Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Koko: px
Aloita esitys sivulta:

Download "Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause"

Transkriptio

1 Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin (n. 300 ekr.) kirjoittm Pythgorn elämä. Suori sikirjoj ei ole säilynyt vikk ntiikiss kirjoitettiin useit Pythgorn elämäkertoj. Seurv kuvus on peräisin E. S. Loomisilt, jok vuonn 1940 kokosi yhteen 370 todistust Pythgorn luseest. Pythgors syntyi Tyroksess 569 ekr., mutt ksvoi Smoksell. Vuonn 549 hän mtkusti Miletokseen, joss hn tpsi Thleen j nksimndroksen, joist ensimmäinen oli tuolloin 75-vuotis. Miletoksess Pythgors opiskeli kosmogrfi, jok trkoitti fysiikk j mtemtiikk. Pri vuott myöhemmin hän mtkusti Egyptiin, joss hänest tuli Then uskonnollisen seurn jäsen. Kun persiliset vuonn 56 vlloittivt Egyptin, Pythgors mtkusti edelleen ylonin, joss hän tpsi intilisi, kiinlisi j juutlisi. Kymmenisen vuott myöhemmin hän plsi Smokselle. Kun Pythgors vuonn 510 joutui tyrnni Polykrteen epäsuosioon Smoksell, hän lähti Krotoniin Mgn Greiss. Siellä hän piti puheit nuorille j perusti koulun. Hän sikin melko pin suuren joukon oppilit, joiden knss hän keskusteli etiikst, sielun kuolemttomuudest j trnsmigrtiost eli sielunvelluksest. Vuonn 490 Pythgors jätti Krotonin j muutti Trsiin. Hän kuoli 99-vuotin vuonn 469 ekr. Metpontioniss. Prokloksen mukn Pythgors j Thles toivt mtemtiikn idäst Kreikkn. [TM93, s. 31] Pythgorn luse Tämä mtemtiikn kuuluisin j tunnetuin luse snoo: Suorkulmisen kolmion hypotenuusn neliö on kteettien neliöiden summ, eli kuvn 1 merkinnöin = +.

2 Solmu Solmu Kuv 1. Pythgorn lusett hvinnollistvi plpelejä j niihin liittyviä todistuksi Plpeli 1 [Väi64, s. 48] Kuvss neliön sivun pituus on + kuten myös kuvss 3, joten molemmt neliöt ovt smnkokoisi. Molempiin neliöhin on sijoitettu neljä suorkulmist kolmiot, joiden kteetit ovt j, hypotenuus j terävät kulmt α j β. Kolmioiden ulkopuoliset lueet ovt siis yhtäsuuret. Kuvn nelikulmion sivut ovt kikki yhtä pitkiä. Jokinen kulm on 180 (α + β) = = 90. Nelikulmio on siis neliö j sen l on. Kuvss 3 yhteneviä kolmioit on siirrelty siten, että muotostuu kksi neliötä, joiden pint-lt ovt j. Siispä = +. Kuv.

3 Kuv 3. hskrn todistus Intilinen mtemtikko hskr, jok eli 1150-luvull, todisti Pythgorn luseen näin: x Kuv 4. Neliön l kuvss 4 on kolmion hypotenuusn neliö. Se on jettu neljäksi suorkulmiseksi kolmioksi, joist jokinen on identtinen nnetun knss, sekä pienemmäksi neliöksi [TM93, s. 30]. Pienen neliön sivun pituus x on kteettien erotus. x Kuv 5. Kuvss 5 on plset siirretty seurvsti. Siinä on neljä yhtenevää kolmiot j pieni neliö. Kuten iemmin totesimme, on pienen neliön sivu sm kuin kteettien erotus.

4 Solmu Solmu Kuv 6. Kuvss 6 muodostuu kksi neliötä kteettien sivuist. Todistus perustuu nyt siihen, ett kteettien muodostmt neliöt peittävät smn pint-ln kuin kuvn 4 neliö, joten kteettien neliöiden summ on hypotenuusn neliö. Kiinlinen todistus Kiinlinen todistus, jok on peräisin teoksest ritmeettinen klssikko gnomoneist j tividen ympyrärdoist, on seurv. nnettu suorkulminen kolmio on kuvn 7 oikess yläkulmss. Kolmio on peilttu hypotenuusn suhteen, j näistä on otetut kolme kopiot on sijoitettu neliön muotoon. Keskelle jää pieni neliö, jonk sivun pituus on suorkulmisten kolmioiden kteettien erotus. Näin ollen = 4 ( ) + ( ) = + + = + [TM93,s.30]. (-) Kuv 7.

5 Plpeli [TM93, s. 319] Yksi kunis tp hhmotell todistus on kuvss 8: E F Kuv 8. Lyhyemmän kteetin neliö sekä neljä plpelin pl, joist pitemmän kteetin neliö muodostetn, voidn siirtää niin, että ne täyttävät hypotenuusn neliön. Jetn sivu vsten piirretyn neliön sivut osiin, joiden pituudet ovt ( + )/ j ( )/. Yhdistetään jkopisteet jnoill j. Nelikulmio EF on suunniks, kosk E F j E = + ( )/ = ( + )/ = F. Siis =. Neliön symmetrin vuoksi myös =. Erotetn hypotenuus vsten piirretystä neliöstä kteetille piirretyn neliön plojen knss yhtenevät plt. Voidn jtell, että plt siirretään kuvn osoittmll tvll. Keskelle muodostuu nelikulmio, jonk sivut ovt ( + )/ ( )/ = j jonk kikki kulmt ovt symmetrin perusteell suori; kyseessä on siis neliö. Lskemll plsten lt sdn = +. Muit Pythgorn luseen todistuksi Thit In Qurrn todistus Thit In Qurrn (n. 880) todistus on yksi kuneimmist [TM93, s ].

6 Solmu Solmu H F E G Kuv 9. Olkoon on nnettu suorkulminen kolmio. Piirretään kolmion knss yhtenevä kolmio E kuvn 9 osoittmll tvll. Piirretään neliöt EF G j HG, joiden sivuin ovt yhtäpitkät kteetit E j sekä j. Kulm E on suor. ' H F E G Kuv 10. Todistus perustuu nyt siihen, että kolmiot kierretään 90 vstpäivään pisteen ympäri j kolmiot E vstvsti 90 myötäpäivään pisteen E ympäri kuten kuvss 10. Kolmio s tällöin pikn H, kun ts kolmio E s pikn F E. Neliön E l on hypotenuusn = E neliö. Siirtojen jälkeen tämä neliö on summ khden kteetin neliöstä. Huom, että monikulmion EF H l on sm molemmiss kuviss.

7 Eukleideen todistus Eukleideen todistus (luse 47 Elementn kirjss 1.) perustuu kuvn 11 [I78, s. 113]: H G K F M L Kuv 11. N Neliön F G l on kksi kert kolmion F l (niillä on sm knt j korkeus). Suorkulmion ML l on kksi kert kolmion l (sm knt j korkeus). Osoitetn, että F = Kolmiot ovt siis yhtenevt (sks). F = = F = 90 + =. On osoitettu: neliön F G ln puoliks on yhtä suuri kuin suorkulmion LM ln puoliks. Neliön F G l on siis yhtä suuri kuin suorkulmion LM l. Vstvsti voidn osoitt, että neliön KH l on yhtä suuri kuin suorkulmion MNL l. Merkitään: neliön F G sivu on neliön KH sivu on neliön N sivu on On osoitettu, että + on suorkulmioiden ML j MLN lojen summ eli. Siis + =. Sm todistus on Väisälän kirjss Keskikoulun geometri [Väi64, s ].

8 Solmu Solmu Nimetön todistus Mielestäni hienoin todistus Pythgorn luseelle on seurv. Se perustuu khteen peritteseen: (1) Pint-lyksikkö on pituusyksikön neliö. () Jos voidn löytää kolme yhdenmuotoist kuviot, jotk voidn piirtää kolmion sivuille siten, että kteeteill j olevien kuvioiden lojen summ Γ + on yhtä kuin hypotenuusll olevn kuvion Σ l todistus on selvä. Oletetn nimittäin, että pätee Σ = Γ +. Tälloin seur (1):stä, että = +. Kuv 1. Mutt jo kuvss 1 olev yksinkertinen konstruktio nt yhden mhdollisuuden [TM93, s. 30]. Se sisältää vditut yhdenmuotoiset kolmiot, j. Kolmiot, j ovt yhdenmuotoisi: Jokisess on suorkulm Kulm = α on molemmiss kolmioiss j. Siis. Kulm = β on molemmiss kolmioiss j. Siis. Siis. on piirretty sivulle on piirretty sivulle on piirretty sivulle Olkoon 1 kolmion l, on kolmion l j 3 kolmion l. : 3 = 1 : 3 = ( ) = 3 ( ) + 1 = 3 3 = 1 + = 3 [ ( ) + ( 1 = + = +. ) ] : 3

9 Viitteet [I78] P. edron nd J. Itrd. Mthemtis nd mthemtiins. The Open University Press., Stony Strtford, nd edition, [TM93] Jn Thompson nd Thoms Mrtins. Mtemtiikn käsikirj, käännös Soft rtist Oy. WSOY, Juv, Tmpere, [Väi64] Väisälä. Keskikoulun geometri, kolms pinos. Werner Söderström OY, Porvoo Helsinki, 3. pinos, Jnis Künnp

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

SUORAKULMAINEN KOLMIO

SUORAKULMAINEN KOLMIO Clulus Lukion Täydentävä ineisto 45 0 45 60 ( - ) + SUORKULMINEN KOLMIO Pvo Jäppinen lpo Kupiinen Mtti Räsänen Suorkulminen kolmio Suorkulminen kolmio Käsillä olev Lukion Clulus -srjn täydennysmterili

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Yläkoulun geometriaa. Yläkoulun geometriaa

Yläkoulun geometriaa. Yläkoulun geometriaa Yläkoulun geometri Tämä tehtäväkokoelm nt yläkoulun oppillle mhdollisuuden syventää kouluss opittv geometrin oppimäärää. Se on erityisen hyödyllinen niille, jotk ikovt lukioss vlit pitkän mtemtiikn. Kokoelmn

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Monikulmio on suljettu, yhtenäinen tasokuvio, jonka muodostavat pisteet ja näitä yhdistävät janat

Monikulmio on suljettu, yhtenäinen tasokuvio, jonka muodostavat pisteet ja näitä yhdistävät janat MAB: Monikulmiot Aluksi Tässä luvuss käsitellään pljon monikulmioit sekä muutmi tärkeimpiä esimerkkejä monikulmioiin liittyvistä leist. Näistä leist edottomsti tärkein ti inkin kuskntoisin on Pytgorn luse.

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

7.lk matematiikka. Geometria 1

7.lk matematiikka. Geometria 1 7.lk mtemtiikk 1 Htnpään koulu 7B j 7C Kevät 2017 2 Sisällys 1. Koordintisto... 4 2. Kulmien nimeäminen j luokittelu... 8 3. Kulmien mittminen j piirtäminen... 10 4. Ristikulmt j vieruskulmt... 14 5. Suort,

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

http://www.math.helsinki.fi/solmu/

http://www.math.helsinki.fi/solmu/ 1/2000 2001 http://www.mth.helsinki.fi/solmu/ Solmu Solmu Solmu 1/2000 2001 Mtemtiikn litos PL 4 (Yliopistonktu 5) 00014 Helsingin yliopisto http://www.mth.helsinki.fi/solmu/ Päätoimittj Pekk Alestlo Toimitussihteerit

Lisätiedot

3.5 Kosinilause. h a c. D m C b A

3.5 Kosinilause. h a c. D m C b A 3.5 Kosiniluse Jos kolmiost tunnetn kksi sivu j näien välinen kulm, sinilusett on sngen vike sovelt kolmion rtkisemiseen. Luse on työklun vuton myös kolmion kulmien rtkisemiseen tpuksess, jolloin kolmion

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

MATEMATIIKAN HARJOITTELUMATERIAALI

MATEMATIIKAN HARJOITTELUMATERIAALI SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Ari Tuomenlehto - 0 - Lusekkeen käsittelyä Luseke j lusekkeen rvo Näkyviin merkittyä

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

Suorat, käyrät ja kaarevuus

Suorat, käyrät ja kaarevuus Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Kolmio 1/11 Sisältö ESITIEDOT: piste, suora, kulma

Kolmio 1/11 Sisältö ESITIEDOT: piste, suora, kulma Kolmio 1/11 Sisältö ESITIEDOT: piste, suor, kulm Hkemisto KATSO MYÖS: geometriset proleemt, Pythgorn luse, monikulmiot Kolmio: perusominisuudet Yksinkertisin monikulmio on kolmio, jok muodostuu kolmest

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

Sisällys. Alkusanat. Alkusanat. Tehtävien ratkaisuja

Sisällys. Alkusanat. Alkusanat. Tehtävien ratkaisuja Sisällys Alkusnt Tehtävien rtkisuj Vektorit (MAA) Vektoreill lskeminen Vektorit geometrin käytössä 9 Vektorit koordintistoss Lisätehtäviä Todennäköisyys j tilstot (MAA) Tilstot Todennäköisyys Todennäköisyysjkum

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on

Lisätiedot

MATEMATIIKAN HARJOITTELUMATERIAALI

MATEMATIIKAN HARJOITTELUMATERIAALI SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Hrjoitustehtävien rtkisut Ari Tuomenlehto - 0 - Hrjoitustehtävien rtkisut 1.

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Kirjallinen teoriakoe

Kirjallinen teoriakoe 11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

AUTOMAATTIEN SYNKRONISAATIOSTA

AUTOMAATTIEN SYNKRONISAATIOSTA AUTOMAATTIEN SYNKRONISAATIOSTA John Kopr Pro grdu -tutkielm Huhtikuu 015 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Mtemtiikn j tilstotieteen litos KOPRA, JOHAN: Automttien synkronistiost

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

205. a) 139 :n kulman vieruskulma on = Siis suorat s ja l eivät ole yhdensuuntaiset.

205. a) 139 :n kulman vieruskulma on = Siis suorat s ja l eivät ole yhdensuuntaiset. Lisätetäviä Peruskäsitteitä 0. ) Kulm on smnkotinen kulmn knss, joten kosk s j l ovt ydensuuntiset, on. b on :n ristikulm, joten myös b. b) b on smnkotinen kulmn 0 knss j kosk s j l ovt ydensuuntiset,

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Integraali ja yleistetty Pythagoraan lause

Integraali ja yleistetty Pythagoraan lause TAMPEREEN YLIOPISTO Pro grdu -tutkielm Ann-Riikk Pvol Integrli j yleistetty Pythgorn luse Mtemtiikn j tilstotieteen litos Mtemtiikk Mrrskuu 28 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos Pvol, Ann-Riikk:

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 }, T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT Lyhyt mtemtiikk YO-vlmennus 8. mliskuut 00 LYHYEN MATEMATIIKAN SIMULOITU YO-KOE RATKAISUT. Trkstelln yhtälöpri, polynomin sievennöstä j lusekkeeseen sijoittmist. ) Rtkistn jälkimmäisestä yhtälöstä x, jolle

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Harri Lehtinen. Kongruenssista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Harri Lehtinen. Kongruenssista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Hrri Lehtinen Kongruenssist Mtemtiikn, tilstotieteen j filosofin litos Mtemtiikk Helmikuu 006 Tmpereen yliopisto Mtemtiikn, tilstotieteen j filosofin litos LEHTINEN,

Lisätiedot

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset Yhdenmuotoisuus ja mittakaava Tasokuvioiden yhdenmuotoisuus tarkoittaa havainnollisesti sitä, että kuviot ovat samanmuotoiset mutta eivät välttämättä samankokoiset. Kahdella yhdenmuotoisella kuviolla täytyy

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

Suorakaidekanavat. lindab suorakaidekanavat

Suorakaidekanavat. lindab suorakaidekanavat Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist

Lisätiedot

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1 VEKTORILASKENTA Timo Mäkelä SISÄLTÖ: VEKTORIN KÄSITE VEKTOREIDEN ERUSLASKUTOIMITUKSET VEKTOREIDEN YHTEENLASKU VEKTOREIDEN VÄHENNYSLASKU 4 VEKTORIN KERTOMINEN LUVULLA6 4 VEKTORILAUSEKKEIDEN KÄSITTELY7 TASON

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Matematiikkaolympialaiset 2008 kuusi vaikeaa tehtävää

Matematiikkaolympialaiset 2008 kuusi vaikeaa tehtävää Solmu 3/2008 Mtemtiikkolympiliset 2008 kuusi vike tehtävää Mtti Lehtinen Mnpuolustuskorkekoulu 49. Knsinväliset mtemtiikkolympiliset pidettiin Mdridiss 4. 22. heinäkuut 2008. Kilpilijoit oli 535 j he edustivt

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

14 Monikulmiot 1. Nimeä monikulmio. a) b) c) Laske monikulmion piiri. a) 30,8 cm 18,2 cm. Laske sivun x pituus, kun monikulmion piiri on 25,0 cm.

14 Monikulmiot 1. Nimeä monikulmio. a) b) c) Laske monikulmion piiri. a) 30,8 cm 18,2 cm. Laske sivun x pituus, kun monikulmion piiri on 25,0 cm. 1 14 Monikulmiot Nimeä monikulmio. a) b) c) kolmio nelikulmio 12-kulmio Laske monikulmion piiri. a) 4,2 cm b) 3,6 cm 11,2 cm 4,8 cm 3,6 cm 4,3 cm 30,8 cm 18,2 cm Laske sivun x pituus, kun monikulmion piiri

Lisätiedot

R4 Harjoitustehtävien ratkaisut

R4 Harjoitustehtävien ratkaisut . Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x

Lisätiedot

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2. Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29. 1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot