + 4z = 1 origon puolella. Alueella r =. 1 Olkoon H1 3, e,5 e z (A/m).
LisätiedotIdeaalinen dipoliantenni
Ideaalinen dipoliantenni Ideaalinen dipoli on säh k öisesti p ieni lank a-antenni ( z λ), jossa v irralla v ak io am p litu d i ja v aih e. Id eaalinen d ip oliantenni on k äy tännön antennina h arv inainen.
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖKNKKA JA KONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen entti 0..0: tehtävät,3,5,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
LisätiedotXFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka
Lisätiedote =tyhjiön permittiivisyys
75 4.3 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä.
LisätiedotEsimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla
Esimerkkejä Smithin kartan soveltamisesta Materiaali liittyy OH3AB:llä keväällä 2007 käytyihin tekniikkamietintöihin. 1.5.2007 oh3htu Esimerkit on tehty käyttäen Smith v 1.91 demo-ohjelmaa. http://www.janson-soft.de/seminare/dh7uaf/smith_v191.zip
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
LisätiedotHARJOITUS 7 SEISOVAT AALLOT TAVOITE
SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotJohdatus radiotekniikkaan. Ville Viikari ELEC-C5070 Elektroniikkapaja
Johdatus radiotekniikkaan Ville Viikari ELEC-C5070 Elektroniikkapaja Sisältö Johdanto radiotekniikkaan Epälineaarisuuden hyödyntäminen RFIDssä Esimerkkejä radiotekniikan tutkimuksesta Radiotieteen ja tekniikan
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,
LisätiedotS Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
Lisätiedot1. Viikko. K. Tuominen MApu II 1/17 17
1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen
LisätiedotECC:n päätös ECC/DEC/(06)04. Standardi EN 302 065 sekä EN 302 500.
1 (4) TAAJUUSJAKOTAULUKKO 1. Induktiiviset laitteet Induktiivisten laitteiden toiminta ei perustu vapaasti eteneviin radioaaltoihin, vaan tiedonsiirtoon reaktiivisen magneettikentän tai sähkökentän välityksellä.
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
LisätiedotELEC-C4120 Piirianalyysi II 2. välikoe
LC-C4 Piirianalyyi II 2. välikoe 8.4.4 Vataa KOLMN tehtävään.. e (t) R C Oheiea piiriä vaikuttaa taajännitelähde = V ekä e (t) = ê in(ω 0 t)+ê 2 in(2ω 0 t). Lake vatukea kuluva pätöteho P. ê = 2 V ê 2
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotAKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY
K001/M12/2015 Liite 1 / Appendix 1 Sivu / Page 1(17) AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY Tunnus Code Laboratorio Laboratory Osoite Address Puh./fax/e-mail/www
LisätiedotTEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio. Mat Systeemien Identifiointi. 4. harjoitus
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.4129 Systeemien Identifiointi 4. harjoitus 1. a) Laske valkoisen kohinan spektraalitiheys. b) Tarkastellaan ARMA-prosessia C(q 1 )y = D(q 1 )e,
LisätiedotSäh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri.
Kä y tä n n ö n sä h k ö ise sti p ie n e t d ip o lit Säh k ö isesti pien en an ten n in k o k o o n alle λ/1 0. Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti
LisätiedotKuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
LisätiedotLuento 14: Ääniaallot ja kuulo
Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan
LisätiedotPieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.
Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että
Lisätiedot