11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS



Samankaltaiset tiedostot
10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

Riemannin integraalista

Matematiikan tukikurssi

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

6 Integraalilaskentaa

2.4 Pienimmän neliösumman menetelmä

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina ylimääräisessä tapaamisessa.

Ristitulo ja skalaarikolmitulo

Preliminäärikoe Pitkä Matematiikka

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

Paraabelikin on sellainen pistejoukko, joka määritellään urakäsitteen avulla. Paraabelin jokainen piste toteuttaa erään etäisyysehdon.

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

4 Pinta-alasovelluksia

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Matematiikan tukikurssi

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

VEKTOREILLA LASKEMINEN

Riemannin integraali

Integraalilaskenta. Määrätty integraali

5 Epäoleellinen integraali

4 Taso- ja avaruuskäyrät

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu

R4 Harjoitustehtävien ratkaisut

Sähkömagneettinen induktio

Viikon aiheet. Pinta-ala

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta

Matematiikan tukikurssi. Hannu Kivimäki

MITEN MÄÄRITÄN ASYMPTOOTIT?

2 Epäoleellinen integraali

VEKTOREILLA LASKEMINEN

Monikulmio on suljettu, yhtenäinen tasokuvio, jonka muodostavat pisteet ja näitä yhdistävät janat

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

Jouni Sampo. 28. marraskuuta 2012

SUORAKULMAINEN KOLMIO

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

Pinta-alan laskeminen

2.1 Vaillinaiset yhtälöt

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten

Integrointi ja sovellukset

Lisää määrätystä integraalista Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Preliminäärikoe Pitkä Matematiikka

3 Integraali ja derivaatta

Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13

Analyysin perusteet kauppatieteilijöille P

Matematiikan tukikurssi

5.4 Ellipsi ja hyperbeli (ei kuulu kurssivaatimuksiin, lisätietoa)

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

5 Jatkuvan funktion integraali

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2, ,95

Sinilause ja kosinilause

Numeerinen integrointi

MS-A0102 Differentiaali- ja integraalilaskenta 1

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

Kertausta ja täydennystä

Muita määrätyn integraalin sovelluksia

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Polynomien laskutoimitukset

Riemannin integraalista

3.5 Kosinilause. h a c. D m C b A

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

Johdatus reaalifunktioihin P, 5op

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

Kuvausta f sanotaan tällöin isomorfismiksi.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

Yläkoulun geometriaa. Yläkoulun geometriaa

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

Transkriptio:

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn. Mtemtiikss käsitteellä trkoitetn tvllisesti jonkin suljetun pinnn sisään jäävää vruuden os. Suljettu pintn on sellinen, että ken sellisen sisään joutuu, poispääsyn mdollisuutt ei ole. Lukion integrlilskennn kurssiss rjoitutn enimmäkseen tpuksiin, joiss vruuden os rjoittv pint syntyy jonkun funktion kuvjn pyörätäessä jonkun suorn (tvllisesti x-kselin) ympäri. Melko usein näin syntyvää vruuden os leiktn kdell ydensuuntisell tsoll, jotk ovt kotisuorss pyörädyskseli vstn. Joskus nämä tsot ovt surkstuneet pisteiksi, kuten esimerkiksi pllon tpuksess on lit. Ajttelun ljentminen pint-lojen määrityksestä tilvuuden määrityksiin sujuu pitämällä mielessä in se, että määrätty integrli on erään summn rjrvo, joss summss on äärettömän mont äärettömän pientä yteenlskettv. Pint-loj määritettäessä tämän summn termit olivt yvin kpeiden suorkulmioiden loj. Äärellisulotteisen kppleen voidn ts ktso muodostuvn päällekkäin pinotuist lieriöistä, joiden korkeus (dx) on erinomisen pieni, mutt niistä jokisen pojpint-l täytyy tunte, kuten pint-lojen määrityksen yteydessä tunnettiin sinomisen suorkulmion toisen sivun pituus muuttujn x funktion. Sopinee opintojen tässä vieess usko, että suorn lieriön tilvuus on pojn ln j korkeuden tulo, V = A. Kun tilvuutt määritetään integrlin vull, niin nyt täytyy olett, että siinä vruuden osss, missä tilvuuden määrityksen koteen olev kpple sijitsee, tämä pojpint-l tunnetn integroimis-muuttujn (jtkuvn) funktion. Kppleen sijinnin täytyy, ettei mentäisi kovin suurelle vikeustsolle, settu yleensä niin, että sen jkminen erinomisen ouisiin suoriin lieriöiin tptuu tsoleikkuksin, jotk ovt kotisuorss x-kseli vstn, j kunkin poikkileikkuskuvion l tunnetn x:n jtkuvn funktion. 1(7)

x x b Kuvn on yritetty motell epämääräisen muotoinen putki, jot on leikttu x-kseli vstn kotisuorill tsoill pikoiss, x j b. Kun tällisi ydensuuntisi tsoj setetn yvin läelle (etäisyys tsost seurvn on in dx) toisin, niin voidn ekä ymmärtää kolmiulotteisen kppleen syntyminen päällekkäin pinotuist lieriöistä, joiden yteenlskettu tilvuus on kyseisen pinnn rjoittmn vruuden osn (kppleen) tilvuus. Tämä tilvuus voidn sitten määrittää rj-rvon, missä tsojen välinen etäisyys dx läenee rjttomsti noll j siten b V = A(x)dx Oleellisint tässä tilvuuden määrityksessä on se, että tulee tietää jokisell x:n rvoll välillä [, b] sen pinnn l, jok syntyy leiktess kpplett x-kseli vstn kotisuorll tsoll. Helpoin näistä tpuksist lienee se, missä x- kselin, suorien x = j x = b sekä funktion y = f(x) kuvj pyörätää x-kselin ympäri. Tällöin millä tns x:n rvoll poikkileikkuskuvio on y-säteinen ympyrä, jonk l A(x) = π y = π[ f (x ) ] Esim.. Määritä R-säteisen pllon tilvuus., j ns. pyörädyskppleen tilvuus b V = π [f (x)] dx. Pllopint on vruuden niiden pisteiden ur, jotk kikki ovt säteen R etäisyydellä kiinteästä pisteestä. Helpoint on lske origokeskeisen pllon tilvuus. Tällisen pllon voidn jtell syntyvän origokeskeisen ympyrän x + y = R pyörätäessä x- kselin ympäri (tässä riittää pyörätää vin puoli kierrost). (7)

y x Pllo lk sieltä, missä ympyrä kot negtiivisen x-kselin j päättyy sinne, missä se kot positiivisen x-kselin. Integroimisväli on täten [-R,R] R R R x V = π y dx =π (R x )dx = π / (xr ) = R R R R = π R ( R) R R = π R R + R = R 4πR = π R = Merkillistä ti ei, pllon tilvuuden määritys integroimll on pljon elpompi kuin ympyrän pint-l määrätyn integrlin vull!! Esim.. Osoit, että krtion tilvuus on pojn ln j korkeuden kolmnnes. Krtiopinnn voidn jtell syntyvän siten, että ydestä pisteestä pikoilln pysyvän suorn jokin toinen piste kiertää jonkin suljetun (tso)käyrän ympäri. Prst olisi, jos kiinteä piste ei kuuluisi tämän käyrän määräämään tsoon. Itse krtio syntyy sitten leikttess krtiopint tsoll. Kiinteästä pisteestä tsolle piirretty normli määrää krtion korkeuden. Erikoisesti puutn suorst ympyräkrtiost silloin, kun korkeusjn kulkee pojympyrän keskipisteen kutt, mutt täytyy uomt, että krtion pojn ei suinkn trvitse oll ympyrä. Se voi oll ytä yvin kolmio, kuusikulmio, ellipsi ti vikk puoliympyrä. A(x) A (7)

Krtion tilvuuden määrityksessä trvitn kuitenkin sitä geometrist tosisi, että ydenmuotoisten pintojen lojen sude on mittkvn neliö. Olkoon krtion uippu origoss, jolloin sen pojn jokisen pisteen x-koordintti = = krtion korkeus. Olkoon krtion pojn l A. Kuvn on moteltu eräs poikkileikkus kotn x j olkoon sen l A(x). Tuost minitust geometrisest tosisist j siitä että A(x) on ydenmuotoinen A:n knss mittkvss x : seur verrnto A(x) A x Ax = A(x) =, j Ax A x A A V = A(x)dx = = = = /. Tulos on yleinen j koskee siis minkälist krtiot tns. Muun muss pyrmidit ovt krtioit. Esim. 4. Prbelin y = x 1 j x-kselin rjoittm pint pyörätää x- kselin ympäri. Kuink suuri on syntyvän kppleen tilvuus. Jokisell x:n rvoll snotun pyörädyskppleen j x-kseli vstn kotisuorn tson leikkus on y säteinen ympyrä, jonk l on π y. Pyörädyskpple lk pikst x = 1 j päättyy, kun x = 1. Siten kysytty tilvuus 4(7)

1 1 1 1 [ ] 4 V = π f (x) dx = π y dx = π (x 1) dx =π (x x + 1)dx = 1 1 1 1 1 5 5 5 x x 1 1 ( 1) ( 1) = π/ ( + 1) = π 1 ( ( 1) 1 5 + + 5 5 = 1 1 16π = π + 1+ + 1 = 5 5 15 Pyörädyskppleen tilvuus on 16 15π tilvuuden yksikköä. Esim. 5. Prbeli y = x 1 pyörätää y-kselin ympäri. Kun näin syntyvää kpplett, pyörädysprboloidi leiktn tsoll, jok on y- kselin normlitso, niin mikä on tämän tson ytälö, jott syntyvän pikrinmuotoisen stin tilvuus olisi kuutiosenttimetriä? Olkoon koordintistoss yksikköjnn pituus senttimetrin. Kun käyrä pyörätää y-kselin ympäri, niin snotun pyörädyskppleen j y-kseli vstn kotisuorn tson leikkus on x säteinen ympyrä, jonk l on π x. Tässä probleemss tilvuus tiedetään, mutt integrlin ylärj on tuntemton. Kpplen lk pikst y = 1. y y y y y ( 1) V = = π x dy = π (y + 1)dy = π /( + y) = π + y 1 = 1 1 1 y 1 4 4 = π + y + = y + y + 1 y + y + 1 = π π 4 y = 1± 1 1+ y = 1± π π Juurist toinen tit oll negtiivinen, vieläpä pienempi kuin y = 1 kuuluen lueeseen, joss pikri ei edes ole. Siten vin positiivinen juuri kelp j sen likirvo on 8 S siten juod ienoj ineit pikrist, jonk sisäkorkeus on noin 11, cm. Pikriss on tietysti myös jlk, kosk ei pyörädysprboloidi st pysyä inkn itsekseen pystyssä. 5(7)

Lienet pnnut merkille, että määrätyn integrlin lskeminen on joskus vään työlästä puu. On kuitenkin olemss eräs elpotus, jok koskee integrli yli sellisen välin, jonk keskipisteenä on origo, siis esimerkiksi integrli f (x)dx. Puutn origon suteen symmetrisestä välistä. Miten tätä sitten sovelletn, riippuu integroitvst funktiost. Menetelmä ei suinkn sovi kikenlisille funktioille, vn soveltminen käy inostn j vin, jos funktio on joko prillinen ti priton. Funktio on prillinen, jos vstluvut ntvt sille smn rvon: f(x) = f( x). Prillisen funktion kuvj on symmetrinen y-kselin suteen. Funktio on priton, jos vstluvut ntvt sille vstlukurvot; f( x) = f(x). Prittomn funktion kuvj on symmetrinen origon suteen. Origo on toisin snoen pisteitä ( x, f( x)) j (x, f(x)) ydistävän jnn keskipiste. Kun muistetn, että määrätty integrli on erään summn rj-rvo, niin origon suteen symmetrisen välin [, ] kyseessä ollen tässä summss on termejä, joiden käsittely elpottuu funktion symmetriominisuuksien nojll, j elpottuu erikoisesti prittomn funktion tpuksess melkoisen pljon. -x x - x x Vsemmnpuoleisess kuvss (prillinen funktio) on kksi määrättyä integrli kuvvn summn kuuluv termiä geometrisesti motettu. Näissä kummsskin pint-ltulkinnn mukn ovt funktion rvo kerrottun osvälin pituudell keskenään ytä suuret, j oikenpuoleisess kuvss ts (priton funktio) ovt vstvt tulot toistens vstlukuj, kosk funktion rvot ovt vstlukuj keskenään. Välin [, ] joss tsväliseen jkoon kuuluvss summss on termejä origon molemmin puolin ytä mont edellyttäen, että 6(7)

origo on yksi jkopiste. Prittomn funktion tpuksess kikki termit yteenlskuss preittin kumovt toisens j prillisen funktion tpuksess riittää integroid pelkästään yli välin [,] j kerto tulos kkkosell. **************************************************************** Luse. Olkoon positiivinen luku. Jos funktio f on prillinen, toisin snoen jos f(x) = f( x), niin f (x)dx = f (x)dx Jos funktio f on priton, toisin snoen jos f(x) = f( x), niin f (x)dx =. **************************************************************** Tulee uomt, ensiksikin se, että ellei integrointiväli on symmetrinen origon suteen, esitettyä lusett ei juuri knnt trjoill. Toisekseen tulee uomt, että läeskään kikki funktiot eivät kuulu prittomiin ti prillisiin. Määrätyn integrlin dditiivisuuden vuoksi (seän on erään summn rj-rvo) on ekä mdollist jk integroitv funktio osiin j integroid niitä kutkin os erikseen. 4x Esim. 6. ( e + x + x + sin x + cosx ) 44 dx Integroitvss funktioss + cosx 44 on prillinen os, x 4x + sin x on priton os, mutt e ei ole kumpkn. Helpotust sdn näin: = = 4x e 4x e x 4x ( e + x + x + sin x + cosx ) dx + (x dx + + + sin x)dx + (x (x 44 dx = + cosx 44)dx. + cosx 44)dx = Esimerkki oli sngen teoreettinen, mutt stt tull käytäntöä vstsi pintl- j tilvuussovellutuksisskin j miksei ivn yvin myös roiss määrätyn integrlin lskuiss. 7(7)