Erotusrajaksi on määritelty maksimin puoliarvoleveys:

Koko: px
Aloita esitys sivulta:

Download "Erotusrajaksi on määritelty maksimin puoliarvoleveys:"

Transkriptio

1 69 Erotusrajaksi on määritety maksimin puoiarvoeveys: ' Tarvittava juovien väinen etäisyys on siis 4 ( D d) min = d c =. (.4.5) F Tätä vaihe-eroa vastaava aaonpituusero saadaan seuraavasti: p d = D, missä D= nt f cos q' d d 4 =- p D Þ ( D ) min = ( D d) min = d pd pd F On siis ( D ) min = D p F Kaikki tämä tapahtuu transmissiomaksimin äheisyydessä, jossa p d = D» m p Þ =. D m Lopputuoksena saadaan ( D ) min =. (.4.6) mp F Tässä siis ( D ) min on pienin Fabry-Perot-interferometriä erotettavissa oeva aaonpituusero.

2 70 Spektroskopioissa määriteään yeisesti erotuskyky R (resoving power) kaavaa R =, ( D ) min joka Fabry-Perot-interferometrin tapauksessa saa muodon æp ö R= m ç F è ø, (.4.7) missä p F (.4.8) on ns. Finesse (huom. eri kuin finesse-kerroin) Mitä suurempi erotuskyky R sitä pienempiä aaonpituuseroja erotetaan. Miten erotuskyä voidaan kasvattaa? R kasvaa, kun: - F kasvaa, ts. r kasvaa (hopeapinnoitukset) - kertauku m kasvaa Kertauku m on suurin interferenssikuvion keskipisteessä. Tämä tarkoittaa sitä, että detektori kannattaa asettaa keskee interferenssikuviota rengasprofiiia mitattaessa. Keskeä kuviota ( q ' = 0) transmissiomaksimin ( d = m p ) kertauku saadaan kun asketaan: p p d = nf t m p D= = Þ n t f = m Þ nt m= f. Siis mitä suurempi on evyjen väimatka t sitä suurempi on m ja vastaavasti R.

3 7 Esimerkki: Ohessa eräää Fabry-Perot-interferometriä mitattu rengasprofiii vaihe-eron d (round-trip phase difference) funktiona. Arvioi kuvan perusteea finesse-kerroin F ja siitä edeeen peiien heijastuskerroin r. Ratkaisu: Finesse-kerroin F saadaan esimerkiksi rengasprofiiin kontrastista yhtäön (.4.3) avua. Kontrastia varten uetaan kuvaajasta transmissiominimie T min = 0.05, joten Tmax -Tmin V = = =, josta F 9 T max + T min / = F / V - = Finesse-kerroin saadaan myös yhtäön (.4.4) avua puoiarvoeveydestä d = d/» 0.46= / F. Tästä F = 8.9» 9. c Heijastuskerroin asketaan määritemästä (.4.) 4r F = Þ F( r ) -(F + 4) r + F = 0 (-r ) Þ r = ( + / F) ± (/ F) F + = ja 0.80 r».

4 7 Esimerkki: Fabry-Perot-interferometrin evyjen heijastuskerroin on r = 0,990. Laitteea tutkitaan vedyn H α viivaa ( = 656,3 nm), jossa on kaksi komponenttia aaonpituuseroa 0,036 nm. a) Laske tarvittava erotuskyky, kun komponentit hautaan erottaa toisistaan. b) Laske se evyjen väimatka, joka tuottaa tarvittavan erotuskyvyn. Ratkaisu: a) erotuskyky 656,3 nm R = = = 4857,4» ( D) min 0,036 nm b) evyjen väimatka: ratkaistaan ensin kertauku m erotuskyvyn (.4.7) ausekkeesta, jossa finesse-kerroin F voidaan askea heijastuskertoimen r avua määritemää (.4.) käyttäen. Lopuksi sitten peiien väimatka saadaan ausekkeesta m= nt f /. Siis 4r F = = (-r ) æp ö æ ö R R= ç m F Þm= ç = 308,768» 309 è ø èp ø F m 309 0,6563 μm t = =» 0 μm n,00 f Kommentti: Hyviä Fabry-Perot-interferometreiä R on uokkaa kymmeniä 7 mijoonia (esim. 0 ).

5 73 DIFFRAKTIO Optisea aueea vaon aaonpituus on hyvin yhyt (: 0-5 cm). Vaoa voidaan hyvin kuvata geometrisen optiikan approksimaatioa ( 0), jossa siis vaoenergia etenee säteinä tai aatorintamina. Homogeenisessa ja isotrooppisessa väiaineessa säteet etenevät suoraviivaisesti ja esimerkiksi vaon tiee asetettu esine muodostaa terävän varjon. Diffraktioa tarkoitetaan vaon kuun poikkeamista geometrisen optiikan ennustamata reititä. Diffraktio on siis seurausta vaon aatouonteesta. Sitä esiintyy erityisesti tianteissa, joissa vao kukee ähetä esineiden reunoja tai suuri joukko säteitä kohtaa toisensa. Pisteähde varjostin terävä reuna geometrinen varjo Viereisen kuvan kokeessa diffraktio imenee vaon taipumisena geometrisen varjon aueee. Varjon reuna ei oe enää terävä ja varjossa nähdään kirkkaita ja tummia juovia. Diffraktion tutkimisessa on tapana erottaa kaksi eri tapausta: Fraunhoferin diffraktio ja Fresnein diffraktio. Fraunhoferin diffraktiossa vaoähde ja varjostin ovat kaukana diffraktion aiheuttamasta esineestä (reunasta, aukosta...), jooin aatorintamia voidaan käsiteä tasoaatoina. Puhutaan myös kaukaisen kentän diffraktiosta. Fresnein diffraktiossa aatorintamien kaareutuminen on otettava huomioon ja puhutaankin ähikentän diffraktiosta.

6 74. FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA Lasketaan Fraunhoferin diffraktiokuvio, jonka aiheuttaa yksi suorakumion muotoinen kapea rako (pituus >> eveys). Vaonähde on kaukana, joten rakoon tuevat aatorintamat ovat tasoaatoja. Käytännössä tianne saavutetaan asettamaa vaoähde positiivisen inssin pottopisteeseen (kuva). Raon eveys on b. Huygensin periaatteen mukaan aatorintaman saavuttaessa raon tason, jokainen raon piste toimii paoaatorintaman keskuksena. Näiden uusien aatojen resutantti pisteessä P asketaan superpositioperiaatteen mukaisesti. Pisteessä P yhteenaskettavat aaot eivät oe samassa vaiheessa, koska niiden väie syntyy (optinen) matkaero D. Lasku etenee näin: Jaetaan rako ds : n suuruisiin akioihin ja asketaan kunkin akion tuottama aato pisteeseen P. Lopuksi asketaan kokonaisvaikutus integroimaa yi raon. Rakoeementistä ds ähtevä paoaato pisteessä P on

7 de P 75 æde ö = ç e è r ø 0 i( kr-wt), (..) missä de 0 on ampitudi (yksikköetäisyydeä) ja r optinen matka rakoeementistä ds pisteeseen P (ks. kuva). Paoaaosta: i( kr-w t) Yeisesti paoaaossa "aato-osa" (esim. e ) on kuten tasoaaossa, mutta ampitudi ei oe vakio vaan pienenee kääntäen verrannoisena etäisyyteen. Pisteen P etäisyys raon keskipisteestä on r 0, joten kuvan mukaisesti r = r0 +D= r0 + ssinq. Kun tämä sijoitetaan (..):een, tuee de P æ de ö = ç e r è 0 +Dø 0 i[ k( r +D-w ) t] 0 æde0 ö e i[ k( r +D-w ) t] ç r. è 0 ø» 0 Approksimaatio voidaan tehdä, koska D = r0. On huomattava, että vastaavaa approksimaatiota ei saa tehdä vaiheessa. Hyvin pienetkin vaiheen muutokset (ae aaonpituuden) saavat aikaan suuria muutoksia opputuoksessa. Rakoeementistä ds ähtevän säteiyn ampitudi riippuu tietysti akion suuruudesta (eveydestä ds), ts.

8 de 76 = E ds, 0 L missä E L on raon ampitudi eveysyksikköä kohti. Fraunhoferin diffraktion tapauksessa rakoa vaaistaan tasaisesti, joten E L on vakio yi koko raon. Rakoeementin aiheuttamaksi aaoksi pisteessä P tuee siis æ ELds ö i( kr0 + kssin q-wt ) dep = ç e r è 0 ø ja koko raon tuottama aato saadaan integroimaa raon eveyden yi + b/ æel ö ikssin q i( kr0 -wt) EP =ç e ds e r ò. (..) è 0 -b/ ø Lasketaan: + b/ ò -b / e ikssinq ds ik sinq ik sinq + b / iks sinq ik( b/ )sin q -ik( b/ )sinq = é ëe ù û = ( e -e ) -b / = bsin[ kb ( / )sin q] sin[ kb ( / )sin q] ksinq = = b kb ( / )sinq sinc( b ), missä on käytetty merkintää sin sin kb p b = q = b q. (..3) Kokonaisaato pisteessä P on siis E P E bsin b r b L i( kr0 -wt) = e, jonka ampitudi (merkitään sitä E : ä) on Irradianssiksi tuee I E R 0 0 R = EL bsin b r b. e 0 c 0 L sin E e c æ E b ö b R r0 b = = ç è ø,

9 josta edeeen 77 I I b = 0sinc, (..4) missä vakiotekijät on koottu kertoimeksi I 0. Kapean raon Fraunhoferin diffraktiokuvio on siis sinc-funktion neiö. Kuvassa diffraktiokuvio (katkoviiva) on piirretty b : n funktiona. Kuvion keskeä on päämaksimi, siä sincb, kun b 0 (siis kuma q 0) ja I = I0. Kuvion muut ääriarvot öydetään esimerkiksi askemaa d æsin b ö æsin b öæbcosb -sin b ö 0 db ç b = ç = b ç b è ø è øè ø Minimit öydetään ensimmäisestä tekijästä (tai suoraan..4:stä) sin b : n noakohdista (kunhan b ¹ 0). Minimeie pätee siis b = sin kb q = mp, missä m =±, ±, K Sivumaksimien paikat saadaan jäkimmäisestä tekijästä bcos b - sin b = 0 Þ tan b = b. b Tämän transkendenttiyhtäön ratkaisut ovat äheä minimien puoiväejä, ts arvoja b = ( m + ) p. Seuraavassa tauukossa on esitetty tarkat ratkaisut ja ym. approksimaatioa asketut:

10 78 b = (tark):.43p,.46p, 3.47p,... b = (appr):.50p,.50p, 3.50p,... Mieivataisen tarkkoja ratkaisuja on heppo askea tavaisea askimea (opettee). Tauukosta havaitaan, että approksimaatio on sitä tarkempi mitä kaukaisemmasta sivumaksimista on kysymys. Ensimmäisen sivumaksimin ja päämaksimin irradianssien suhde yhtäön (..4) perusteea on: I I b=.43p b= 0 sin (.43 p) /(.43 p) = = 0,047. Ensimmäisen sivumaksimin irradinssi on siis vain noin 4.7% päämaksimin irradinssista. Kuvissa aa on esitetty diffraktiokuvion muodostuminen varjostimee, jonka etäisyys raosta on L (? b ja? y ):

11 79 Varjostimea kohdassa y: q = y/ L p p y b = kbsinq» bq = b L I æsin b ö = I0ç è Aa vieä mitä todeinen kuvio näyttää: b ø Esimerkki: Fraunhoferin kapean raon diffraktiokokeessa raon eveys on 5. Laske a) päämaksimin kumaeveys, ts. raon keskipisteestä katsottuna kuma-aukeama päämaksimin viereisiin. minimeihin, b) päämaksimin puoiarvoeveys (FWHM = Fu Width at Haf Maximum). Ratkaisu: a) ensimmäiset minimit b =± p (ks.sivu 77). On siis sin (5 ) 5 kb p b p q» q q pq p = = =± Þ q =± /5 =± 0,0 rad Päämaksimin kumaeveys on siten D q = 0,40rad

12 b) Puoiarvokohdassa (ks. kuva) 80 I I æsinb ö / = 0ç 0 b = / I è ø sinb/ Þ = b/ Þsinb/ - b/ = 0. Ratkaistaan numeerisesti iteroimaa askimea:. arvaus kuvasta b/ = p / =,57 / sin / / (5 ) / 5 / kb p b p b = q» q q pq = = Þ b/,39 q = / 0,0885 5p = 5p = rad ja oputa siis puoiarvoeveys on q /» 0,8rad Puoiarvoeveys (0,8 rad) on siis hieman vähemmän kuin puoet koko eveydestä (0,40/ = 0,0 rad)

13 8. FRAUNHOFERIN DIFFRAKTIO PYÖREÄSSÄ AUKOSSA Pyöreän aukon taipumisimiöt (diffraktio) ovat tärkeitä, koska inssit, peiit ja aukot optisessa systeemissä ovat tavaisesti pyöreitä. Matemaattinen tarkasteu on kuitenkin suhteeisen vaativa ja johtaa Bessein funktioihin. Lähtötianne vastaa nyt kapean raon -uotteista integraaia (..) (katso myös kuvaa sivua 74). Irradianssin kannata kiinnostava osa aaossa (..) on sen ampitudi + b/ EL ikssinq ER = e ds r ò. 0 -b / Vastaava ampitudi-integraai pyöreän aukon tapauksessa on - uotteinen integraai E A isk sinq ER e da r0 A = òò, missä integraai asketaan yi -uotteisen aukon A. Tarkasteupisteen P etäisyys aukon keskipisteestä on r 0 ja E A on aukon ampitudi pinta-aayksikköä kohti. Integraain askemiseksi on vaittava sopiva pinta-aaeementti da. Okoon aukon säde R, ja vaitaan pinta-akioksi viereisen kuvan mukainen suorakaiteen muotoinen ohut (paksuus ds) kaistae: da = xds, missä x= R - s, joten da = R - s ds. Tää vainnaa integraai paautuu -uotteiseksi, muuttujana s: R EA isk sinq ER = e R -s ds r ò. 0 -R

14 Kun vieä järjesteään 8 E R A æ ö isk sinq ER = R ç e R s ds r0 R ò - è -R ø saadaan sukujen sisään fysiikassa usein esiintyvä standardimuotoinen integraai, joka johtaa ns. Bessein funktioihin. Sukuosa on R pj sin ( g) isk q e R s ds R ò - =, missä g = krsinq, g -R missä J( g ) on ns. ensimmäisen ajin Bessein funktio kertauvua yksi. Kyseinen funktio voidaan esittää esimerkiksi sarjamuodossa 3 5 ( g / ) ( g / ) ( g / ) J ( g ) = - + -L, 3 josta nähdään mm. että J ( g)/ g /, kun g 0. Ampitudiksi pisteessä P saadaan siis josta irradianssie I E R é J( g) ù = I0 ê ú EAR p J( g) =, r g 0 ë g û, missä g = kdsinq, (..) kun aukon säteen R sijasta käytetään hakaisijaa D= R. Tässä I 0 sisätää taas kaikki vakiot ja se edustaa irradianssia kuvion keskeä, ts. kun g 0 ei q 0. Tuosta on mieenkiintoista (hyödyistä) verrata kapean raon vastaavaan tuokseen (..4) I I = 0 ê ú ésin b ù ë b û, missä b = kbsinq.

15 83 Pyöreän aukon tapauksessa kapean raon sini-funktio korvautuu Bessein funktioa J ja raon eveys b aukon hakaisijaa D. Diffraktiokuvioiden samankataisuutta isää vieä se, että Bessein funktio on hyvin sinin katainen: Tauukossa aa on esitetty Bessein funktion J( g ) ensimmäiset noakohdat sekä vertaiun vuoksi vastaavat noakohdat sinifunktioe sin b : J ( g ) = 0 sinb = 0 g =0, b = 0 g =,p = 3,83 b =,00p g =.3p = 7,06 b =,00p g =3,4p =0,73 b = 3,00p g =4,4p =3,34 b = 4,00p Erona voidaan todeta, että Bessein funktio vaimenee hitaasti g :n kasvaessa, mutta sini-funktio ei. Pyöreän aukon diffraktiokuvio on ympyräsymmetrinen ja se koostuu kirkkaasta keskimaksimista, jota ympäröi tummat ja nopeasti vaimenevat kirkkaat ympyräjuovat.

16 84 Diffraktiokuvion kaavan (..) johti ensimmäisenä G. B. Airy (80-89) ja kuvion kirkas keskimaksimi on hänen mukaan nimetty Airyn evyksi (Airy disk). Keskimaksimia ympäröivää ensimmäistä minimiä vastaa funktion J( g ) ensimmäinen noakohta ( g ¹ 0). Ensimmäisee tummae renkaae pätee siis g = kdsin. q = p. Ensimmäiseen minimiin osoittavae suuntakumae tuee siten tai (. p). sinq = =, ( p / )D D Dsinq =.. (..) Tätä kannattaa taas verrata kapean raon vastaavaan tuokseen. Kapeassa raossa ensimmäisee minimie on voimassa bsinq =. Esimerkki: Bessein funktiota J( x ) voidaan suuria argumentin x arvoia approksimoida muodoa sin x-cos x J( x) =. px a) Arvioi miten hyvin approksimaatio antaa Bessein funktion J( g ) viisi ensimmäistä noakohtaa (ks. tarkat arvot edeisen sivun tauukosta) b) Laske suuntakuma q diffraktiokuvion. minimiin ja 4. minimiin tarkasti ja a-kohdan approksimaatiota käyttäen. Arvioi approksimaation virhettä. Käytä askussa aaonpituutta 500 nm ja aukon hakaisijaa 0,5 mm.

17 85 Ratkaisu: a) Lasketaan approksimaation noakohdat: sing - cosg J( g) = = 0 pg Þ sing = cosg Þ tang =, josta g = p /4+ mp, missä m on kok. uku. m p /4+ mp tarkka 0 p / 4» 0,785 g =0 ei hyvä 5 p / 4» 3,97 g =3,83 kohtaainen 9 p / 4» 7,069 g =7,06 näyttää paranevan 3 3 p / 4» 0,0 g =0, p / 4» 3,35 g =3,34 Sevästi approksimaatio on sitä parempi mitä suurempi g on. b) Kun Bessein funktion noakohtaa vastaava g tunnetaan, niin vastaava suuntakuma q voidaan ratkaista yhtäöstä sin sin sin kd D g g = q = q Þ q = p D Tässä tehtävässä / D = 500nm / 0,5mm = 0,00 Bessein funktion ensimmäinen noakohta ( g = 0) osoittaa diffraktiokuvion päämaksimiin, joten ensimmäinen tumma rengas saadaan approksimaation g = p /4+ mp arvoa m =.. minimi tarkka approx. virhe: 3,83 sinq = = 0,000 Þ q = 0,0699 p D 5 sinq = = 0,0050 Þ q = 0,076 4 D 0,076-0,0699 =,4% 0,0699

18 86 4. minimi 3,34 tarkka sinq = = 0,0044Þ q = 0,430 p D 7 approx. sinq = = 0,00450 Þ q = 0,435 4 D 0,435-0,430 virhe: = 0,% 0,430 Tässäkin virhe pienenee, kun siirrytään kauemmaksi kesketä. Erotuskyky Viereisessä kuvassa kaksi esinepistettä S ja S kuvataan inssiä varjostimee. Linssi on pyöreä aukko, joten esinepisteiden kuvat ovat pyöreän aukon diffraktiokuvioita. Kun esinepisteitä tuodaan ähemmäksi toisiaan, tianne varjostimea voisivat oa seuraavan sivun kuvien mukainen:

19 87 Kuvassa (b) kuvapisteet erotetaan vieä toisistaan heposti, mutta kuvassa (c) oaan jo erotuskyvyn rajoia. Rayeighin kriteeri: Kaksi kohdetta ovat juuri erotettavissa, jos toisen diffraktiokuvion maksimi on toisen. minimin kohdaa. Seuraavan kuvan perusteea erotusrajae saadaan: josta koska Dsin[( D q) ] =., min. ( D q) min =, (..3) D ( D q) on pieni. Tässä D on inssin hakaisija. min

20 88 Jos inssi on mikroskoopin objektiivi, erotusraja määräytyy periaatteessa samaa tavaa, vaikkakin aatojen tasomaisuudesta on uovuttava. Tianne on mekein seuraava: Mikroskooppia käytettäessä tutkittava kohde on "hieman" kauempana kuin objektiivin pottoväi, jooin mikroskoopin sisäe syntyy todeinen suurennettu kuva, jota sitten katsotaan okuaaria. Kuvassa yä esinepisteet on sijoitettu objektiiviin pottoväin päähän, mikä on hyvä approksoimaatio. Pisteiden A ja B minimietäisyys x min saadaan askemaa. xmin = f( D q) min = f. D Suhde D/ f on inssin ns. numeerinen apertuuri, jonka arvo hyvää mikroskoopin objektiivia on tyypiisesti noin,. Siten hyvää xmin

21 89 Esimerkki: Vaoisassa simän pupiin hakaisija on noin mm. Kuinka kaukaa mm:n etäisyydeä toisistaan oevat kohteet voidaan vieä erottaa eriisinä? Käytä näkyvän vaon edustajana aaonpituutta 500 nm. Ratkaisu: -9., m ( D q ) min = =» 33,6 0-3 D 0 m -5 rad Erotetaan etäisyydetä -3 mm 0 m x = =» 5 3 metriä - ( D q ) 33,6 0 min

267 Rengasprofiilin muoto, eli transmittanssin (11.4.2) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta:

267 Rengasprofiilin muoto, eli transmittanssin (11.4.2) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta: 67 Rengasprofiiin muoto, ei transmittanssin (.4.) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta: Kuvan käyrät vastaavat siis esimerkiksi interferenssikuvion keskikohdassa

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA 73 DFFAKTO Optisella alueella valon aallonpituus on hyvin lyhyt ( 5 cm). Valoa voidaan hyvin kuvata geometrisen optiikan approksimaatiolla ( ), jossa siis valoenergia etenee säteinä tai aaltorintamina.

Lisätiedot

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò,

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò, 9 1.3 KAHDN RAON DIFFRAKTIO Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla = ò, + / L ikssinq R e ds r - / missä s on alkion ds etäisyys raon keskipisteestä, ja

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron 9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 36 Diffraktio PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Ääni kuuluu helposti nurkan taakse Myös valo voi taipua

Lisätiedot

AVARUUSGEOMETRIA. Suorat ja tasot avaruudessa

AVARUUSGEOMETRIA. Suorat ja tasot avaruudessa VRUUSGEOMERI varuusgeometria tarkasteee kuvioita, joiden kaikki osat eivät oe samassa tasossa. Sana avaruus tarkoittaa yeisesti n-uotteista, n 3, avaruutta. (Lukiossa ähes aina n = 3.) Suorat ja tasot

Lisätiedot

Osoitetaan tämä nyt formaalisti esimerkkitehtävänä lähtien liikkeelle kombinatorisesta tuloksesta

Osoitetaan tämä nyt formaalisti esimerkkitehtävänä lähtien liikkeelle kombinatorisesta tuloksesta Viime uennon opussa äpikäydyssä esimerkkitehtävässä näimme, että ainakin mataissa kertauvuissa :stä pisteestä koostuvia yhtenäisiä graafeia q on äheinen yhteys yeiseen graafisummaan Q N vieäpä niin, että

Lisätiedot

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA 1 VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA MOTIVOINTI Tutustutaan laservalon käyttöön aaltooptiikan mittauksissa. Tutkitaan laservalon käyttäytymistä yhden ja kahden kapean raon takana. Määritetään

Lisätiedot

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50:

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: 173 ------------------------------------------------Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: Kaarevuussäteet R1 3 cm ja R. Systeemimatriisi on M R T R1,

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio Diffraktio yhdestä raosta Yhden raon kuvion intensiteetti Monen

Lisätiedot

2 paq / l = p, josta suuntakulma q voidaan ratkaista

2 paq / l = p, josta suuntakulma q voidaan ratkaista 33 Esimerkki: Youngin kokeessa rakojen välimatka on 0, mm ja varjostin on m:n etäisyydellä. Valon aallonpituus on 658 nm. a) Missä kulmassa rakojen keskeltä katsottuna näkyy keskimaksimin viereinen minimi?

Lisätiedot

= vakio = λ. V (x) V (0) = V (l) = 0.

= vakio = λ. V (x) V (0) = V (l) = 0. 6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän

Lisätiedot

7 VALON DIFFRAKTIO JA POLARISAATIO

7 VALON DIFFRAKTIO JA POLARISAATIO 7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Magneettiset materiaalit ja magneettikentän energia

Magneettiset materiaalit ja magneettikentän energia agneettiset ateriaait ja agneettikentän energia ateriaait jaetaan agneettisten oinaisuuksiensa ukaan koeen uokkaan: diaagneettiset, paraagneettiset ja ferroagneettiset aineet. ateria koostuu atoeista,

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3. 135 Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): R ì f > 0, kovera peili f = í (6.3.3) î f < 0, kupera peili ja kuvausyhtälö (6.3.) voidaan kirjoittaa mukavaan muotoon 1 1 1 + =.

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Vesiliuoksen ph ja poh-arvot

Vesiliuoksen ph ja poh-arvot REAKTIOT JA TASAPAINO, KE5 Vesiiuoksen ph ja poh-arvot Taustaa: Happojen ja emästen aimeissa vesiiuoksissa oksonium- ja hydroksidi-ionien konsentraatiot ovat pieniä, ae 1,0 mo/. Esimerkiksi 0,1 moaarisen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Työn tavoitteita. 1 Johdanto

Työn tavoitteita. 1 Johdanto FYSP103 / K2 FRAUNHOFERIN DIFFRAKTIO Työn tavoitteita havainnollistaa valon taipumiseen (diffraktio) ja interferenssiin liittyviä ilmiöitä erilaisissa rakosysteemeissä sekä syventää kyseisten ilmiöiden

Lisätiedot

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n

Ratkaisu: Taittuminen ensimmäisessä pinnassa on tietysti sama kuin edellisessä esimerkissä. Säteet taittuvat ja muodostaisivat kuva 40 cm:n 141 ------------------------------------------------Esimerkki: Paksu linssi. Edellisessä esimerkissä materiaali 2 ulottuu niin pitkälle, että kuva muodostuu sen sisälle. Miten tilanne muuttuu, jos jälkimmäinen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 8 / Smithin-kartan käyttö siirtojohtojen kahden käytettävän sovituspalan tilanteessa

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 8 / Smithin-kartan käyttö siirtojohtojen kahden käytettävän sovituspalan tilanteessa SATE2010 Dnaaminen kenttäteoria sks 2011 1 / Tehtävä 1. Imaeristeisen injan (50 Ω), joka toimii taajuudea 500 MHz, päässä on kuorma Z L = (50 + j50) Ω. 3λ/-virittimen ensimmäinen sovituspaa on sijoitettu

Lisätiedot

Osoitetaan esimerkin avulla, että valonnopeuden invarianssi johtaa myös välimatkojen suhteellisuuteen. Puhutaan pituuden kontraktiosta.

Osoitetaan esimerkin avulla, että valonnopeuden invarianssi johtaa myös välimatkojen suhteellisuuteen. Puhutaan pituuden kontraktiosta. Pituuden kontraktio Luento Luento Osoitetaan esimerkin avua, että vaonnopeuden invarianssi johtaa myös väimatkojen suhteeisuuteen Puhutaan pituuden kontraktiosta Ks kuvaa aa Maire istuu junassa (koord

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018 Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde SYMBOLILUETTELO a [/s ] ihisen käveystä aiheutuva askettu kiihtyvyys x [] huoneen suurin eveys- tai pituus [] attian eveys eff [] attian värähteevän osan tehoinen eveys e=,78 [-] Neperin uku s [] attiapakkien

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

VALON DIFFRAKTIO JA POLARISAATIO

VALON DIFFRAKTIO JA POLARISAATIO 1 VALON DIFFRAKTIO JA POLARISAATIO 1 Työn tavoitteet Tässä työssä tutkit valoa aaltoliikkeenä. Tutustut valon taipumiseen eli diffraktioon, joka havaitaan esimerkiksi, kun monokromaattinen valo kulkee

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen

Lisätiedot

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima aup Kuinka pajon käytät kurikirjaa (tai jotain muuta oppikirjaa)? a) Tututun aiheeeen ennen uentoja b) Luen kirjaa uentojen jäkeen c) Luen oppikirjaa ähinnä akareita tehdeä d) n koke oppikirjaan aup Kappae

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I PHYS-A140 Aineen rakenne C34 1. Monokromaattinen valo kulkee kaden vierekkäisen raon läpi. Rakojen takana olevalla varjostimella avaitaan valoisia ja mustia juovia. Rakojen välimatka d on samaa suuruusluokkaa

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 11 Interferenssi (YF 35) Interferenssi ja koherentit

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

Fysiikan valintakoe klo 9-12

Fysiikan valintakoe klo 9-12 Fysiikan valintakoe 2.5.208 klo 9-2. Koripalloilija heittää vapaaheiton. Hän lähettää pallon liikkeelle korkeudelta,83 m alkuvauhdilla 7,53 m/s kulmassa 43,2 vaakatason yläpuolella. Pallon lähtöpisteen

Lisätiedot

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5 Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =

Lisätiedot

8.3 KAMERAT Neulanreikäkamera

8.3 KAMERAT Neulanreikäkamera 88 Analysoitava valo tulee vasemmalta. Se okusoidaan kapeaan rakoon S (tulorako), josta se kollimoidaan linssillä L yhdensuuntaiseksi sädekimpuksi. Rako S on siis linssin polttovälin päässä linssistä.

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan

Lisätiedot

a ' ExW:n halkaisija/2 5/ 2 3

a ' ExW:n halkaisija/2 5/ 2 3 79 ------------------------------------------------- Esimerkki: Sama systeemi kuin edellä. a) Määritä kenttäkaihdin sekä tulo- ja lähtöikkunat. b) Piirrä äärimmäisten pääsäteiden kartio systeemin läpi.

Lisätiedot

ρ = qψ ψ ja pallokoordinaatiston differentiaalielementti * 2 3 * l lm 1 ml

ρ = qψ ψ ja pallokoordinaatiston differentiaalielementti * 2 3 * l lm 1 ml S-6 FSIIKKA IV (Sf) Kevät 5 LHSf Ratkaisut LHSf- Vaausjakauman ρ( ) dipoimomentti määiteään ( ) zρdv ja quadupoimomentti z ρdv (a) Osoita että dipoimomenttiopeaattoin odotusavo on noa kaikie vedyn stationääisie

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

35. Kahden aallon interferenssi

35. Kahden aallon interferenssi 35. Kahden aallon interferenssi 35.1 Interferenssi ja koherentit lähteet Superpositioperiaate: Aaltojen resultanttisiirtymä (missä tahansa pisteessä millä tahansa hetkellä) on yksittäisiin aaltoliikkeisiin

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MTEMTIIKN KOE mmatiisen kouutuksen kaikkien aojen yhteinen matematiikan vamiuksien kipaiu Nimi: Oppiaitos:.. Kouutusaa:... Luokka:.. Sarjat: LIT MERKKI OMN SRJSI. Tekniikka ja iikenne:... Matkaiu-,ravitsemus-

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

6 GEOMETRISTA OPTIIKKAA

6 GEOMETRISTA OPTIIKKAA 127 6 GEOMETRISTA OPTIIKKAA Näemme itsemme peilistä. Kuuta voidaan katsoa kaukoputken läpi. Nämä ovat esimerkkejä optisesta kuvan muodostumisesta. Molemmissa tapauksissa katsottava esine näyttää olevan

Lisätiedot

766349A AALTOLIIKE JA OPTIIKKA kl 2017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.2.

766349A AALTOLIIKE JA OPTIIKKA kl 2017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.2. 766349A AALTOLIIKE JA OPTIIKKA kl 017, viikko 3 Harjoitus 1 Viimeinen näyttöpäivä ke 1.. 1. Mitkä funktioista a) y( x, t) ( x t) b) y( z, t) 5sin [4 ( t z)] ja c) y( x, t) 1/( x t) etenevät muotonsa säilyttäen

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Fourier-menetelmät osittaisdierentiaaliyhtälöissä

Fourier-menetelmät osittaisdierentiaaliyhtälöissä Fourier-menetemät osittaisdierentiaaiyhtäöissä Pro gradu -tutkiema Vie Vestman 74 Itä-Suomen yiopisto 23. okakuuta 23 Sisätö Johdanto 2 Aku- ja reuna-arvo-ongemien ratkaiseminen 2 2. Perusmääritemiä ja

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja

Lisätiedot

HILA JA PRISMA. 1. Työn tavoitteet. 2. Työn teoriaa

HILA JA PRISMA. 1. Työn tavoitteet. 2. Työn teoriaa Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt. Työn tavoitteet Tässä työssä tutustut hilaan ja prismaan, joiden avulla valo voidaan hajottaa eri väreiksi eli eri aallonpituuksiksi.

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0 PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot