Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit
|
|
- Aleksi Aaltonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden
2 Sisältö t ja t t ja t kahden kahden
3 t ja t kahden
4 t ja t Tällä luennolla käsitellään epäparametrisia eli jakaumasta riippumattomia tilastollisia testejä. kahden
5 t ja t t ja t kahden
6 t ja t t ja t t ja t sopivat järjestysasteikollisille (esim. kouluarvosanat) muuttujille. Niitä voidaan kuitenkin käyttää myös jatkuville kvantitatiivisille muuttujille. en ja en etuna on, että niiden käyttö ei edellytä vahvoja jakaumaoletuksia. kahden
7 t ja t kahden
8 Yhden merkkitesti Yhden merkkitesti vastaa yhden t testiä ilman oletuksia perusjoukon jakauman tyypistä. Olkoot x 1, x 2,..., x n jatkuvan satunnaismuuttujan x havaitut arvot. Oletetaan, että havaintopisteet ovat riippumattomia ja tulevat (tuntemattomasta) jakaumasta, jonka mediaani m. Nollahypoteesi mediaanille H 0 : m = m 0. t ja t kahden Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m > m 0 (yksisuuntainen), H 1 : m < m 0 (yksisuuntainen) tai H 1 : m m 0 (kaksisuuntainen).
9 Yhden merkkitesti Muodostetaan erotukset d i = x i m 0, i = 1, 2,..., n. Testisuure S on niiden tapausten lukumäärä, joilla d i > 0. (Vaihtoehtoisesti voidaan tarkastella niiden tapausten lukumäärä, joilla d i < 0. ) Jos nollahypoteesi pätee, niin testisuure noudattaa binomijakaumaa parametrein n ja 1/2. Testisuureen normaaliarvo on 1 2 n, ja sen varianssi on 1 4 n. Suuret ja pienet testisuureen arvot (verrattuna normaaliarvoon 1 2n) viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos p arvo on kyllin pieni. t ja t kahden
10 Yhden merkkitesti, p arvot Testisuureen S jakauma on taulukoitu ja monet tietokoneohjelmat laskevat testin p arvoja. n p arvot määritetään seuraavilla kaavoilla, joissa s on testisuureen S havaittu arvo: Jos vaihtoehtoinen hypoteesi H 1 : m > m 0, niin testin p arvo on p = P(S s). Jos vaihtoehtoinen hypoteesi H 1 : m < m 0, niin testin p arvo on p = P(S s). Jos vaihtoehtoinen hypoteesi H 1 : m m 0, niin testin p arvo on p = 2 min{p(s s), P(S s)}. Edellä P(S s) ja P(S s) lasketaan luonnollisestikin nollahypoteesin vallitessa. t ja t kahden
11 Yhden asymptoottinen merkkitesti t ja t Kun otoskoko on suuri, testisuure Z = S n/2 noudattaa n/4 nollahypoteesin vallitessa likimain standardinormaalijakaumaa. Approksimaatio on tavallisesti riittävän hyvä, jos n > 20. Pienissä otoksissa nojataan testisuureen S tarkkaan jakaumaan. kahden
12 Yhden merkkitesti Oletimme edellä, että otos on jatkuvasta jakaumasta. ä voidaan käyttää myös silloin kun otos on diskreetistä jakaumasta, mutta tällöin on mahdollista, että osalle otospisteistä d i = x i m 0 = 0. Jos nollien lukumäärä on pieni otoskokoon nähden, niin nämä tapaukset voidaan jättää huomioimatta ja otoskokoa voidaan pienentää vastaavasti. Muussa tapauksessa nollat tulee määrittää siten, että ne vaikeuttavat nollahypoteesin hylkäystä. Esim. kaksisuuntaisen vaihtoehtoisen hypoteesin tapauksessa tulos 3 negatiivista merkkiä, 15 positiivista merkkiä ja 6 nollaa, tulisi testissä käsitellä kuten 9 negatiivista merkkiä ja 15 positiivista merkkiä. t ja t kahden
13 parivertailuille, testausasetelma t ja t Parivertailuilun testausasetelma Havainnot muodostuvat muuttujaa x koskevista mittaustuloksien pareista (x i1, x i2 ), i = 1, 2,..., n jotka ovat toisistaan riippumattomia. Yhden mittausparin arvoja ei kuitenkaan oleteta riippumattomiksi! Muodostetaan mittaustuloksien x i1 ja x i2 nollasta eroavat erotukset d i = x i1 x i2, i = 1, 2,..., k. kahden
14 parivertailuille t ja t Yleinen hypoteesi H: erotukset d i ovat riippumattomia, samoin jakautuneita ja tulevat jakaumasta jonka mediaani on m. Nollahypoteesi mediaanille H 0 : m = 0. Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m > 0 (yksisuuntainen), H 1 : m < 0 (yksisuuntainen) tai H 1 : m 0 (kaksisuuntainen). Nyt voidaan käyttää tavanomaista yhden merkkitestiä mittaustuloksien erotuksille d i. kahden
15 Numeerinen esimerkki t ja t Eräässä kuvitteellisessa hoitokokeessa tutkitaan, kuinka lääke a alentaa plasman galliapitoisuutta. Plasman korkea galliapitoisuus on yhteydessä moniin sairauksiin. Kokeen alussa mitattiin galliapitoisuus ensimmäisen kerran ja toisen kerran 8 viikon lääkehoidon jälkeen. Haluat tutkia onko lääkkeellä ollut haluttua vaikutusta 5% luottamustasolla. kahden
16 Mittaustulokset Taulukko: Galliapitoisuudet (µg/1000ml) ennen ja hoidon jälkeen. Potilas Pitoisuus Erotus Ennen Jälkeen t ja t kahden
17 t testi t ja t One Sample t-test data: Erotus t = , df = 12, p-value = alternative hypothesis: true mean is less than 0 sample estimates: mean of x = 210 kahden
18 t ja t One-sample Sign-Test data: Erotus s = 3, p-value = alternative hypothesis: true median is less than 0 sample estimates: median of x = -10 kahden
19 t ja t Vertaile testien antamia tuloksia. Kumpikaan testeistä ei yksinään anna hyvää kuvaa lääkityksen a vaikutuksesta? Miksi? Miten lääke näyttäisi tämän aineiston perusteella vaikuttavan? kahden
20 t ja t kahden
21 Yhden Yhden merkillinen vastaa yhden t testiä vähemmillä jakaumaoletuksilla. Olkoot x 1, x 2,..., x n jatkuvan symmetrisen satunnaismuuttujan x havaitut arvot. Oletetaan, että havaintopisteet ovat riippumattomia ja tulevat (tuntemattomasta) symmetrisestä jakaumasta, jonka mediaani m. t ja t kahden Nollahypoteesi mediaanille H 0 : m = m 0. Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m > m 0 (yksisuuntainen), H 1 : m < m 0 (yksisuuntainen) tai H 1 : m m 0 (kaksisuuntainen).
22 Yhden Muodostetaan erotusten itseisarvot d i = x i m 0, i = 1, 2,..., n. Laitetaan nämä erotusten itseisarvot järjestykseen pienimmästä suurimpaan. Määritetään merkilliset järjestysluvut (signed ranks) R (x i ) s.e. R (x i ) on itseisarvon d i = x i m 0 järjestysluku kerrottuna erotuksen (x i m 0 ) merkillä. Testisuure W = R (x i )>0 R (x i ) on positiivisten järjestyslukujen summa. (Vaihtoehtoisesti voidaan tarkastella negatiivisten järjestyslukujen summaa.) Testisuureen normaaliarvo on n(n+1) 4, ja sen varianssi on n(n+1)(2n+1) 24. Suuret ja pienet testisuureen arvot (verrattuna normaaliarvoon n(n+1) 4 ) viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos p arvo on kyllin pieni. t ja t kahden
23 Yhden, p arvot Testisuureen W jakauma on taulukoitu ja monet tietokoneohjelmat laskevat testin p arvoja. n p arvot määritetään seuraavilla kaavoilla, joissa w on testisuureen W havaittu arvo: Jos vaihtoehtoinen hypoteesi H 1 : m > m 0, niin testin p arvo on p = P(W w ). Jos vaihtoehtoinen hypoteesi H 1 : m < m 0, niin testin p arvo on p = P(W w ). Jos vaihtoehtoinen hypoteesi H 1 : m m 0, niin testin p arvo on p = 2 min{p(w w ), P(W w )}. Edellä P(W w ) ja P(W w ) lasketaan nollahypoteesin vallitessa. t ja t kahden
24 Yhden asymptoottinen t ja t Kun otoskoko on suuri, testisuure Z = W E(W ), missä var(w ) E(W ) = n(n+1) 4 ja var(w ) = n(n+1)(2n+1) 24, noudattaa nollahypoteesin vallitessa likimain standardinormaalijakaumaa. kahden Approksimaatio on tavallisesti riittävän hyvä, jos n > 20. Pienissä otoksissa nojataan testisuureen W tarkkaan jakaumaan.
25 Yhden Oletimme edellä, että otos on jatkuvasta jakaumasta. ä voidaan käyttää myös silloin kun otos on diskreetistä jakaumasta, mutta tällöin on mahdollista, että osalla otospisteistä itseisarvojen x i m 0 järjestysluku on sama. Tällöin kaikille näille otospisteille valitaan järjestysluvuksi keskimmäinen. Esim. jos kahdella otospisteellä x i m 0 on sama, vastaten järjestyslukuja 7 ja 8, niin molemmille pisteille asetetaan järjestysluvuksi 7.5. Jos kolmella otospisteellä x i m 0 on sama, vastaten järjestyslukuja 3, 4 ja 5, niin järjestysluvuksi valitaan kaikille kolmelle 4. t ja t kahden
26 parivertailuille, testausasetelma t ja t Parivertailuilun testausasetelma Havainnot muodostuvat muuttujaa x koskevista mittaustuloksien pareista (x i1, x i2 ), i = 1, 2,..., n jotka ovat toisistaan riippumattomia. Yhden mittausparin arvoja ei kuitenkaan oleteta riippumattomiksi! Muodostetaan mittaustuloksien x i1 ja x i2 nollasta eroavat erotukset d i = x i1 x i2, i = 1, 2,..., k. Erotusten oletetaan noudattavan symmetristä jakaumaa!! kahden
27 parivertailuille Yleinen hypoteesi H: erotukset d i ovat riippumattomia, samoin jakautuneita ja tulevat symmetrisestä jakaumasta jonka mediaani on m. Nollahypoteesi mediaanille H 0 : m = 0. Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m > 0 (yksisuuntainen), H 1 : m < 0 (yksisuuntainen) tai H 1 : m 0 (kaksisuuntainen). Nyt voidaan käyttää tavanomaista yhden ä mittaustuloksien erotuksille d i. t ja t kahden
28 Numeerinen esimerkki, merkillinen parivertailulle Kallen superkeksien pahin kilpailija keksimarkkinoilla on Panun pahanmakuiset prinsessakeksit. Näiden keksipakettien eri kauppojen myyntihintoja haluttiin vertailla, mutta keksien hintojen jakaumasta ei ole tietoa, joskin voidaan olettaa, että hintojen erotuksien jakauma on symmetrinen. Tutkimukseen valittiin satunnaisesti 10 eri kauppaa. Keksien hinnat on kirjattu alla olevaan taulukkoon. Kallen Panun Erotus , t ja t kahden Taulukko: Taulukossa näkyvät Kallen superkeksien ja Panun pahanmakuisten prinsessakeksien hinnat eri kaupoissa.
29 Numeerinen esimerkki, merkillinen parivertailulle t ja t Erotusten oletetaan noudattavan symmetristä jakaumaa. Nollahypoteesina on, että Kallen superkeksien ja Panun pahanmakuisten prinsessakeksien hintojen teoreettisissa mediaaneissa ei ole eroa eli että erotusten teoreettinen mediaani on nolla. Seuraavaan sivulla olevaan taulukkoon on kirjattu erotusten itseisarvot suuruusjärjestyksessä sekä lisäksi erotusten merkilliset järjestysluvut. kahden
30 Numeerinen esimerkki, merkillinen parivertailulle t ja t Erotus Merk.järj Taulukko: Erotusten itseisarvot järjetettyinä suurimmasta pienimpään ja erotusten merkilliset järjestysluvut. kahden Testisuure W = R (d i )>0 R (x i ) = = 29. Testin p-arvoksi saadaan laskentaohjelmistolla Nollahypoteesi jätetään voimaan.
31 vs. Testit soveltuvat saman tyyppisiin ongelmiin: yksi otos, mediaanin vertaaminen vakioon - kaksi toisistaan riippuvaa otosta, mediaanien vertaaminen. Testit ovat yhden t testin ei-parametrisiä vastineita. Testisuureiden arvot eivät riipu havaintoarvoista, vaan ainoastaan niiden keskinäisestä järjestyksestä. ssä ei tehdä oletuksia perusjoukon jakauman tyypistä. vaatii symmetria-oletuksen. käyttää merkkitestiä enemmän informaatiota havaintojen järjestyksestä. Jos jakauma voidaan olettaa symmetriseksi, kannattaa turvautua Wilcoxoniin, muussa tapauksessa merkkitesti on ainoa tie. t ja t kahden
32 t ja t kahden kahden
33 kahden kahden vastaa kahden riippumattoman t testiä vähemmillä jakaumaoletuksilla. kahden on käytännössä täsmälleen sama testi kuin ns. Mannin ja Whitneyn testi. Olkoot x 1, x 2,..., x n satunnaismuuttujan x havaitut arvot ja olkoot y 1, y 2,..., y m satunnaismuuttujan y havaitut arvot. Oletetaan, että havaintopisteet x 1, x 2,..., x n ovat riippumattomia ja samoin jakautuneita, ja oletetaan, että havaintopisteet y 1, y 2,..., y m ovat riippumattomia ja samoin jakautuneita. Oletetaan vielä, että x i ja y j ovat riippumattomia kaikilla i, j ja että muuttujat x i ja muuttujat y j noudattavat muuten samaa jakaumaa, mutta niiden mediaanit saattavat erota toisistaan. t ja t kahden Nollahypoteesi mediaanille H 0 : m x = m y. Mahdolliset vaihtoehtoiset hypoteesit: H 1 : m x > m y (yksisuuntainen), H 1 : m x < m y (yksisuuntainen) tai H 1 : m x m y (kaksisuuntainen).
34 kahden Tarkastelaan otoksia x 1, x 2,..., x n ja y 1, y 2,..., y m. Oletetaan (yleisyyden kärsimättä), että n m. kahden perustuu kaikkien havaintojen keskinäisen suuruusjärjestyksen tarkasteluun. Yhdistetään otokset x 1, x 2,..., x n ja y 1, y 2,..., y m yhdeksi otokseksi z 1, z 2,..., z n+m. Järjestetään yhdistetyn havainnot suuruusjärjestykseen pienimmästä suurimpaan. Olkoon R(z i ) havainnon z i järjestysluku yhdistetyssä otoksessa z 1, z 2,..., z n+m. Testisuure W = n i=1 R(x i) on pienemmän järjestyslukujen summa. Testisuureen normaaliarvo on n(n + m + 1)/2, ja sen varianssi on nm(n + m + 1)/12. Suuret ja pienet testisuureen arvot (verrattuna normaaliarvoon n(n + m + 1)/2) viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos p arvo on kyllin pieni. t ja t kahden
35 kahden, p arvot Testisuureen W jakauma on taulukoitu ja monet tietokoneohjelmat laskevat testin p arvoja. kahden p arvot määritetään seuraavilla kaavoilla, joissa w on testisuureen W havaittu arvo: Jos vaihtoehtoinen hypoteesi H 1 : m x > m y, niin testin p arvo on p = P(W w). Jos vaihtoehtoinen hypoteesi H 1 : m x < m y, niin testin p arvo on p = P(W w). Jos vaihtoehtoinen hypoteesi H 1 : m x m y, niin testin p arvo on p = 2 min{p(w w), P(W w)}. Edellä P(W w) ja P(W w) lasketaan nollahypoteesin vallitessa. t ja t kahden
36 Kahden asymptoottinen t ja t Kun otoskoko on suuri, testisuure Z = W E(W ), missä var(w ) E(W ) = n(n + m + 1)/2 ja var(w ) = nm(n + m + 1)/12, noudattaa nollahypoteesin vallitessa likimain standardinormaalijakaumaa. kahden Approksimaatio on tavallisesti riittävän hyvä, jos n, m > 10. Pienissä otoksissa nojataan testisuureen W tarkkaan jakaumaan
37 kahden t ja t ä voidaan käyttää myös silloin kun otos on diskreetistä jakaumasta, mutta tällöin on mahdollista, että osalla otospisteistä on sama järjestysluku. Tällöin kaikille näille otospisteille valitaan järjestysluvuksi keskimmäinen. Esim. jos kahden havainnon järjestysluku on sama, vastaten järjestyslukuja 7 ja 8, niin molemmille havainnoille asetetaan järjestysluvuksi 7.5. Jos kolmen havainnon järjestysluku on sama, vastaten järjestyslukuja 3, 4 ja 5, niin järjestysluvuksi valitaan kaikille kolmelle 4. kahden
38 kahden t ja t Huomaa, että ä voidaan käyttää myös silloin, kun muuttujia ei voida mitata, mutta ne voidaan asettaa järjestykseen. (Esim. soittotaito, asunnon kunto,...) kahden
39 kahden t ja t kahden on kahden riippumattoman t testin ei-parametrinen vastine. Testisuureiden arvo ei riipu muuttujien x i ja y j arvoista, vaan ainoastaan niiden keskinäisestä järjestyksestä. Testi on varteenotettava vaihtoehto kahden riippumattoman t testille, jos perusjoukot eivät ole normaalijakautuneita. kahden
40 Numeerinen esimerkki kahden lle. t ja t Opiskelijoiden pituuksia mitattiin matematiikan laitoksen käytävällä. Kymmenen satunnaisesti valittua opiskelijaa laitettiin seisomaan pituusjärjestykseen. Opiskelijoiden joukossa oli sekä miehiä että naisia. Haluttiin selvittää, onko mies- ja naisopiskelijoin pituuksien jakaumissa eroa. kahden
41 Pituusjärjestyksestä saatiin seuraavan taulukon mukainen. Taulukkoon on kirjattu kunkin opiskelijan sukupuoli sekä järjestysluku. Opiskelija N N M M M N M M N M Järjestysluku Taulukko: Pituusjärjestykseen järjestetyt mies- ja naisopiskelijat järjestyslukuineen. t ja t kahden Testisuure on pienemmän, tässä naisten, järjestyslukujen summa W = 4 i=1 R(x i) = = 18. Koska otoskoot ovat pieniä luetaan taulukosta testisuureen kriittinen arvo. Kriittinen arvo < 18, joten nollahypoteesia pituuksien jakaumien samuudesta ei voida hylätä.
42 t ja t J. S. Milton, J. C. Arnold: Introduction to Probability and Statistics, McGraw-Hill Inc R. V. Hogg, J. W. McKean, A. T. Craig: Introduction to Mathematical Statistics, Pearson Education Pertti Laininen: Todennäköisyys ja sen tilastollinen soveltaminen, Otatieto 1998, numero 586. Ilkka Mellin: Tilastolliset menetelmät, kahden
Testit järjestysasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten
LisätiedotTilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle
Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu
LisätiedotTilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle
Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen
LisätiedotTilastollisen analyysin perusteet Luento 2: Tilastolliset testit
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja
LisätiedotTilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
LisätiedotTilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin
Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta
LisätiedotJohdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin
LisätiedotTestejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
LisätiedotIlkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
LisätiedotTilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä
Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme
LisätiedotTilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen
Tilastollisen analyysin perusteet Luento 5: Sisältö Tilastotieteessä tehdään usein oletuksia havaintojen jakaumasta. Useat tilastolliset menetelmät toimivat tehottomasti tai jopa virheellisesti, jos jakaumaoletukset
LisätiedotTilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
LisätiedotMat-2.2104 Tilastollisen analyysin perusteet, kevät 2007
Mat-2.204 Tilastollisen analyysin perusteet, kevät 2007 3. luento: Pari sanaa vielä hypoteesien formuloinneista Kai Virtanen Hypoteesien muodoista Luennolla nro. 2 muotoiltiin nollahypoteesi - H 0 : θ
LisätiedotVäliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
LisätiedotTilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
LisätiedotHarjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
LisätiedotJohdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
LisätiedotTilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
LisätiedotJohdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
LisätiedotTestit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
LisätiedotJohdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
LisätiedotTavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.
Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,
Lisätiedotr = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
LisätiedotTilastollisen analyysin perusteet Luento 7: Lineaarinen regressio
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman
LisätiedotTilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio
Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n
LisätiedotTilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1
Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet
Lisätiedot10. laskuharjoituskierros, vko 14, ratkaisut
10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
LisätiedotTestit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot
TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5
MS-A Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko Tilastollinen testaus Tilastollisten testaaminen Tilastollisen tutkimuksen kohteena olevasta perusjoukosta on esitetty jokin väite tai
LisätiedotEstimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
LisätiedotTilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5
TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä
LisätiedotJohdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
LisätiedotMat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:
Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,
LisätiedotJos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen
LisätiedotJohdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa
LisätiedotOdotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
LisätiedotMediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.
Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin
LisätiedotPOPULAATIO. Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut).
KÄSITTEITÄ POPULAATIO Joukko, jota tutkitaan (äärellinen, ääretön). Oikeastaan arvot, joista ollaan kiinnostuneita (mitatut numeeriset suureet, luokittelut). Näiden välillä ei aina tehdä eroa, kun puhutaan
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotFoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy
LisätiedotKvantitatiiviset tutkimusmenetelmät maantieteessä
Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi
LisätiedotHypoteesin testaus Alkeet
Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä
LisätiedotJos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
LisätiedotJohdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1
Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n
LisätiedotIlkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
Lisätiedot2. TILASTOLLINEN TESTAAMINEN...
!" # 1. 1. JOHDANTO... 3 2. 2. TILASTOLLINEN TESTAAMINEN... 4 2.1. T-TESTI... 4 2.2. RANDOMISAATIOTESTI... 5 3. SIMULOINTI... 6 3.1. OTOSTEN POIMINTA... 6 3.2. TESTAUS... 7 3.3. TESTIEN TULOSTEN VERTAILU...
LisätiedotKaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1
Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu
Lisätiedot¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.
10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen
LisätiedotTutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)
1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
LisätiedotTilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Lisätiedotedellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾
ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos
LisätiedotGripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
Lisätiedot1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi
Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
LisätiedotKaksisuuntainen varianssianalyysi. Heliövaara 1
Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän
Lisätiedotχ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
Lisätiedotpisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
LisätiedotOngelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?
Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus
LisätiedotLuottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
LisätiedotLisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
LisätiedotLuottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,
LisätiedotLatinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt
TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,
Lisätiedot11. laskuharjoituskierros, vko 15, ratkaisut
11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa
Lisätiedot6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
LisätiedotRegressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
LisätiedotLuottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla
LisätiedotEstimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1
Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen
Lisätiedot031021P Tilastomatematiikka (5 op) viikko 5
031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen
LisätiedotJohdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
LisätiedotTilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
LisätiedotMTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
LisätiedotMitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto
Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen
LisätiedotHAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
LisätiedotEstimointi. Otantajakauma
Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
LisätiedotGeenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto
Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät
LisätiedotA130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala
Kaavakokoelma, testinvalintakaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1 a) Konepajan on hyväksyttävä alihankkijalta saatu tavaraerä, mikäli viallisten komponenttien
LisätiedotAineistokoko ja voima-analyysi
TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla
LisätiedotMTTTP5, luento Luottamusväli, määritelmä
23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A
LisätiedotTestaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.
Mat-.103 Koesuunnittelu ja tilastolliset mallit Harjoitus 8, kevät 004 Esimerkkiratkaisut. 1. Myrkyllistä ainetta oli kaadettu jokeen, joka johtaa suurelle kalastusalueelle. Tie- ja vesirakennusinsinöörit
LisätiedotJohdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2004) 1 Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen Jakaumaoletuksien
LisätiedotMTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)
MTTTP5, luento 7.12.2017 7.12.2017/1 6.1.3 Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) y = lepopulssi x = sukupuoli y = musikaalisuus x = sukupuoli
Lisätiedot806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain
Lisätiedot