Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Koko: px
Aloita esitys sivulta:

Download "Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit"

Transkriptio

1 Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden

2 Sisältö t ja t t ja t kahden kahden

3 t ja t kahden

4 t ja t Tällä luennolla käsitellään epäparametrisia eli jakaumasta riippumattomia tilastollisia testejä. kahden

5 t ja t t ja t kahden

6 t ja t t ja t t ja t sopivat järjestysasteikollisille (esim. kouluarvosanat) muuttujille. Niitä voidaan kuitenkin käyttää myös jatkuville kvantitatiivisille muuttujille. en ja en etuna on, että niiden käyttö ei edellytä vahvoja jakaumaoletuksia. kahden

7 t ja t kahden

8 Yhden merkkitesti Yhden merkkitesti vastaa yhden t testiä ilman oletuksia perusjoukon jakauman tyypistä. Olkoot x 1, x 2,..., x n jatkuvan satunnaismuuttujan x havaitut arvot. Oletetaan, että havaintopisteet ovat riippumattomia ja tulevat (tuntemattomasta) jakaumasta, jonka mediaani m. Nollahypoteesi mediaanille H 0 : m = m 0. t ja t kahden Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m > m 0 (yksisuuntainen), H 1 : m < m 0 (yksisuuntainen) tai H 1 : m m 0 (kaksisuuntainen).

9 Yhden merkkitesti Muodostetaan erotukset d i = x i m 0, i = 1, 2,..., n. Testisuure S on niiden tapausten lukumäärä, joilla d i > 0. (Vaihtoehtoisesti voidaan tarkastella niiden tapausten lukumäärä, joilla d i < 0. ) Jos nollahypoteesi pätee, niin testisuure noudattaa binomijakaumaa parametrein n ja 1/2. Testisuureen normaaliarvo on 1 2 n, ja sen varianssi on 1 4 n. Suuret ja pienet testisuureen arvot (verrattuna normaaliarvoon 1 2n) viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos p arvo on kyllin pieni. t ja t kahden

10 Yhden merkkitesti, p arvot Testisuureen S jakauma on taulukoitu ja monet tietokoneohjelmat laskevat testin p arvoja. n p arvot määritetään seuraavilla kaavoilla, joissa s on testisuureen S havaittu arvo: Jos vaihtoehtoinen hypoteesi H 1 : m > m 0, niin testin p arvo on p = P(S s). Jos vaihtoehtoinen hypoteesi H 1 : m < m 0, niin testin p arvo on p = P(S s). Jos vaihtoehtoinen hypoteesi H 1 : m m 0, niin testin p arvo on p = 2 min{p(s s), P(S s)}. Edellä P(S s) ja P(S s) lasketaan luonnollisestikin nollahypoteesin vallitessa. t ja t kahden

11 Yhden asymptoottinen merkkitesti t ja t Kun otoskoko on suuri, testisuure Z = S n/2 noudattaa n/4 nollahypoteesin vallitessa likimain standardinormaalijakaumaa. Approksimaatio on tavallisesti riittävän hyvä, jos n > 20. Pienissä otoksissa nojataan testisuureen S tarkkaan jakaumaan. kahden

12 Yhden merkkitesti Oletimme edellä, että otos on jatkuvasta jakaumasta. ä voidaan käyttää myös silloin kun otos on diskreetistä jakaumasta, mutta tällöin on mahdollista, että osalle otospisteistä d i = x i m 0 = 0. Jos nollien lukumäärä on pieni otoskokoon nähden, niin nämä tapaukset voidaan jättää huomioimatta ja otoskokoa voidaan pienentää vastaavasti. Muussa tapauksessa nollat tulee määrittää siten, että ne vaikeuttavat nollahypoteesin hylkäystä. Esim. kaksisuuntaisen vaihtoehtoisen hypoteesin tapauksessa tulos 3 negatiivista merkkiä, 15 positiivista merkkiä ja 6 nollaa, tulisi testissä käsitellä kuten 9 negatiivista merkkiä ja 15 positiivista merkkiä. t ja t kahden

13 parivertailuille, testausasetelma t ja t Parivertailuilun testausasetelma Havainnot muodostuvat muuttujaa x koskevista mittaustuloksien pareista (x i1, x i2 ), i = 1, 2,..., n jotka ovat toisistaan riippumattomia. Yhden mittausparin arvoja ei kuitenkaan oleteta riippumattomiksi! Muodostetaan mittaustuloksien x i1 ja x i2 nollasta eroavat erotukset d i = x i1 x i2, i = 1, 2,..., k. kahden

14 parivertailuille t ja t Yleinen hypoteesi H: erotukset d i ovat riippumattomia, samoin jakautuneita ja tulevat jakaumasta jonka mediaani on m. Nollahypoteesi mediaanille H 0 : m = 0. Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m > 0 (yksisuuntainen), H 1 : m < 0 (yksisuuntainen) tai H 1 : m 0 (kaksisuuntainen). Nyt voidaan käyttää tavanomaista yhden merkkitestiä mittaustuloksien erotuksille d i. kahden

15 Numeerinen esimerkki t ja t Eräässä kuvitteellisessa hoitokokeessa tutkitaan, kuinka lääke a alentaa plasman galliapitoisuutta. Plasman korkea galliapitoisuus on yhteydessä moniin sairauksiin. Kokeen alussa mitattiin galliapitoisuus ensimmäisen kerran ja toisen kerran 8 viikon lääkehoidon jälkeen. Haluat tutkia onko lääkkeellä ollut haluttua vaikutusta 5% luottamustasolla. kahden

16 Mittaustulokset Taulukko: Galliapitoisuudet (µg/1000ml) ennen ja hoidon jälkeen. Potilas Pitoisuus Erotus Ennen Jälkeen t ja t kahden

17 t testi t ja t One Sample t-test data: Erotus t = , df = 12, p-value = alternative hypothesis: true mean is less than 0 sample estimates: mean of x = 210 kahden

18 t ja t One-sample Sign-Test data: Erotus s = 3, p-value = alternative hypothesis: true median is less than 0 sample estimates: median of x = -10 kahden

19 t ja t Vertaile testien antamia tuloksia. Kumpikaan testeistä ei yksinään anna hyvää kuvaa lääkityksen a vaikutuksesta? Miksi? Miten lääke näyttäisi tämän aineiston perusteella vaikuttavan? kahden

20 t ja t kahden

21 Yhden Yhden merkillinen vastaa yhden t testiä vähemmillä jakaumaoletuksilla. Olkoot x 1, x 2,..., x n jatkuvan symmetrisen satunnaismuuttujan x havaitut arvot. Oletetaan, että havaintopisteet ovat riippumattomia ja tulevat (tuntemattomasta) symmetrisestä jakaumasta, jonka mediaani m. t ja t kahden Nollahypoteesi mediaanille H 0 : m = m 0. Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m > m 0 (yksisuuntainen), H 1 : m < m 0 (yksisuuntainen) tai H 1 : m m 0 (kaksisuuntainen).

22 Yhden Muodostetaan erotusten itseisarvot d i = x i m 0, i = 1, 2,..., n. Laitetaan nämä erotusten itseisarvot järjestykseen pienimmästä suurimpaan. Määritetään merkilliset järjestysluvut (signed ranks) R (x i ) s.e. R (x i ) on itseisarvon d i = x i m 0 järjestysluku kerrottuna erotuksen (x i m 0 ) merkillä. Testisuure W = R (x i )>0 R (x i ) on positiivisten järjestyslukujen summa. (Vaihtoehtoisesti voidaan tarkastella negatiivisten järjestyslukujen summaa.) Testisuureen normaaliarvo on n(n+1) 4, ja sen varianssi on n(n+1)(2n+1) 24. Suuret ja pienet testisuureen arvot (verrattuna normaaliarvoon n(n+1) 4 ) viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos p arvo on kyllin pieni. t ja t kahden

23 Yhden, p arvot Testisuureen W jakauma on taulukoitu ja monet tietokoneohjelmat laskevat testin p arvoja. n p arvot määritetään seuraavilla kaavoilla, joissa w on testisuureen W havaittu arvo: Jos vaihtoehtoinen hypoteesi H 1 : m > m 0, niin testin p arvo on p = P(W w ). Jos vaihtoehtoinen hypoteesi H 1 : m < m 0, niin testin p arvo on p = P(W w ). Jos vaihtoehtoinen hypoteesi H 1 : m m 0, niin testin p arvo on p = 2 min{p(w w ), P(W w )}. Edellä P(W w ) ja P(W w ) lasketaan nollahypoteesin vallitessa. t ja t kahden

24 Yhden asymptoottinen t ja t Kun otoskoko on suuri, testisuure Z = W E(W ), missä var(w ) E(W ) = n(n+1) 4 ja var(w ) = n(n+1)(2n+1) 24, noudattaa nollahypoteesin vallitessa likimain standardinormaalijakaumaa. kahden Approksimaatio on tavallisesti riittävän hyvä, jos n > 20. Pienissä otoksissa nojataan testisuureen W tarkkaan jakaumaan.

25 Yhden Oletimme edellä, että otos on jatkuvasta jakaumasta. ä voidaan käyttää myös silloin kun otos on diskreetistä jakaumasta, mutta tällöin on mahdollista, että osalla otospisteistä itseisarvojen x i m 0 järjestysluku on sama. Tällöin kaikille näille otospisteille valitaan järjestysluvuksi keskimmäinen. Esim. jos kahdella otospisteellä x i m 0 on sama, vastaten järjestyslukuja 7 ja 8, niin molemmille pisteille asetetaan järjestysluvuksi 7.5. Jos kolmella otospisteellä x i m 0 on sama, vastaten järjestyslukuja 3, 4 ja 5, niin järjestysluvuksi valitaan kaikille kolmelle 4. t ja t kahden

26 parivertailuille, testausasetelma t ja t Parivertailuilun testausasetelma Havainnot muodostuvat muuttujaa x koskevista mittaustuloksien pareista (x i1, x i2 ), i = 1, 2,..., n jotka ovat toisistaan riippumattomia. Yhden mittausparin arvoja ei kuitenkaan oleteta riippumattomiksi! Muodostetaan mittaustuloksien x i1 ja x i2 nollasta eroavat erotukset d i = x i1 x i2, i = 1, 2,..., k. Erotusten oletetaan noudattavan symmetristä jakaumaa!! kahden

27 parivertailuille Yleinen hypoteesi H: erotukset d i ovat riippumattomia, samoin jakautuneita ja tulevat symmetrisestä jakaumasta jonka mediaani on m. Nollahypoteesi mediaanille H 0 : m = 0. Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m > 0 (yksisuuntainen), H 1 : m < 0 (yksisuuntainen) tai H 1 : m 0 (kaksisuuntainen). Nyt voidaan käyttää tavanomaista yhden ä mittaustuloksien erotuksille d i. t ja t kahden

28 Numeerinen esimerkki, merkillinen parivertailulle Kallen superkeksien pahin kilpailija keksimarkkinoilla on Panun pahanmakuiset prinsessakeksit. Näiden keksipakettien eri kauppojen myyntihintoja haluttiin vertailla, mutta keksien hintojen jakaumasta ei ole tietoa, joskin voidaan olettaa, että hintojen erotuksien jakauma on symmetrinen. Tutkimukseen valittiin satunnaisesti 10 eri kauppaa. Keksien hinnat on kirjattu alla olevaan taulukkoon. Kallen Panun Erotus , t ja t kahden Taulukko: Taulukossa näkyvät Kallen superkeksien ja Panun pahanmakuisten prinsessakeksien hinnat eri kaupoissa.

29 Numeerinen esimerkki, merkillinen parivertailulle t ja t Erotusten oletetaan noudattavan symmetristä jakaumaa. Nollahypoteesina on, että Kallen superkeksien ja Panun pahanmakuisten prinsessakeksien hintojen teoreettisissa mediaaneissa ei ole eroa eli että erotusten teoreettinen mediaani on nolla. Seuraavaan sivulla olevaan taulukkoon on kirjattu erotusten itseisarvot suuruusjärjestyksessä sekä lisäksi erotusten merkilliset järjestysluvut. kahden

30 Numeerinen esimerkki, merkillinen parivertailulle t ja t Erotus Merk.järj Taulukko: Erotusten itseisarvot järjetettyinä suurimmasta pienimpään ja erotusten merkilliset järjestysluvut. kahden Testisuure W = R (d i )>0 R (x i ) = = 29. Testin p-arvoksi saadaan laskentaohjelmistolla Nollahypoteesi jätetään voimaan.

31 vs. Testit soveltuvat saman tyyppisiin ongelmiin: yksi otos, mediaanin vertaaminen vakioon - kaksi toisistaan riippuvaa otosta, mediaanien vertaaminen. Testit ovat yhden t testin ei-parametrisiä vastineita. Testisuureiden arvot eivät riipu havaintoarvoista, vaan ainoastaan niiden keskinäisestä järjestyksestä. ssä ei tehdä oletuksia perusjoukon jakauman tyypistä. vaatii symmetria-oletuksen. käyttää merkkitestiä enemmän informaatiota havaintojen järjestyksestä. Jos jakauma voidaan olettaa symmetriseksi, kannattaa turvautua Wilcoxoniin, muussa tapauksessa merkkitesti on ainoa tie. t ja t kahden

32 t ja t kahden kahden

33 kahden kahden vastaa kahden riippumattoman t testiä vähemmillä jakaumaoletuksilla. kahden on käytännössä täsmälleen sama testi kuin ns. Mannin ja Whitneyn testi. Olkoot x 1, x 2,..., x n satunnaismuuttujan x havaitut arvot ja olkoot y 1, y 2,..., y m satunnaismuuttujan y havaitut arvot. Oletetaan, että havaintopisteet x 1, x 2,..., x n ovat riippumattomia ja samoin jakautuneita, ja oletetaan, että havaintopisteet y 1, y 2,..., y m ovat riippumattomia ja samoin jakautuneita. Oletetaan vielä, että x i ja y j ovat riippumattomia kaikilla i, j ja että muuttujat x i ja muuttujat y j noudattavat muuten samaa jakaumaa, mutta niiden mediaanit saattavat erota toisistaan. t ja t kahden Nollahypoteesi mediaanille H 0 : m x = m y. Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m x > m y (yksisuuntainen), H 1 : m x < m y (yksisuuntainen) tai H 1 : m x m y (kaksisuuntainen).

34 kahden Tarkastelaan otoksia x 1, x 2,..., x n ja y 1, y 2,..., y m. Oletetaan (yleisyyden kärsimättä), että n m. kahden perustuu kaikkien havaintojen keskinäisen suuruusjärjestyksen tarkasteluun. Yhdistetään otokset x 1, x 2,..., x n ja y 1, y 2,..., y m yhdeksi otokseksi z 1, z 2,..., z n+m. Järjestetään yhdistetyn havainnot suuruusjärjestykseen pienimmästä suurimpaan. Olkoon R(z i ) havainnon z i järjestysluku yhdistetyssä otoksessa z 1, z 2,..., z n+m. Testisuure W = n i=1 R(x i) on pienemmän järjestyslukujen summa. Testisuureen normaaliarvo on n(n + m + 1)/2, ja sen varianssi on nm(n + m + 1)/12. Suuret ja pienet testisuureen arvot (verrattuna normaaliarvoon n(n + m + 1)/2) viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos p arvo on kyllin pieni. t ja t kahden

35 kahden, p arvot Testisuureen W jakauma on taulukoitu ja monet tietokoneohjelmat laskevat testin p arvoja. kahden p arvot määritetään seuraavilla kaavoilla, joissa w on testisuureen W havaittu arvo: Jos vaihtoehtoinen hypoteesi H 1 : m x > m y, niin testin p arvo on p = P(W w). Jos vaihtoehtoinen hypoteesi H 1 : m x < m y, niin testin p arvo on p = P(W w). Jos vaihtoehtoinen hypoteesi H 1 : m x m y, niin testin p arvo on p = 2 min{p(w w), P(W w)}. Edellä P(W w) ja P(W w) lasketaan nollahypoteesin vallitessa. t ja t kahden

36 Kahden asymptoottinen t ja t Kun otoskoko on suuri, testisuure Z = W E(W ), missä var(w ) E(W ) = n(n + m + 1)/2 ja var(w ) = nm(n + m + 1)/12, noudattaa nollahypoteesin vallitessa likimain standardinormaalijakaumaa. kahden Approksimaatio on tavallisesti riittävän hyvä, jos n, m > 10. Pienissä otoksissa nojataan testisuureen W tarkkaan jakaumaan

37 kahden t ja t ä voidaan käyttää myös silloin kun otos on diskreetistä jakaumasta, mutta tällöin on mahdollista, että osalla otospisteistä on sama järjestysluku. Tällöin kaikille näille otospisteille valitaan järjestysluvuksi keskimmäinen. Esim. jos kahden havainnon järjestysluku on sama, vastaten järjestyslukuja 7 ja 8, niin molemmille havainnoille asetetaan järjestysluvuksi 7.5. Jos kolmen havainnon järjestysluku on sama, vastaten järjestyslukuja 3, 4 ja 5, niin järjestysluvuksi valitaan kaikille kolmelle 4. kahden

38 kahden t ja t Huomaa, että ä voidaan käyttää myös silloin, kun muuttujia ei voida mitata, mutta ne voidaan asettaa järjestykseen. (Esim. soittotaito, asunnon kunto,...) kahden

39 kahden t ja t kahden on kahden riippumattoman t testin ei-parametrinen vastine. Testisuureiden arvo ei riipu muuttujien x i ja y j arvoista, vaan ainoastaan niiden keskinäisestä järjestyksestä. Testi on varteenotettava vaihtoehto kahden riippumattoman t testille, jos perusjoukot eivät ole normaalijakautuneita. kahden

40 Numeerinen esimerkki kahden lle. t ja t Opiskelijoiden pituuksia mitattiin matematiikan laitoksen käytävällä. Kymmenen satunnaisesti valittua opiskelijaa laitettiin seisomaan pituusjärjestykseen. Opiskelijoiden joukossa oli sekä miehiä että naisia. Haluttiin selvittää, onko mies- ja naisopiskelijoin pituuksien jakaumissa eroa. kahden

41 Pituusjärjestyksestä saatiin seuraavan taulukon mukainen. Taulukkoon on kirjattu kunkin opiskelijan sukupuoli sekä järjestysluku. Opiskelija N N M M M N M M N M Järjestysluku Taulukko: Pituusjärjestykseen järjestetyt mies- ja naisopiskelijat järjestyslukuineen. t ja t kahden Testisuure on pienemmän, tässä naisten, järjestyslukujen summa W = 4 i=1 R(x i) = = 18. Koska otoskoot ovat pieniä luetaan taulukosta testisuureen kriittinen arvo. Kriittinen arvo < 18, joten nollahypoteesia pituuksien jakaumien samuudesta ei voida hylätä.

42 t ja t J. S. Milton, J. C. Arnold: Introduction to Probability and Statistics, McGraw-Hill Inc R. V. Hogg, J. W. McKean, A. T. Craig: Introduction to Mathematical Statistics, Pearson Education Pertti Laininen: Todennäköisyys ja sen tilastollinen soveltaminen, Otatieto 1998, numero 586. Ilkka Mellin: Tilastolliset menetelmät, kahden

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen Tilastollisen analyysin perusteet Luento 5: Sisältö Tilastotieteessä tehdään usein oletuksia havaintojen jakaumasta. Useat tilastolliset menetelmät toimivat tehottomasti tai jopa virheellisesti, jos jakaumaoletukset

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tilastollisen analyysin perusteet, kevät 2007 3. luento: Pari sanaa vielä hypoteesien formuloinneista Kai Virtanen Hypoteesien muodoista Luennolla nro. 2 muotoiltiin nollahypoteesi - H 0 : θ

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1 Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5 MS-A Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko Tilastollinen testaus Tilastollisten testaaminen Tilastollisen tutkimuksen kohteena olevasta perusjoukosta on esitetty jokin väite tai

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5 TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen

Lisätiedot

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista. Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin

Lisätiedot

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut).

POPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). KÄSITTEITÄ POPULAATIO Joukko, jota tutkitaan (äärellinen, ääretön). Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). Näiden välillä ei aina tehdä eroa, kun puhutaan

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

2. TILASTOLLINEN TESTAAMINEN...

2. TILASTOLLINEN TESTAAMINEN... !" # 1. 1. JOHDANTO... 3 2. 2. TILASTOLLINEN TESTAAMINEN... 4 2.1. T-TESTI... 4 2.2. RANDOMISAATIOTESTI... 5 3. SIMULOINTI... 6 3.1. OTOSTEN POIMINTA... 6 3.2. TESTAUS... 7 3.3. TESTIEN TULOSTEN VERTAILU...

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu 10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

pisteet Frekvenssi frekvenssi Yhteensä

pisteet Frekvenssi frekvenssi Yhteensä 806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1 Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu 5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala

A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala Kaavakokoelma, testinvalintakaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1 a) Konepajan on hyväksyttävä alihankkijalta saatu tavaraerä, mikäli viallisten komponenttien

Lisätiedot

Aineistokoko ja voima-analyysi

Aineistokoko ja voima-analyysi TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla

Lisätiedot

MTTTP5, luento Luottamusväli, määritelmä

MTTTP5, luento Luottamusväli, määritelmä 23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A

Lisätiedot

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.

Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486. Mat-.103 Koesuunnittelu ja tilastolliset mallit Harjoitus 8, kevät 004 Esimerkkiratkaisut. 1. Myrkyllistä ainetta oli kaadettu jokeen, joka johtaa suurelle kalastusalueelle. Tie- ja vesirakennusinsinöörit

Lisätiedot

Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2004) 1 Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen Jakaumaoletuksien

Lisätiedot

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) MTTTP5, luento 7.12.2017 7.12.2017/1 6.1.3 Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) y = lepopulssi x = sukupuoli y = musikaalisuus x = sukupuoli

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot