Testit järjestysasteikollisille muuttujille

Koko: px
Aloita esitys sivulta:

Download "Testit järjestysasteikollisille muuttujille"

Transkriptio

1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1

2 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin rankitesti Mannin ja Whitneyn testi Wilcoxonin rankisummatesti TKK (c) Ilkka Mellin (2007) 2

3 Järjestysasteikollisten muuttujien testit Testit järjestysasteikollisille muuttujille Tarkastelemme seuraavia testejä (jatkuville) järjestysasteikollisille muuttujille: Merkkitesti Wilcoxonin rankitesti Mannin ja Whitneyn testi eli Wilcoxonin rankisummatesti On syytä huomata, että testejä saa ja on usein myös järkevää käyttää välimatka-ja suhdeasteikollisille muuttujille. Mitta-asteikot: ks. lukua Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2007) 3

4 Järjestysasteikollisten muuttujien testit Testit järjestysasteikollisille muuttujille: Huomautuksia Tässä käsiteltäviä testejä kutsutaan ei-parametrisiksi tai jakaumista riippumattomiksi, koska testi eivät kohdistu minkään tarkasti määritellyn todennäköisyysjakauman parametreihin. Merkkitesti ja Wilcoxonin rankitesti ovat luonteeltaan yhden otoksen testejä, mutta niitä voidaan soveltaa myös parivertailuasetelmissa. Mannin ja Whitneyn testi eli Wilcoxonin rankisummatesti on luonteeltaan kahden otoksen testi. Kaikissa käsiteltävissä testeissä testataan tarkemmin määrittelemättömän todennäköisyysjakauman sijaintiparametria (mediaania) koskevia hypoteeseja TKK (c) Ilkka Mellin (2007) 4

5 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit >> Merkkitesti Wilcoxonin rankitesti Mannin ja Whitneyn testi Wilcoxonin rankisummatesti TKK (c) Ilkka Mellin (2007) 5

6 Merkkitesti Testausasetelma Olkoon X1, X2,, X n yksinkertainen satunnaisotos perusjoukosta S, jonka jakauma on symmetrinen. Asetetaan jakauman mediaanille Me nollahypoteesi H 0 :Me= Me0 Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Erään ratkaisun tarjoaa merkkitesti, joka on yhden otoksen t-testin ei-parametrinen vastine. TKK (c) Ilkka Mellin (2007) 6

7 Merkkitesti Testisuureet Määritellään erotukset D i = X i Me 0, i = 1, 2,, n ja olkoon n n niiden erotusten D i lukumäärä, jotka ovat 0. Jos nollahypoteesi H 0 pätee, positiivisten ja negatiivisten erotusten on jakauduttava suunnilleen tasan. Määritellään testisuureet S ja S + : S = negatiivisten erotusten D i = X i Me 0 lukumäärä S + = positiivisten erotusten D i = X i Me 0 lukumäärä TKK (c) Ilkka Mellin (2007) 7

8 Merkkitesti Testisuureiden S ja S + ominaisuudet (i) S + S + = n (ii) Jos nollahypoteesi H 0 pätee, testisuureet S ja S + noudattavat binomijakaumaa Bin(n, q) parametrein n ja q = 1/2: S ~ Bin(n, 1/2) S + ~Bin(n, 1/2) (iii) Jos nollahypoteesi H 0 pätee, + 1 E( S ) = E( S ) = nq = 2 n (iv) Jos nollahypoteesi H 0 pätee, D( S ) = D( S ) = nq(1 q) = n 4 TKK (c) Ilkka Mellin (2007) 8

9 Merkkitesti Eksakti testi Testisuureiden S ja S + jakaumat on taulukoitu ja monet tietokoneohjelmat laskevat testin p-arvoja. Merkkitestin p-arvot määrätään seuraavilla kaavoilla, joissa s (s + ) on testisuureen S (S + ) havaittu arvo: (i) Vaihtoehtoinen hypoteesi H 1 : Me > Me 0 Testin p-arvo: p = Pr(S + > s + ) (ii) Vaihtoehtoinen hypoteesi H 1 : Me < Me 0 Testin p-arvo: p = Pr(S < s ) (iii) Vaihtoehtoinen hypoteesi: H 1 : Me Me 0 Testin p-arvo: p = 2 min{pr(s + > s + ), Pr(S < s )} TKK (c) Ilkka Mellin (2007) 9

10 Merkkitesti Standardoitu S-testisuure ja sen jakauma 1/2 Jos nollahypoteesi H 0 pätee, + 1 E( S ) = E( S ) = n D( S ) = D( S ) = 4 n Määritellään testisuure z = S E( S ) * * * D( S ) jossa S * = S tai S +. 2 TKK (c) Ilkka Mellin (2007) 10

11 Merkkitesti Standardoitu S-testisuure ja sen jakauma 2/2 Jos nollahypoteesi H 0 pätee, niin testisuure * * S E( S ) z = * D( S ) noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa N(0,1): z ~ a N(0,1) Approksimaatio on tavallisesti riittävän hyvä, jos n > 20. Pienissä otoksissa nojataan testisuureen S * tarkkaan jakaumaan. TKK (c) Ilkka Mellin (2007) 11

12 Merkkitesti Asymptoottinen testi Testisuureen * * S E( S ) z = * D( S ) normaaliarvo = 0, koska nollahypoteesin H 0 pätiessä E(z) = 0 Siten itseisarvoltaan suuret testisuureen z arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. Hylkäysalueen valinta ja p-arvon määrääminen: ks. lukua Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 12

13 Merkkitesti Kommentteja Merkkitesti voidaan tulkita yhden otoksen t-testin eiparametriseksi vastineeksi. Merkkitestissä ei tehdä toisin kuin yhden otoksen t-testissä mitään oletuksia perusjoukon jakauman tyypistä. Merkkitestin testisuureen arvo ei riipu havaintoarvoista, vaan ainoastaan niiden keskinäisestä järjestyksestä. TKK (c) Ilkka Mellin (2007) 13

14 Merkkitesti Merkkitestin soveltaminen parivertailuasetelmiin 1/2 Merkkitestiä voidaan soveltaa parivertailuasetelmiin, joissa havainnot muodostuvat toisistaan riippumattomista mittauspareista (X i, Y i ), i = 1, 2,, n Oletetaan, että X-ja Y-mittausten jakaumat ovat muuten samat, mutta niiden mediaaneilla (sijaintiparametreilla) saattaa olla eri arvot. Määritellään havaintojen X i ja Y i erotukset D i = X i Y i, i = 1, 2,, n ja olkoon n niiden erotusten D i lukumäärä, jotka ovat 0. TKK (c) Ilkka Mellin (2007) 14

15 Merkkitesti Merkkitestin soveltaminen parivertailuasetelmiin 2/2 Tehdään oletus, että erotusten D i = X i Y i, i = 1, 2,, n jakauma on symmetrinen. Määritellään testisuureet S ja S + erotuksille D i kuten edellä. Olkoon Me D erotusten D i = X i Y i, i = 1, 2,, n mediaani. Tällöin nollahypoteesin H 0 : Me D = 0 testaamiseen voidaan soveltaa merkkitestiä. TKK (c) Ilkka Mellin (2007) 15

16 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti >> Wilcoxonin rankitesti Mannin ja Whitneyn testi Wilcoxonin rankisummatesti TKK (c) Ilkka Mellin (2007) 16

17 Wilcoxonin rankitesti Testausasetelma Olkoon X1, X2,, X n yksinkertainen satunnaisotos perusjoukosta S, jonka jakauma on symmetrinen. Asetetaan jakauman mediaanille Me nollahypoteesi H 0 :Me= Me0 Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Erään ratkaisun tarjoaa Wilcoxonin rankitesti, joka on yhden otoksen t-testin ei-parametrinen vastine. TKK (c) Ilkka Mellin (2007) 17

18 Wilcoxonin rankitesti Testisuure 1/2 Olkoon D i = X i Me 0, i = 1, 2,, n ja olkoon n n niiden erotusten D i lukumäärä, jotka ovat 0. Olkoot Z1, Z2,, Zn itseisarvot D i järjestettyinä suuruusjärjestykseen pienimmästä suurimpaan ja olkoon R(Z i ) = itseisarvon Z i järjestysnumero eli ranki, i = 1, 2,, n TKK (c) Ilkka Mellin (2007) 18

19 Wilcoxonin rankitesti Testisuure 2/2 Määritellään testisuure W W = R( Zi ) D < 0 on niiden rankien summa, joita vastaavat erotukset D i = X i Me 0 < 0 Määritellään testisuure W + i D > 0 i on niiden rankien summa, joita vastaavat erotukset W + = R( Zi ) D i = X i Me 0 > 0 TKK (c) Ilkka Mellin (2007) 19

20 Wilcoxonin rankitesti Testisuureiden W ja W + ominaisuudet (i) (ii) (iii) + 1 W + W = 2 n( n+ 1) Jos nollahypoteesi H 0 pätee, + E( W ) = E( W ) = n( n+ 1) Jos nollahypoteesi H 0 pätee, 1 4 D( W ) = D( W ) = n( n+ 1)(2n+ 1) TKK (c) Ilkka Mellin (2007) 20

21 Wilcoxonin rankitesti Eksakti testi Testisuureiden W ja W + jakaumat on taulukoitu ja monet tietokoneohjelmat laskevat testin p-arvoja. Wilcoxonin rankitestin p-arvot määrätään seuraavilla kaavoilla, joissa w ja w + ovat testisuureiden W ja W + havaitut arvot: (i) Vaihtoehtoinen hypoteesi H 1 : Me > Me 0 Testin p-arvo: p = Pr(W + > w + ) (ii) Vaihtoehtoinen hypoteesi H 1 : Me < Me 0 Testin p-arvo: p = Pr(W < w ) (iii) Vaihtoehtoinen hypoteesi H 1 : Me Me 0 Testin p-arvo: p = 2 min{pr(w + > w + ), Pr(W < w )} TKK (c) Ilkka Mellin (2007) 21

22 Wilcoxonin rankitesti Standardoitu W-testisuure ja sen jakauma 1/2 Jos nollahypoteesi H 0 pätee, + 1 E( W ) = E( W ) = n( n+ 1) D( W ) = D( W ) = 24 n( n+ 1)(2n+ 1) Määritellään testisuure W z = E( W ) * * * D( W ) jossa W * = W tai W +. 4 TKK (c) Ilkka Mellin (2007) 22

23 Wilcoxonin rankitesti Standardoitu W-testisuure ja sen jakauma 2/2 Jos nollahypoteesi H 0 pätee, niin testisuure * * W E( W ) z = * D( W ) noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa N(0,1): z ~ a N(0,1) Approksimaatio on tavallisesti riittävän hyvä, jos n > 20. Pienissä otoksissa nojataan testisuureen W * tarkkaan jakaumaan. TKK (c) Ilkka Mellin (2007) 23

24 Wilcoxonin rankitesti Asymptoottinen testi Testisuureen * * W E( W ) z = * D( W ) normaaliarvo = 0, koska nollahypoteesin H 0 pätiessä E(z) = 0 Siten itseisarvoltaan suuret testisuureen z arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. Hylkäysalueen valinta ja p-arvon määrääminen: ks. lukua Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 24

25 Wilcoxonin rankitesti Kommentteja Wilcoxonin rankitesti voidaan tulkita yhden otoksen t- testin ei-parametriseksi vastineeksi. Wilcoxonin rankitestissä ei tehdä toisin kuin yhden otoksen t-testissä mitään oletuksia perusjoukon jakauman tyypistä. Wilcoxonin rankitestin testisuureen arvo ei riipu havaintoarvoista, vaan ainoastaan niiden keskinäisestä järjestyksestä. Wilcoxonin rankitesti käyttää merkkitestiä enemmän informaatiota havaintojen järjestyksestä. Wilcoxonin rankitesti on voimakkaampi kuin merkkitesti. TKK (c) Ilkka Mellin (2007) 25

26 Wilcoxonin rankitesti Wilcoxonin rankitestin soveltaminen parivertailuasetelmiin 1/2 Wilcoxonin rankitestiä voidaan soveltaa parivertailuasetelmiin, joissa havainnot muodostuvat toisistaan riippumattomista mittauspareista (X i, Y i ), i = 1, 2,, n Oletetaan, että X-ja Y-mittausten jakaumat ovat muuten samat, mutta niiden mediaaneilla (sijaintiparametreilla) saattaa olla eri arvot. Määritellään havaintojen X i ja Y i erotukset D i = X i Y i, i = 1, 2,, n ja olkoon n niiden erotusten D i lukumäärä, jotka ovat 0. TKK (c) Ilkka Mellin (2007) 26

27 Wilcoxonin rankitesti Wilcoxonin rankitestin soveltaminen parivertailuasetelmiin 2/2 Oletetaan, että erotusten D i = X i Y i, i = 1, 2,, n jakauma on symmetrinen. Määritellään testisuureet W ja W + erotuksille D i kuten edellä. Olkoon Me D erotusten D i = X i Y i, i = 1, 2,, n mediaani. Tällöin nollahypoteesin H 0 : Me D = 0 testaamiseen voidaan soveltaa Wilcoxonin rankitestiä. TKK (c) Ilkka Mellin (2007) 27

28 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin rankitesti >> Mannin ja Whitneyn testi Wilcoxonin rankisummatesti TKK (c) Ilkka Mellin (2007) 28

29 Mannin ja Whitneyn testi Testausasetelma 1/2 Oletetaan, että X1, X2,, Xn ovat riippumattomia havaintoja satunnaismuuttujan X jakaumasta perusjoukossa S 1 (otos 1). Oletetaan, että Y1, Y2,, Ym ovat riippumattomia havaintoja satunnaismuuttujan Y jakaumasta perusjoukossa S 2 (otos 2). Olkoot otokset lisäksi toisistaan riippumattomia. TKK (c) Ilkka Mellin (2007) 29

30 Mannin ja Whitneyn testi Testausasetelma 2/2 Oletetaan, että satunnaismuuttujat X ja Y noudattavat muuten samaa jakaumaa, mutta niiden mediaanit (sijaintiparametrit) saattavat erota toisistaan. Asetetaan nollahypoteesi, että satunnaismuuttujilla X ja Y on sama mediaani (sijaintiparametri). Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Erään ratkaisun tarjoaa Mannin ja Whitneyn testi, joka on kahden riippumattoman otoksen t-testin eiparametrinen vastine. TKK (c) Ilkka Mellin (2007) 30

31 Mannin ja Whitneyn testi Yleinen hypoteesi Yleinen hypoteesi H : (1) Havainnot Xi FX, i= 1,2,, n (2) Havainnot Yj FY, j = 1,2,, m (3) Kertymäfunktiot F X ja F X ovat muuten samat, mutta niiden mediaanit (sijaintiparametrit) saattavat erota toisistaan. (4) Havainnot X i ja Y j ovat riippumattomia kaikille i ja j Huomautus: Oletus (3) sisältää kolme riippumattomuusoletusta: Havainnot ovat riippumattomia otoksien 1 ja 2 sisällä. Havainnot ovat riippumattomia otoksien 1 ja 2 välillä. TKK (c) Ilkka Mellin (2007) 31

32 Mannin ja Whitneyn testi Nollahypoteesi ja vaihtoehtoinen hypoteesi Nollahypoteesi H 0 : H 0 : F X = F Y Vaihtoehtoinen hypoteesi H 1 : H 1 : F X F Y TKK (c) Ilkka Mellin (2007) 32

33 Mannin ja Whitneyn testi Testin idea Yhdistetään X-ja Y-havainnot yhdeksi otokseksi ja järjestetään yhdistetyn otoksen havainnot suuruusjärjestykseen pienimmästä suurimpaan. Tarkastellaan sitä, miten X-ja Y-havainnot seuraavat yhdistetyssä otoksessa toisiaan. Jos kaikki X-havainnot (Y-havainnot) edeltävät kaikkia Y-havaintoja (X-havaintoja), ei ole uskottavaa, että nollahypoteesi H 0 pätee. Jos satunnaismuuttujat X ja Y noudattavat samaa jakaumaa, on ilmeistä, että X-ja Y-havaintojen on sekoituttava sopivasti toisiinsa. Mannin ja Whitneyn testisuure mittaa tätä sekoittumista. TKK (c) Ilkka Mellin (2007) 33

34 Mannin ja Whitneyn testi Testisuure U 1 muoto 1 Määritellään satunnaismuuttujat (1) 1, jos Xi < Yj Dij = 0, jos Xi > Yj i = 1, 2,, n, j = 1, 2,, m ja testisuure U 1 n m = i= 1 j= 1 D (1) ij TKK (c) Ilkka Mellin (2007) 34

35 Mannin ja Whitneyn testi Testisuure U 1 muoto 2 Määritellään satunnaismuuttujat R(X i ) = havainnon X i järjestysnumero eli ranki yhdistetyssä otoksessa i = 1, 2,, n ja testisuure n 1 U1 = nm+ 2 n( n+ 1) R( Xi ) Testisuureen U 1 muodot 1 ja 2 ovat ekvivalentteja. i= 1 TKK (c) Ilkka Mellin (2007) 35

36 Mannin ja Whitneyn testi Testisuureen U 1 ominaisuudet Testisuureen U 1 arvo ei riipu X-ja Y-havaintoarvojen suuruudesta, vaan ainoastaan niiden keskinäisestä järjestyksestä. Aina pätee 0 U 1 nm ja erityisesti U 1 = 0, jos X i > Y j kaikille i ja j U 1 = nm, jos X i < Y j kaikille i ja j TKK (c) Ilkka Mellin (2007) 36

37 Mannin ja Whitneyn testi Testisuure U 2 muoto 1 Määritellään satunnaismuuttujat (2) 1, jos Yj < Xi D ji = 0, jos Yj > Xi j = 1, 2,, m, i = 1, 2,, n ja testisuure U 2 m n = j= 1 i= 1 D (2) ji TKK (c) Ilkka Mellin (2007) 37

38 Mannin ja Whitneyn testi Testisuure U 2 muoto 2 Määritellään satunnaismuuttujat R(Y j ) = havainnon Y j järjestysnumero eli ranki yhdistetyssä otoksessa j = 1, 2,, m ja testisuure m 1 U2 = nm+ 2 m( m+ 1) R( Yj ) Testisuureen U 2 muodot 1 ja 2 ovat ekvivalentteja. j= 1 TKK (c) Ilkka Mellin (2007) 38

39 Mannin ja Whitneyn testi Testisuureen U 2 ominaisuudet Testisuureen U 2 arvo ei riipu X-ja Y-havaintoarvojen suuruudesta, vaan ainoastaan niiden keskinäisestä järjestyksestä. Aina pätee 0 U 2 nm ja erityisesti U 2 = 0, jos Y j > X i kaikille i ja j U 2 = nm, jos Y j < X i kaikille i ja j TKK (c) Ilkka Mellin (2007) 39

40 Mannin ja Whitneyn testi Testisuureiden U 1 ja U 2 ominaisuudet (i) (ii) (iii) U 1 + U 2 = nm Jos nollahypoteesi H 0 pätee, E( U ) = E( U ) = nm Jos nollahypoteesi H 0 pätee, D( U ) = D( U ) = nm( n+ m+ 1) TKK (c) Ilkka Mellin (2007) 40

41 Mannin ja Whitneyn testi Standardoitu U 1 -testisuure ja sen jakauma Jos nollahypoteesi H 0 pätee, niin standardoitu satunnaismuuttuja U1 E( U1) z1 = D( U ) 1 noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa: z 1 ~ a N(0,1) Approksimaatio on tavallisesti riittävän hyvä, jos n > 10 ja m > 10. Pienissä otoksissa nojataan testisuureen U 1 tarkkaan jakaumaan. TKK (c) Ilkka Mellin (2007) 41

42 Mannin ja Whitneyn testi Asymptoottinen testi muoto 1 Testisuureen U1 E( U1) z1 = D( U1) normaaliarvo = 0, koska nollahypoteesin H 0 pätiessä E(z 1 ) = 0 Siten itseisarvoltaan suuret testisuureen z 1 arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. Hylkäysalueen valinta ja p-arvon määrääminen: ks. lukua Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 42

43 Mannin ja Whitneyn testi Standardoitu U 2 -testisuure ja sen jakauma Jos nollahypoteesi H 0 pätee, niin standardoitu satunnaismuuttuja U2 E( U2) z2 = D( U ) 2 noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa: z 2 ~ a N(0,1) Approksimaatio on tavallisesti riittävän hyvä, jos n > 10 ja m > 10. Pienissä otoksissa nojataan testisuureen U 2 tarkkaan jakaumaan. TKK (c) Ilkka Mellin (2007) 43

44 Mannin ja Whitneyn testi Asymptoottinen testi muoto 2 Testisuureen U2 E( U2) z2 = D( U 2) normaaliarvo = 0, koska nollahypoteesin H 0 pätiessä E(z 2 ) = 0 Siten itseisarvoltaan suuret testisuureen z 2 arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. Hylkäysalueen valinta ja p-arvon määrääminen: ks. lukua Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 44

45 Mannin ja Whitneyn testi Kommentteja 1/2 Mannin ja Whitneyn testi voidaan tulkita kahden riippumattoman otoksen t-testin ei-parametriseksi vastineeksi. Mannin ja Whitneyn testissä ei tehdä toisin kuin kahden riippumattoman otoksen t-testissä mitään oletuksia perusjoukkojen jakaumasta. Mannin ja Whitneyn testisuureiden arvo ei riipu muuttujien X ja Y arvoista, vaan ainoastaan niiden keskinäisestä järjestyksestä. TKK (c) Ilkka Mellin (2007) 45

46 Mannin ja Whitneyn testi Kommentteja 2/2 Jos havainnot ovat normaalijakautuneita, Mannin ja Whitneyn testi ei ole yhtä voimakas kuin kahden riippumattoman otoksen t-testi. Jos havainnot eivät ole normaalijakautuneita, Mannin ja Whitneyn testi saattaa olla paljon voimakkaampi kuin kahden riippumattoman otoksen t-testi. Mannin ja Whitneyn testi on varteenotettava vaihtoehto kahden riippumattoman otoksen t-testille, jos otoskoot eivät ole kovin isoja ja perusjoukot eivät ole normaalijakautuneita. TKK (c) Ilkka Mellin (2007) 46

47 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin rankitesti Mannin ja Whitneyn testi >> Wilcoxonin rankisummatesti TKK (c) Ilkka Mellin (2007) 47

48 Wilcoxonin rankisummatesti Wilcoxonin rankisummatesti ja Mannin ja Whitneyn testi Wilcoxonin rankisummatesti perustuu Mannin ja Whitneyn testisuureiden muodoissa 2 esiintyviin havaintojen rankisummiin eli järjestyslukujen summiin. Wilcoxonin rankisummatesti on ekvivalentti Mannin ja Whitneyn testin kanssa. TKK (c) Ilkka Mellin (2007) 48

49 Wilcoxonin rankisummatesti Testisuure T 1 Määritellään satunnaismuuttujat R(X i ) = havainnon X i järjestysnumero eli ranki yhdistetyssä otoksessa i = 1, 2,, n ja testisuure T 1 n = R( Xi ) i= 1 TKK (c) Ilkka Mellin (2007) 49

50 Wilcoxonin rankisummatesti Testisuure T 2 Määritellään satunnaismuuttujat R(Y j ) = havainnon Y j järjestysnumero eli ranki yhdistetyssä otoksessa j = 1, 2,, m ja testisuure T 2 m = R( Yj ) j= 1 TKK (c) Ilkka Mellin (2007) 50

51 Wilcoxonin rankisummatesti Testisuureiden T 1 ja T 2 ominaisuudet (i) (ii) (iii) T + T = ( n+ m )( n+ m+ 1) Jos nollahypoteesi H 0 pätee, 1 E( T) = n( n+ m+ 1) E( T2 ) = 2 m( n+ m+ 1) Jos nollahypoteesi H 0 pätee, D( T) = D( T ) = nm( n+ m+ 1) TKK (c) Ilkka Mellin (2007) 51

52 Wilcoxonin rankisummatesti Standardoitu T 1 -testisuure ja sen jakauma Jos nollahypoteesi H 0 pätee, niin standardoitu satunnaismuuttuja T1 E( T1) z1 = D( T ) 1 noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa: z 1 ~ a N(0,1) Approksimaatio on tavallisesti riittävän hyvä, jos n > 10 ja m > 10. Pienissä otoksissa nojataan testisuureen T 1 tarkkaan jakaumaan. TKK (c) Ilkka Mellin (2007) 52

53 Wilcoxonin rankisummatesti Asymptoottinen testi muoto 1 Testisuureen T1 E( T1) z1 = D( T1 ) normaaliarvo = 0, koska nollahypoteesin H 0 pätiessä E(z 1 ) = 0 Siten itseisarvoltaan suuret testisuureen z 1 arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. Hylkäysalueen valinta ja p-arvon määrääminen: ks. lukua Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 53

54 Wilcoxonin rankisummatesti Standardoitu T 2 -testisuure ja sen jakauma Jos nollahypoteesi H 0 pätee, niin standardoitu satunnaismuuttuja T2 E( T2) z2 = D( T ) 2 noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa: z 2 ~ a N(0,1) Approksimaatio on tavallisesti riittävän hyvä, jos n > 10 ja m > 10. Pienissä otoksissa nojataan testisuureen T 2 tarkkaan jakaumaan. TKK (c) Ilkka Mellin (2007) 54

55 Wilcoxonin rankisummatesti Asymptoottinen testi muoto 2 Testisuureen T2 E( T2) z2 = D( T2 ) normaaliarvo = 0, koska nollahypoteesin H 0 pätiessä E(z 2 ) = 0 Siten itseisarvoltaan suuret testisuureen z 2 arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. Hylkäysalueen valinta ja p-arvon määrääminen: ks. lukua Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 55