Tilastollinen päättömyys, kevät 2017 Harjoitus 5b
|
|
- Päivi Mikkola
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy lauseke, ku testattavaa hypoteesia o H 0 : θ θ 0. b Koetilateessa satuaisesti valittua hekilöä maistoi vahaa ja uutta olutlaatua ja 60 % piti uutta parempaa. Tutki Rao pistemäärätestiä ja p-arvo χ - approksimaatiota käyttämällä väitettä, ettei olutlaatuje välillä ole havaittavaa eroa. Etä jos koehekilöitä olisi ollut 0? Vastaus:. a Todetaa aluksi EY EY i θ. Beroulli-jakautueide riippumattomie sm:ie yhteisjakauma o biomijakauma, jote uskottavuusfuktioksi voidaa valita ja siitä SU-estimaatiksi johtaa vrt. moistee.4.: Lθ; y θ y θ y lθ y log θ + y log θ y log θ + y log θ l θ y θ y y yθ θ + yθ θ θ θ y θ θ θ 0 θ y ˆθ, l θ θ θ θy θ θ θ θ θ y +θ + yθ θ θ θ y + yθ θ θ θ y + yθ + θ θ θ θ + yθ y + yθ θ θ y θ θ θ y θ y θ + θ θ θ y θ y θ
2 josta saadaa lˆθ y log y + y log y y log y + q log q lθ 0 y log θ 0 + y log θ 0 y log θ 0 + q log s q merk. y s merk. θ 0 ry [lˆθ; y lθ 0 ; y] [ y log y + q log q y log θ 0 + q log s] [y log y log θ 0 + q log q log s] [ y log yθ0 + y log y ], θ 0 iθ 0 E θ0 [ l θ 0 ] [ Y E θ 0 + Y ] θ0 Eθ0 Y θ 0 + E θ 0 Y θ0 θ0 θ 0 + θ 0 θ0 + θ 0 θ 0 vrt. moistee.4. θ 0 θ 0 wy iθ 0 ˆθ θ 0 y θ0 θ 0 θ 0 uy l θ 0 ; y iθ 0 y θ 0 θ 0 θ 0 θ 0 θ 0 y θ 0 θ 0 θ 0 wy b Mallietaa a-kohda ioittamaa tilaetta ii, että kutaki maistamiskertaa kuvataa satuaismuuttajalla Y i, missä Y i Bθ. Nollahypoteesia voitaee tässä yhteydessä pitää sitä, että θ θ 0, ja vastahypoteesiä joka o toivo mukaa asetettu ee aieisto keräämistä tai se tutkimista sitä, että θ. Kaksisuutaie testi. Havaitoa o yt saatu y 4/. Edellise kohda perusteella Rao testisuure o: uy y θ 0 θ 0 θ 0 6/0 /0 // 00 4 χ -approksimaatio mukaa uy as. χ, jos H 0 pätee. Luoollisesti suuret arvot ovat kriit-
3 tisiä. Siis p-arvoa voidaa approksimoida seuraavasti: p u y P H0 uy uy F χ 0,37, jote ollahypoteesiä ei voie tällä perusteella hylätä. Tarkistetaa vielä käyttämällä Rao testisuuretta u / : uy, p u y P H0 uy uy Φ 0,37 Tarkka p-arvo käyttämällä biomijakautuutta testisuuretta ty Y olisi p t y P H0 ty θ y θ P H0 ty θ y θ + P H0 ty + θ y θ P H0 ty y θ + θ + P H0 ty y θ θ P H0 ty < y θ + θ + P H0 ty θ y θ P H0 ty y θ + θ + P H0 ty θ y θ F Bi,θ y θ + θ + F Bi,θ θ y θ F Bi, 4 + F Bi, 0 0,44, Tapauksessa 0 Rao testisuure o: ja p-arvo approksimaatti: uy 0, p u y P H0 uy uy F χ 0 0,006, tarkka p-arvo p t y P H0 ty y F Bi0, 49 + F Bi0, 00 0,00. Tehtävä. Moistee tehtävä.4. Moistee esimerki.4.6 a-asetelmassa saadaa otoksee 0 geotyyppejä rr, rr ja RR vastaavasti 4, 0 ja 6 yksilöä. Laske parametri θ suurimma uskottavuude estimaatti ja testaa kaksisuutaisella Waldi testillä ollahypoteesia H 0 : θ 0,. Vastaus: Asetetaa merkitsevyystasoksi vaikkapa α 0,0. Todetaa moisteessa johdettu yptf y cyθ y+y θ y3+y. Log-uskottavuusfuktioksi voidaa valita ja siitä SU-estimaatiksi joh-. 3
4 taa: lθ y + y l θ + y 3 + y l θ l θ y + y θ y 3 + y θ y y θ + y y θ y 3 θ y θ θ θ θy + y + y 3 > y y y + y θ < y + y + y 3 y + y ˆθ, > 0 ja toiseksi derivaataksi ja Fisheri iformaatioksi saadaa moisteessaki johdetut: l θ y + y θ y 3 + y θ [ ιθ E θ [ l Y + Y θ] E θ θ + Y ] 3 + Y θ [ Eθ Y + E θ Y θ + E ] θy 3 + E θ Y θ θ + θ θ + θ + θ θ θ θ Hardy-Weiberg Waldi testisuure eliömuoto: θ + θ + θ + θ θ θ θ + θ θ θ θ θ wy ιθ 0 ˆθ θ 0 y + y θ 0 θ 0 θ / / 4/ / Koska wy as. χ, ii p-arvo o likimai PX 4 0,04. Koska tämä o pieempi kui alussa asetettu merkitsevyystaso α, testi siis hylkää ollahypoteesi. Vastaava tulos saadaa testisuuree juurimuodosta: w y 4, ja koska w y as. N0,, ii p-arvo o siis likimai P N0, Φ 0,04. Tehtävä 3. Moistee tehtävä. a Olkoot Y,..., Y Pµ. Johda uskottavuusosamäärä testisuuree lauseke, ku testattavaa o H 0 : µ µ 0. b Eräässä tieristeyksessä o pitkällä aikavälillä sattuut keskimääri 7, oettomuutta kuukaudessa. Risteyksee aseetaa liikeevalot. Sitä seuraava vuode aikaa sattuu yhteesä 60 oettomuutta. Testaa uskottavuusosamäärä testiä ja χ -approksimaatiota käyttämällä, voidaako valoje asetamise katsoa vaikuttaee oettomuuksie määrää. Oletetaa, että oettomuuksie lukumäärä kuukaudessa o Poisso-jakautuut. 4
5 Vastaus: 3. a Uskottavuusosamäärä testisuuretta varte tarvitaa SU-estimaatti ja logaritmie uskottavuusfuktio. Aieistosta laskettu SU-estimaatti ˆµ o Poisso-jakaumalla tuetusti y, ja log-uskottavuusfuktioksi voidaa valita lµ; y y log µ µ. Siis uskottavuusosamäärä testisuuree lauseke o ry [lˆµ; y lµ 0 ; y] [ly; y lµ 0 ; y] [y log y y y log µ 0 µ 0 ] [ y log y ] y µ 0 µ 0 b Mielekäs ollahypoteesi olisi yt se, että havaittavaa vaikutusta ei ole ollut µ µ Kaksisuutaisea vastahypoteesia voitaee pitää, että oettomuudet ovat joko vähetyeet tai lisäätyeet µ 7,, joski myös yksisuutaista testausasetelmaa voisi helposti perustella. Asetetaa testi merkitsevyystasoksi 0,0. Aieisto lukuarvot ovat, y 60/. Uskottavuusosamäärä testisuure o tällä aieistolla: [ ry y log y ] y µ 0 µ 0 [ ] log 36/ 36/ 4 [ log /36 / 36/] 0 log 0 log log log ,0483 Koska ry as. χ, ii p Pχ 40 log log ,006. Testi siis hylkää ollahypoteesi. Tarkka arvo saataisii jo tuttuu tapaa. Poisso-jakautuee riippumattoma satuaismuuttuja summalla Y o Poisso-jakauma parametrilla µ. Tästä seuraa, että P Y y P Y y + P Y y P Y < y + P Y y P Y y + P Y y F Pµ y + F Pµ y Tehtävä 4. Jatkoa Harjoitus A tehtävää. a kohta oli siellä. Olkoo Y,..., Y Pµ, missä µ > 0. Tiedämme, että sekä Y että S ovat parametri µ harhattomia estimaattoreita. Tarkastellaa ollahypoteesia H 0 : µ µ 0 ja vastahypoteesia H : µ µ 0. Tällöi sekä t Y Y µ 0 että t Y S µ 0 kävisivät maiiosti kaksisuutaisia testisuureia suuret itseisarvot t y ja t y ovat kriittisiä H 0 :lle. Ogelmaa o, että testisuureita vastaavie satuaismuuttujie T t Y ja T t y jakaumat olisi hyvä tutea p-arvoje ja kriittiste alueide määräämistä varte. Oletetaa, että o hyvi suuri seuraavassa.
6 b Huomaamme, että T ei ole aiva riippumattomie ja samoi jakautueitte satuaismuuttujie summa, sillä Y sotkee asioita. Suurilla otoskeskiarvo Y o kuiteki tarketuva, jote oletetaa, että piei pulijaus o sallittu ja voimme vaihtaa suurilla testisuuree likimai vastaavaksi T 3 Y i µ µ 0 i ku oletetaa, että parametria o µ. Kute a-kohdassa, määrää pulijatu testisuuree T 3 asymptoottie jakauma T 3 ei tietekää ole testisuure, sillä se ei ole tuusluku : c Määrää likimääräiset p-arvot suurilla testisuureelle T ja pulijatulle testisuureelle T 3 eli kutamai likimääräie p-arvo testisuureelle T. 4. Vastaus: b Merkitää aluksi Z i gy i Y i µ kullaki i, missä g o siis kuvaus x g x µ. Koska Y i, ii myös gy i Z i TN lause 3.7. Lisäksi voidaa päätellä, että Z i ovat samoi jakautueita, koska Y i olivat samoi jakautueita. Lasketaa Z i : odotusarvo ja variassi: E µ Z i E µ Y i µ E µ Y i EY i var Y i µ, M Yi t expµe t, ht merk. µ e t, h0 µ 0, M Y i t µe ht+t M Y i t µe t + µe ht+t M 3 Y i t µe t + µe ht+t + µ e ht+ t M 4 Y i t µe t + 3 µe ht+t + 3µe t + 4 µ e ht+ t EY i M 0 µ exp0 µ, EY i M 0 µ + µ µ + µ, EY 3 i M 3 0 µ + µ + µ µ 3 + 3µ + µ, EY 4 i M 4 0 µ + 3 µ + 3µ + 4µ µ 3 + 3µ + 3µ + µ + 3µ 3 + 4µ µ 4 + 6µ 3 + 7µ + µ var µ Z i E µ [Y i µ ] [E µ Y i µ ] E µ Y i µ 4 [E µ Y i µ ] E [ µ 4 4µ 3 Y i + 6µ Yi 4µYi 3 + Yi 4 ] var Yi µ 4 4µ 3 EY i + 6µ EYi 4µEYi 3 + EYi 4 µ µ + 3 µ + 6 µ + µ 3 3 µ 4 + µ + µ + µ + µ 4... µ + µ µ + µ + µ µ µ Jote keskeise raja-arvolausee ojalla T 3 i Z as. Z i N EZ i, var Z i N µ, µ + µ i Y i µ Z as. µ µ N, + µ i as. µ + µ N Y i µ µ 0 Z µ 0 µ µ 0, 6
7 c Koska molemmat testisuureet ovat ormaalijakautueita, voidaa edetä samaa tapaa kui kaksisuutaista z-testiä johtaessa. P-arvot molemmille saadaa molemmissa tapauksissa ku t t tai t 3 oleaisesti samalaisella päättelyllä: p t y P H0 ty µ T ty µ T P H0 ty µ T ty µ T + P H0 ty + µ T ty µ T P H0 ty µ T ty µ T + P H0 ty µ T ty µ T P H0 ty µ T < ty µ T + P H0 ty µ T ty µ T ty µt P H0 < ty µ T ty µt + P H0 ty µ T σ T σ T σ T σ T ty µt ty µt Φ + Φ σ T σ T ty µt Φ, σ T ja tästä T : tapauksessa p t y Φ t y µ T 0, σ T µ/ µ Φ t y H 0 : µ µ 0 µ0 Testi hylkää merkitsevyystasolla α, ku Φ t y < α µ0 t y < q µ0 α t y > q µ0 α, missä q o stadardiormaalijakauma kvatiilifuktio ja josta ähdää kriittie alue. Tehdää tämä vuoksi vielä se havaito, että jos o hyvi suuri, voimme approksimoida lukua rohkeasti :llä ja erityisesti, ku, ii. Arvioidaa sitte µ T3 :tä ja σ T3 :aa: jolloi µ T3 µ µ 0 µ 0 µ 0 0, µ + µ µ + µ σ T3 p t3 y Φ t 3 y Φ σ T3 t 3 y, µ 0 + µ 0 µ + µ ja testi hylkää merkitsevyystasolla α, ku Φ t 3 y < α µ 0 + µ 0 t 3 y α < q µ 0 + µ 0 t 3 y > µ 0 + µ 0 α q, joka määrää approksimatiivise kriittise aluee ehdo. 7
8 8
Tilastollinen päättömyys, kevät 2017 Harjoitus 6A
Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi
Lisätiedot1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 3B
Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
LisätiedotHY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät Ratkaisuehdotuksia
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 14..2017 Ratkaisuehdotuksia 1. Olkoon θ positiivinen parametri, ja asetetaan 2θ 1 y exp y 2 /θ), kun y > 0 fy; θ) = 0, muuten
Lisätiedot5.7 Uskottavuusfunktioon perustuvia testejä II
5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
LisätiedotTestit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot
TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi
Lisätiedot8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude
LisätiedotJohdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
LisätiedotMat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:
Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 8B Ratkaisuehdotuksia Tehtäväsarja I 1. Jatkoa Harjoitus 8A tehtävään 3. Muodosta odotusarvolle µ approksimatiivinen
Lisätiedot1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä
LisätiedotVäliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Lisätiedot2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,
Lisätiedotl (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka
Lisätiedot3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.
HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla
LisätiedotJohda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
LisätiedotJos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Lisätiedot5 Hypoteesien testaaminen
5 Hypoteesien testaaminen Seuraavaksi tutustumme tilastollisiin testeihin ja niihin liittyviin peruskäsitteisiin Esittelemme aluksi hypoteesit sekä testisuureet ja puhumme p-arvosta (eli havaitusta merkitsevyystasosta)
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman
LisätiedotJohdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
LisätiedotJohdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
LisätiedotJohdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma
Lisätiedot( θa,n ;Y n (ˆθn θ 0 ), a=1,...,d, J n
2.4.2 Asymptoottie ormaalisuus Ku SU estimaattori tarketuvuus o todettu, voidaa asymptoottie ormaalisuus osoittaa käyttäe pistemäärä Taylori kehitelmää tai väliarvolausetta. Tämä vaatii uskottavuusfuktio
Lisätiedot6.1 Riippumattomat satunnaismuuttujat
Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
LisätiedotJohdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Lisätiedot2-suuntainen vaihtoehtoinen hypoteesi
MS-A53 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Yhde otokse t-testi Testausasetelma yhde otokse t-testissä odotusarvolle Olkoo X i, i =,,, riippumato
LisätiedotHarjoitukset 1 : Tilastokertaus
31C99904, Capstoe: Ekoometria ja data-aalyysi TA : markku.siikae(a)aalto.fi & tuuli.vahapelto(a)aalto.fi Harjoitukset 1 : Tilastokertaus (Palautus 10.1.2017) Palautellaa mielii hiema tilasto-oppia ja todeäköisyyslasketaa.
Lisätiedot5 Hypoteesien testaaminen
5 Hypoteesien testaaminen Seuraavaksi tutustumme tilastollisiin testeihin ja niihin liittyviin peruskäsitteisiin Esittelemme aluksi hypoteesit sekä testisuureet ja puhumme p-arvosta (eli havaitusta merkitsevyystasosta)
LisätiedotMat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit
Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
LisätiedotTässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
LisätiedotTilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Lisätiedot2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Viimeksi käsittelimme uskottavuusfunktioita, log-uskottavuusfunktioita ja su-estimaatteja Seuraavaksi tarkastelemme parametrin muunnoksia ja kuinka su-estimaatit käyttäytyvät
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
LisätiedotTestit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
LisätiedotTilastolliset luottamusvälit
Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat
TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
Lisätiedot1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on
HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla
LisätiedotS Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
Lisätiedot3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin
3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia
Lisätiedot6.1.2 Luottamusjoukon määritelmä
6.1.1 Johdanto Olemme tarkastelleet piste-estimointia: tavoitteemme oli etsiä tunnuslukuja t, joilla piste t(y) hyvä arvio mallin parametrille θ (tai sen muunnokselle g(θ)). Pelkän piste-estimaatin esittäminen
Lisätiedot2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö
LisätiedotTilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
LisätiedotGripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
LisätiedotKURSSIN TILASTOMATEMATIIKKA KAAVOJA
KURSSIN TILASTOMATEMATIIKKA KAAVOJA X = S = s = Otossuureita X i tai x = x i (otoskeskiarvo) (X i X) = (x i x) = Xi x i E(X) =µ, var(x) = σ X x tai, E(S )=σ (otosvariassi) Normaalijakautuee populaatio
LisätiedotEX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
LisätiedotOsa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet
Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä
LisätiedotTilastolliset menetelmät: Tilastolliset testit
Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille 0. Testejä järjestysasteikollisille muuttujille. Testejä laatueroasteikollisille
Lisätiedot1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit).
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 2. lokakuuta 2017 7.1 Tilastollie päättely Tähä meessä o opittu eustamaa tapahtumie todeäköisyyksiä aetu stokastise malli pohjalta. Eusteide laskemiseksi
LisätiedotMat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,
LisätiedotTilastollisen analyysin perusteet Luento 2: Tilastolliset testit
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja
LisätiedotTestit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6
LisätiedotJohdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
LisätiedotJohdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1
Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause
Lisätiedot031021P Tilastomatematiikka (5 op) viikko 5
031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen
LisätiedotTodennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
LisätiedotEstimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
LisätiedotMaximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
LisätiedotIlkka Mellin Aikasarja-analyysi Suurimman uskottavuuden menetelmä
Ilkka Mellin Aikasarja-analyysi Suurimman uskottavuuden menetelmä TKK (c) Ilkka Mellin (2007) 1 Suurimman uskottavuuden menetelmä >> Suurimman uskottavuuden estimointimenetelmä Tarkentuvuus Asymptoottinen
LisätiedotTilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1
Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet
LisätiedotOtantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
LisätiedotNormaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
LisätiedotMarkov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
LisätiedotKertausluento. Tilastollinen päättely II - 2. kurssikoe
Kertausluento Tilastollinen päättely II - 2. kurssikoe Yleistä tietoa TP II -2. kurssikokeesta 2. kurssikoe maanantaina 6.5.2019 klo 12.00-14.30 jossakin Exactumin auditoriossa Kurssikokeeseen ilmoittaudutaan
LisätiedotTestejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
Lisätiedot3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin
3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
LisätiedotOdotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
LisätiedotUskottavuuden ominaisuuksia
Luku 9 Uskottavuuden ominaisuuksia 9.1 Tyhjentävyys T yhjentävyys (Fisher 1922) luonnehtii täsmällisesti havaintoihin sisältyvän informaation kvantitatiivisesti. Parametrin θ estimaatti T(x) on tyhjentävä
Lisätiedot806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Ssteemiaalsi laboratorio Mat-2.9 Sovellettu todeäköisslasku A Nordlud Harjoitus 6 (vko 43/23) (Aihe: sekamalli, hteisjakaumia, Laiie luvut 6. 6.3, 8. 8.9). Tässä o edellise viiko laskareissa luvattu
LisätiedotSisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
LisätiedotTilastolliset menetelmät: Tilastolliset testit
Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.
Lisätiedot= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
LisätiedotHarjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
LisätiedotTodennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
Lisätiedot10. laskuharjoituskierros, vko 14, ratkaisut
10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset
LisätiedotJos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
LisätiedotYhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
Lisätiedot4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Lisätiedot( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
LisätiedotLisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
Lisätiedot