Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees, yväksymsalue, yväksymsvrhe, Kakssuuntanen hypotees, Karlnn ja Rubnn teoreema, Kelvollnen p-arvo, Krttnen alue, Merktsevyystaso, Monotonnen uskottavuusosamäärä, Neymann ja Pearsonn lemma, Nolla-hypotees, Normaaljakauma, Osamäärätestsuure, Otos, Parametr, Parametravaruus, p-arvo, Perusjoukko, Päätös, Suurmman uskottavuuden estmaattor, Suurmman uskottavuuden estmontmenetelmä, Tasasest vomakkan test, Test, Testn koko, Testn taso, Testsuure, Tyhjentävyys, Uskottavuusfunkto, Uskottavuusosamäärä, Vahtoehtonen hypotees, Vrheet testauksessa, Vrhetodennäkösyys, Vomakkuus, Vomakkuusfunkto, Väte, Yhdstetty hypotees, Yksnkertanen hypotees, Ykssuuntanen hypotees Tehtävä 7.. Oletetaan, että havannot, =,,, n muodostavat satunnasotoksen eksponenttjakaumasta, jonka theysfunkto on exp[ ( x )], x f ( x; ), x Johda osamäärätest nollahypoteeslle : vahtoehtosta hypoteesa : vastaan. Näytä lsäks, että testn krttnen alue rppuu otoksesta van tyhjentävän tunnusluvun kautta. () n mn{,,, } Tehtävä 7.. Pakkauskone täyttää laatkota, joden pano vahtelee satunnasest jonkn verran. Täytettyjen laatkoden keskpanon ptäs olla.5 kg, mutta tosnaan pakkauskone joutuu tlaan, jossa laatkosta tulee keskmäärn lan kevytä. Oletetaan, että laatkon pano on satunnasmuuttuja, joka noudattaa normaaljakaumaa N(, ), jossa =.8 kg. Onko laatkoden keskpano okea va tavotearvoaan.5 kg penemp, tutktaan laskemalla satunnasest valtun laatkon panojen artmeettnen keskarvo ja testaamalla sen avulla nollahypoteesa :.5, kun testn merktsevyystasoks valtaan.5 ja vahtoehtosena hypoteesna on : <.5. @ Ilkka Melln () /6
Mat-.36 Tlastollnen päättely 7. harjotukset (a) Mllä artmeettsen keskarvon arvolla hylätään? (b) Mkä on testn vomakkuus, jos todellsuudessa =.? (c) Tehtävänä on ss laskea todennäkösyys slle, että hylätään, kun laatkoden keskpano =.. Kunka suuren otoskoon on vähntään oltava, jotta testn vomakkuus ols vähntään.9, kun =.? Tehtävä 7.3. Oletetaan, että havannot, =,,, n muodostavat satunnasotoksen normaaljakaumasta N(, ), jonka varanss on tunnettu ja n n havantojen, =,,, n artmeettnen keskarvo. (a) Olkoon nollahypoteesna : ja vastaavana vahtoehtosena hypoteesna : Tällön osamäärätest nollahypoteeslle vahtoehtosta hypoteesa vastaan on seuraavaa muotoa: x ylkää nollahypotees, jos n / u Jos testn merktsevyystasoks valtaan, nn krttnen raja ta arvo u = z on valttava sten, että Pr( Z z ) (b) jossa Z N(,). Olkoon nollahypoteesna : ja vastaavana vahtoehtosena hypoteesna : Tällön osamäärätest nollahypoteeslle vahtoehtosta hypoteesa vastaan on seuraavaa muotoa: x ylkää nollahypotees, jos l n / @ Ilkka Melln () /6
Mat-.36 Tlastollnen päättely 7. harjotukset Jos testn merktsevyystasoks valtaan, nn krttnen raja ta arvo l = z on valttava sten, että Pr( Z z ) (c) jossa Z N(,). Olkoon nollahypoteesna 3 : ja vastaavana vahtoehtosena hypoteesna 3 : Tällön osamäärätest nollahypoteeslle 3 vahtoehtosta hypoteesa 3 vastaan on seuraavaa muotoa: x ylkää nollahypotees 3, jos c / n Jos testn merktsevyystasoks valtaan, nn krttnen raja ta arvo c = z / on valttava nn, että jossa Pr( Z z ) / / Z N(,). Johda kohten (a), (b) ja (c) testen vomakkuusfunktot ja tutk nden omnasuuksa. Tehtävä 7.4. Olkoon testausasetelma sama kun tehtävän 7.3. kohdassa (c). (a) Todsta, että testn koko on. (b) Todsta, että test on harhaton. Tehtävä 7.5. Olkoon testausasetelma sama kun tehtävän 7.3. kohdassa (a). (a) Todsta, että testn koko on. (b) Todsta, että test on harhaton. Tehtävä 7.6. Oletetaan, että havannot, =,,, n muodostavat satunnasotoksen normaaljakaumasta N(, ), jonka varanss on tunnettu ja @ Ilkka Melln () 3/6
Mat-.36 Tlastollnen päättely 7. harjotukset n n havantojen, =,,, n artmeettnen keskarvo. Olkoon nollahypoteesna : ja vahtoehtosena hypoteesna : Osota, että test, jonka hylkäysalue on muotoa S { x c} ja jossa krttnen raja ta arvo c määrätään nn, että Pr ( c) on tasasest vomakkan (UMP) tasoa oleva test nollahypoteeslle vahtoehtosta hypoteesa vastaan. Tehtävä 7.7. Oletetaan, että havannot, =,,, n muodostavat satunnasotoksen normaaljakaumasta N(, ), jonka varanss on tunnettu ja n n havantojen, =,,, n artmeettnen keskarvo. Olkoon nollahypoteesna : ja vahtoehtosena hypoteesna : Osota, että test, jonka hylkäysalue on muotoa S x z n jossa z on valttava sten, että Pr( Z z ) kun Z N(,) on tasasest vomakkan (UMP) tasoa oleva test nollahypoteeslle vahtoehtosta hypoteesa vastaan. @ Ilkka Melln () 4/6
Mat-.36 Tlastollnen päättely 7. harjotukset Tehtävä 7.8. Oletetaan, että havannot, =,,, n muodostavat satunnasotoksen normaaljakaumasta N(, ), jonka varanss on tunnettu ja n n havantojen, =,,, n artmeettnen keskarvo. Olkoon nollahypoteesna : ja vahtoehtosena hypoteesna : Osota, että tasasest vomakkanta (UMP) tasoa olevaa testä nollahypoteeslle vahtoehtosta hypoteesa vastaan e olemassa. Tehtävä 7.9. Oletetaan, että havannot, =,,, n muodostavat satunnasotoksen normaaljakaumasta N(, ) ja n n havantojen, =,,, n artmeettnen keskarvo ja S n ( ) n nden otosvaranss. Olkoon nollahypoteesna : ja vahtoehtosena hypoteesna : Osamäärätest hylkää nollahypoteesn suurlle satunnasmuuttujan W ( ) S / n arvolle. Määrää testn p-arvo. @ Ilkka Melln () 5/6
Mat-.36 Tlastollnen päättely 7. harjotukset Tehtävä 7.. Oletetaan, että havannot, =,,, n muodostavat satunnasotoksen normaaljakaumasta N(, ) ja n n havantojen, =,,, n artmeettnen keskarvo ja S n ( ) n nden otosvaranss. Olkoon nollahypoteesna : ja vahtoehtosena hypoteesna : Osamäärätest hylkää nollahypoteesn suurlle satunnasmuuttujan x W ( ) S / n arvolle. Määrää testn p-arvo. @ Ilkka Melln () 6/6