1 sup- ja inf-esimerkkejä
|
|
- Pekka Pesonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R jatkuva; ts. r(t) = (x(t), y(t)) ja funktiot x, y : [a, b] R ovat jatkuvia. Tasokäyrän C = r[a, b] kaarenpituus on { n } l = sup r(t k ) r(t k 1 ) a = t 0 < t 1 < < t n = b, n N. Supremum otetaan siis kaikkien parametrivälin [a, b] äärellisten jakojen suhteen. Ainoastaan murtoviivan C tapauksessa kaarenpituus saadaan suoraan jonkin yksittäisen jaon avulla. Riemann-integraali. Olkoon f : [a, b] R rajoitettu funktio; ts. on olemassa sellainen vakio C R, että f(x) C kaikilla x [a, b]. Muodostetaan välin [a, b] jako ja siihen liittyvä yläsumma a = x 0 < x 1 < x < < x n = b S = n M k (x k x k 1 ), M k = sup{f(x) x k 1 x x k }, ja alasumma s = n m k (x k x k 1 ), m k = inf{f(x) x k 1 x x k }. Aina pätee: (i) s S, vaikka ne laskettaisiin eri jakopisteillä. (ii) Kun jako tihenee, niin s kasvaa ja S pienenee. Funktion f yläintegraali välillä [a, b] on I + = inf{s S on johonkin jakoon liittyvä yläsumma}, ja vastaava alaintegraali välillä [a, b] on I = sup{s s on johonkin jakoon liittyvä alasumma}. 1
2 Aina pätee I I +. Funktio f on Riemann-integroituva välillä [a, b], jos I + = I. Tällöin merkitään b a f(x) dx = I +. Pätee: Funktio f on Riemann-integroituva välillä [a, b] jokaista ε > 0 vastaa sellainen jako, jossa S s < ε. Täydellisyysaksioma Reaalilukujen joukon erottaa rationaalilukujen joukosta Q Täydellisyysaksioma, eli jokin seuraavista keskenään yhtäpitävistä ominaisuuksista: (i) Jos A R on ylhäältä rajoitettu joukko, niin sillä on pienin yläraja sup A R. (ii) Nouseva ja ylhäältä rajoitettu reaalilukujono (a n ) n N suppenee kohti raja-arvoa L R. (iii) Jos (I n ) n N on pienenevä jono (inkluusion suhteen, eli I n+1 I n kaikilla n) suljettuja välejä I n R, niin leikkaus I n. Todistuksen idea: (i) (ii) (iii) (i). (i) (ii): Oletetaan, että (i) on voimassa ja olkoon (a n ) nouseva ja ylhäältä rajoitettu jono. Oletuksesta (i) seuraa, että on olemassa L = sup{a n n N} R. Osoitetaan, että lim n a n = L. Olkoon ε > 0. Koska L ε ei ole joukon {a n n N} yläraja, niin on olemassa sellainen n ε N, että a nε > L ε. Koska (a n ) on nouseva, niin a n a nε > L ε kaikilla n n ε. Tällöin siis L ε < a n L < L + ε aina, kun n n ε. Tästä seuraa, että lim n a n = L, joten ominaisuus (ii) on todistettu. (ii) (iii): Oletetaan, että (ii) on voimassa ja olkoon (I n ) = ([a n, b n ]) pienenevä jono suljettuja välejä. Ehdosta I n+1 I n seuraa, että a n+1 a n ja b n+1 b n kaikilla n N. Lisäksi a n b n b 1 ja b n a n a 1 kaikilla n. Näin ollen jono (a n ) on nouseva ja ylhäältä rajoitettu, jono (b n ) laskeva ja
3 alhaalta rajoitettu. Oletuksesta (ii) ja sen käänteisestä muodosta (ii) seuraa, että on olemassa raja-arvot a = lim n a n R, b = lim n b n R. Lisäksi suppiloperiaatteen nojalla pätee a b. Kun osoitetaan, että I n = [a, b], niin ominaisuus (iii) on todistettu. (Tapaus a = b on mahdollinen, mutta OK!) a) I n [a, b]: Olkoon x I n. Tällöin x I n kaikilla n, ts. a n x b n kaikilla n, joten suppiloperiaatteen nojalla a x b; ts. x [a, b]. b) [a, b] I n : Olkoon x [a, b]. Koska (a n ) on nouseva ja (b n ) laskeva, niin a n a x b b n kaikilla n; ts. x I n kaikilla n. Näin ollen x I n. (iii) (i): Oletetaan, että (iii) on voimassa ja olkoon A R ylhäältä rajoitettu joukko. Valitaan yksi piste c A ja määritellään jokaisella n pisteet a n, b n R seuraavalla tavalla: Olkoon p n N pienin sellainen luku, jolle on joukon A yläraja, ja merkitään b n = c + p n n a n = c + p n 1 n. Nämä luvut eivät siis ole joukon A ylärajoja millään indeksillä n. Tarkoituksena on soveltaa ehtoa (iii) suljettujen välien I n = [a n, b n ] leikkaukseen. Koska c + p n = c + p n n+1 n on joukon A yläraja, niin p n+1 p n kaikilla n. Toisaalta c + p n n+1 = c + p n 1 n = a n ei ole joukon A yläraja, joten p n+1 > p n kaikilla n. Jäljelle jää kaksi vaihtoehtoa: p n+1 = p n tai p n+1 = p n 1. Tutkimalla molemmat tapaukset erikseen nähdään, että jono (a n ) on nouseva ja (b n ) laskeva; ts. I n+1 I n kaikilla n. Ehdosta (iii) seuraa nyt, että I n. Toisaalta b n = a n +1/ n kaikilla n, joten a = lim n a n = lim n b n = b. Tästä seuraa, että I n = {b}. 3
4 Lopuksi täytyy vielä osoittaa, että b = sup A, jolloin ominaisuus (i) on todistettu. a) Luku b on joukon A yläraja: Jos x A, niin x b n kaikilla n, joten suppiloperiaatteen nojalla x lim n b n = b. b) Jos b R on joukon A yläraja, niin b b: Vastaoletus: Joukolla A on yläraja b < b. Koska lim n a n = b, niin jollakin indeksillä n 1 on voimassa a n1 > b (valitaan raja-arvon määritelmässä esim. ε = (b b )/). Jonon (a n ) valinnan perusteella a n1 ei ole joukon A yläraja, joten sitä pienempi luku b ei voi sekään olla yläraja. Tämä ristiriita osoittaa vastaoletuksen vääräksi, joten väite on todistettu. 3 Ylinumeroituvuus Lause. Reaalilukujenjoukko on ylinumeroituva, ts. ei ole olemassa surjektiota f : N R. Todistus. (Cantorin diagonaalimenetelmä) Riittää osoittaa, että äärettömien 0 1-jonojen joukko on ylinumeroituva, koska tällaiset jonot a vastaavat yksikäsitteisellä tavalla desimaalilukua 0,a. Vastaoletus: Kaikki 0 1-jonot voidaan indeksöidä luonnollisten lukujen avulla muodossa 1. jono = a 1 = a 11 a 1 a jono = a = a 1 a a jono = a 3 = a 31 a 3 a Tässä siis a mn = m:nnen jonon n:s alkio {0, 1}. Tarkastellaan taulukosta muodostettua diagonaalijonoa d = a 11 a a ja muodostetaan uusi jono d vaihtamalla jonon d jokainen alkio operaatiolla a 1 a. Tällöin siis 0 1 ja 1 0. Saatu jono d ei kuitenkaan voi esiintyä yllä olevassa listassa: se ei ole a 1, koska jonojen 1. termit ovat erisuuret; se ei ole a, koska jonojen. termit ovat erisuuret. Yleisesti, d ei ole a n, koska jonojen n:nnet termit ovat erisuuret. Tämä ristiriita osoittaa vastaoletuksen vääräksi, joten lause on todistettu. 4 Irrationaaliluvut Lause. Reaaliluku on irrationaalinen. 4
5 Todistus. Vastaoletus: On olemassa sellaiset p Z ja q N, että = p/q. Voidaan olettaa, että p ja q ovat keskenään jaottomia, eli niiden suurin yhteinen tekijä on 1. Oletuksesta seuraa = p /q, eli p = q. Tämä tarkoittaa, että p on parillinen, joten p on parillinen (koska parittoman neliö on pariton: (n+1) = (n +n)+1). On siis olemassa k N, jolle p = k. Sijoittamalla aikaisempaan yhtälöön saadaan (k) = q eli q = k. Näin ollen q on parillinen, joten myös q on parillinen. Molemmat luvut p ja q ovat siis parillisia, joka on ristiriita. Vastaoletus on siis väärä, ja lause on todistettu. Lause. (i) Kahden eri reaaliluvun välissä on aina rationaaliluku (ja itse asiassa äärettömän monta). (ii) Kahden eri reaaliluvun välissä on aina irrationaaliluku (ja itse asiassa äärettömän monta). Todistus. (i) Olkoot r < s reaalilukuja. Koska s r > 0, niin on olemassa q N, jolle 1/q < s r. Koska jonon (p/q) p N peräkkäisten termien erotus on 1/q, täytyy jonkin niistä sijaita avoimella välillä ]r, s[. Toistamalla vastaava päättely nähdään, että tällaisia rationaalilukuja on äärettömän monta. (ii) Olkoon taas r < s. Valitaan aluksi kohdassa (i) saatu rationaaliluku r < p/q < s. Tämän jälkeen voidaan valita niin suuri n N, että n < s p q. Luku x = p q + n ]r, s[ on nyt vaadittu irrationaaliluku, koska vastaoletuksesta x = a/b, a Z, b N, seuraa ristiriita ( a = n b p ) Q. q Päättelyä toistamalla saadaan äärettömän monta tällaista irrationaalilukua. 5
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
Lisätiedot1 Supremum ja infimum
Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,
LisätiedotReaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13
Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen
Lisätiedotreaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,
Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.
LisätiedotMS-C1540 Euklidiset avaruudet
MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2016 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu 1 / 30 Euklidiset
LisätiedotLukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.
Lukujoukot Luonnollisten lukujen joukko N = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen
Lisätiedot1 Määrittelyjä ja aputuloksia
1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Lisätiedot4.3 Moniulotteinen Riemannin integraali
4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,
LisätiedotKonvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotMiten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
LisätiedotVastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
LisätiedotSarjat ja integraalit
Sarjat ja integraalit Peter Hästö 1. huhtikuuta 2015 Matemaattisten tieteiden laitos Eteneminen pvm luku v 11 2.1, 2.2 v 12 2.3, 2.4 v 13 3.0, 3.1 v 14 3.2 v 15 4 v 16 5.1 v 17 5.2 v 18 6.1 v 19 6.2 Peter
LisätiedotAnalyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.
Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
LisätiedotVastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
LisätiedotSarjojen suppenemisesta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotJonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).
Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f
LisätiedotFunktiojonon tasainen suppeneminen
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen
LisätiedotMäärätty integraali. Markus Helén. Mäntän lukio
Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden
LisätiedotAnalyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
LisätiedotVektorilaskenta Luennot / 42. Vektorilaskenta Napakoordinaatit
Luennot 19.09.-21.09. 1 / 42 Määritelmä (1/3) Määritelmä (2/3) Määritelmä (3/3) 2 / 42 Määritelmä (1/3) Määritelmä (1/3) Määritelmä (2/3) Määritelmä (3/3) Tason pisteen P sijainti voidaan karteesisten
LisätiedotTodista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.
2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na
Lisätiedotx > y : y < x x y : x < y tai x = y x y : x > y tai x = y.
ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).
LisätiedotLuku 2. Jatkuvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
LisätiedotToispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
Lisätiedot1 Reaaliset lukujonot
Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot
LisätiedotMatematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
LisätiedotTodistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
LisätiedotCantorin joukon suoristuvuus tasossa
Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja
LisätiedotInjektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.
Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.
LisätiedotVektorilaskenta. Luennot / 54
Luennot 22.09.-27.09.2017 1 / 54 Välin mitta Alasumma 1 Alasumma 2 Yläsumma 1 Yläsumma 2 Tihennys 1 Tihennys 2 Integroituvuus Jatkuva 1 Jatkuva 2 Jatkuva 3 Jatkuva 4 Jatkuva 5 Jatkuva 6 2 / 54 Välin mitta
LisätiedotKaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
LisätiedotAlkulukujen harmoninen sarja
Alkulukujen harmoninen sarja LuK-tutkielma Markus Horneman Oiskelijanumero:2434548 Matemaattisten tieteiden laitos Oulun ylioisto Syksy 207 Sisältö Johdanto 2 Hyödyllisiä tuloksia ja määritelmiä 3. Alkuluvuista............................
LisätiedotDIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
Lisätiedot(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotSarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,
Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,
Lisätiedota) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon
Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)
LisätiedotTopologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus
Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on
Lisätiedot7. Tasaisen rajoituksen periaate
18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
LisätiedotEsitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
LisätiedotLukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)
Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotJoukot metrisissä avaruuksissa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia
LisätiedotSurjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.
5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella
Lisätiedot(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
LisätiedotTodistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
LisätiedotJordanin sisältö ja Lebesguen ulkomitta
Jordanin sisältö ja Lebesguen ulkomitta Jennika Ojalehto Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 Tiivistelmä: Jennika Ojalehto, Jordanin sisältö ja
LisätiedotV. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M
V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,
LisätiedotAnalyysi 1. Pertti Koivisto
Analyysi Pertti Koivisto Syksy 204 Alkusanat Tämä moniste on tarkoitettu oheislukemistoksi Tampereen yliopistossa pidettävälle kurssille Analyysi. Monisteen tavoitteena on tukea luentojen seuraamista,
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen
LisätiedotFunktiot ja raja-arvo. Pekka Salmi
Funktiot ja raja-arvo Pekka Salmi Versio 0.3 13. lokakuuta 2017 Johdanto Tämä moniste on keskeneräinen... 1 1 Reaaliluvut 1.1 Lukujoukot Lukujoukoista käytettään seuraavia merkintöjä: N = {0, 1, 2, 3,...}
LisätiedotDerivaattaluvut ja Dini derivaatat
Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo
LisätiedotMS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Käytännön asiat Jonot Sarjat 1.1 Opettajat luennoitsija Riikka Korte
LisätiedotEsimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta
Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen
LisätiedotRaja-arvot ja jatkuvuus
Raja-arvot ja jatkuvuus 30. lokakuuta 2014 10:11 Suoraa jatkoa kurssille Johdatus reaalifunktioihin (MATP311) (JRF). Oheislukemista: Kilpeläinen: Analyysi 1, luvut 3-6, Spivak: Calculus, luvut 5-8, 22,
LisätiedotTällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n.
Analyysi I ja II lisämateriaalia HAARUKOINTI Tässä käsitellään kootusti sellaisia differentiaali- ja integraalilaskennan kurssin kysymyksiä, joissa joudutaan syventymään lukusuoran hienovaraisimpiin ominaisuuksiin.
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava
LisätiedotKuinka määritellään 2 3?
Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin
LisätiedotMatematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
LisätiedotJohdatus matemaattiseen päättelyyn (5 op)
Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotSeuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1
FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
Lisätiedotpeitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotLUKU 6. Mitalliset funktiot
LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotDIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 1. ALUKSI Joukko-oppia Lyhenteitä ja merkintöjä. A = B A:sta seuraa B. Implikaatio. A B A ja B yhtäpitävät. Ekvivalenssi.
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
LisätiedotAnalyysi I (mat & til) Demonstraatio IX
Analyysi I (mat & til) Demonstraatio IX 16.11. 2018 II välikoe 19.11. klo 9 salissa IX. Ilmoittaudu NettiOpsussa 12.11. mennessä. Koealue: Funktion raja-arvo, jatkuvuus ja Bolzanon lause, ts. kirjan luku
LisätiedotPoistumislause Kandidaatintutkielma
Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................
LisätiedotReaalilukujonoista ja niiden merkityksestä kouluopetuksessa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anna-Kaisa Torvinen Reaalilukujonoista ja niiden merkityksestä kouluopetuksessa Matematiikan ja tilastotieteen laitos Matematiikka Syyskuu 2010 Tampereen yliopisto
LisätiedotMS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
LisätiedotAnalyysin peruslause
LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Supremum ja inmum Tarkastellaan aluksi avointa väliä, Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen Kuitenkaan päätepisteet eli luvut ja
LisätiedotSinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.
Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Lisätiedot