267 Rengasprofiilin muoto, eli transmittanssin (11.4.2) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta:

Koko: px
Aloita esitys sivulta:

Download "267 Rengasprofiilin muoto, eli transmittanssin (11.4.2) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta:"

Transkriptio

1 67 Rengasprofiiin muoto, ei transmittanssin (.4.) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta: Kuvan käyrät vastaavat siis esimerkiksi interferenssikuvion keskikohdassa (myös muuaa) havaittavaa irradianssia evyjen etäisyyden t muuttuessa. Kuvassa vaaka-aksei on t:stä tueva vaihe-ero. Rengasprofiiissa aina Tmax =, kun d = mp ja Tmin = /( + F ), kun d = (m + )p. Huomataan myös, että Tmin ei oe koskaan noa, vaikkakin ähestyy sitä kun r. Vieä tärkeä huomio on se, että rengasprofiii terävöityy maksimien kohdaa sitä terävämmäksi mitä suurempi r on. Maksimien puoiarvoeveys Rengasprofiiin maksimien terävyyttä kuvataan ns. puoiarvoeveydeä, joka on määritety viereisessä kuvassa. Lasketaan seuraavaksi puoiarvoeveys, ts. miä vaihe-eroa d c rengasprofiiin arvo putoaa puoeen.

2 68 Viereinen kuva esittää miten maksimit syntyvät vaihe-eroa m p ja arvo on pudonnut puoeen, kun vaihe-ero tästä on kasvanut arvoon m p + d c. Rengasprofiiin (.4.) voidaan siis kirjoittaa = = T= T max + F sin [(m p + d c ) / ] Þ F sin [(m p + d c ) / ] = Þ sin[(m p + d c ) / ] = ±/ F Soveetaan sini-funktioon tässä identiteettiä jooin ja siis sin(a + ) = sin a cos + cos a sin, sin[( m p + d c ) / ] = sin[( mp + d c / ]) = ± sin(d c / ) sin(d c / ) = ±/ F Maksimit säädetään aina mahdoisimman teräviksi, jooin d c on pieni ja pätee dc» ±. (.4.4) F Tästä myös nähdään, että kun r rasvaa, niin F kasvaa ja maksimit terävöityvät. Erotuskyky Jos Fary-Perot-interferometriin tueva vao koostuu kahdesta aaonpituudesta, ja ', niin interferenssikuvio (myös rengasprofiii) muodostuu kahdesta rengassysteemistä. Erotuskyky mittaa miten äheä toisiaan oevien aaonpituuksien rengasprofiiit voidaan vieä erottaa toisistaan. Mitä terävämpiä maksimit ovat sitä paremmin äheä toisiaan oevat rengasprofiiit voidaan erottaa.

3 69 Erotusrajaksi on määritety maksimin puoiarvoeveys: ' Tarvittava juovien väinen etäisyys on siis 4 ( D d) min = d c =. (.4.5) F Tätä vaihe-eroa vastaava aaonpituusero saadaan seuraavasti: p d = D, missä D= nt f cos q' d d 4 =- p D Þ ( D ) min = ( D d) min = d pd pd F On siis ( D ) min = D p F Kaikki tämä tapahtuu transmissiomaksimin äheisyydessä, jossa p d = D» m p Þ =. D m Lopputuoksena saadaan ( D ) min =. (.4.6) mp F Tässä siis ( D ) min on pienin Fary-Perot-interferometriä erotettavissa oeva aaonpituusero.

4 70 Spektroskopioissa määriteään yeisesti erotuskyky R (resoving power) kaavaa R =, ( D ) min joka Fary-Perot-interferometrin tapauksessa saa muodon æp ö R= m ç F è ø, (.4.7) missä p F (.4.8) on ns. Finesse (huom. eri kuin finesse-kerroin) Mitä suurempi erotuskyky R sitä pienempiä aaonpituuseroja erotetaan. Miten erotuskyä voidaan kasvattaa? R kasvaa, kun: - F kasvaa, ts. r kasvaa (hopeapinnoitukset) - kertauku m kasvaa Kertauku m on suurin interferenssikuvion keskipisteessä. Tämä tarkoittaa sitä, että detektori kannattaa asettaa keskee interferenssikuviota rengasprofiiia mitattaessa. Keskeä kuviota ( q ' = 0) transmissiomaksimin ( d = m p ) kertauku saadaan kun asketaan: p p d = nf t m p D= = Þ n t f = m Þ nt m= f. Siis mitä suurempi on evyjen väimatka t sitä suurempi on m ja vastaavasti R.

5 Esimerkki: Ohessa eräää Fary-Perot-interferometriä mitattu rengasprofiii vaihe-eron d (round-trip phase difference) funktiona. Arvioi kuvan perusteea finesse-kerroin F ja siitä edeeen peiien heijastuskerroin r. Ratkaisu: Finesse-kerroin F saadaan esimerkiksi rengasprofiiin kontrastista yhtäön (.4.3) avua. Kontrastia varten uetaan kuvaajasta transmissiominimie Tmin = 0.05, joten T -T V = max min = = = 9, josta F = Tmax + Tmin / F / V - Finesse-kerroin saadaan myös yhtäön (.4.4) avua puoiarvoeveydestä d c = d/» 0.46 = / F. Tästä F = 8.9» 9. Heijastuskerroin asketaan määritemästä (.4.) 4r F= F r F r Þ ( ) ( + 4) +F =0 ( - r ) Þ r = ( + / F ) ± ( / F ) F + = ja r»

6 Esimerkki: Fary-Perot-interferometrin evyjen heijastuskerroin on r = 0,990. Laitteea tutkitaan vedyn Hα viivaa ( = 656,3 nm), jossa on kaksi komponenttia aaonpituuseroa 0,036 nm. a) Laske tarvittava erotuskyky, kun komponentit hautaan erottaa toisistaan. ) Laske se evyjen väimatka, joka tuottaa tarvittavan erotuskyvyn. Ratkaisu: a) erotuskyky 656,3 nm R= = = 4857, 4» (D ) min 0,036 nm ) evyjen väimatka: ratkaistaan ensin kertauku m erotuskyvyn (.4.7) ausekkeesta, jossa finesse-kerroin F voidaan askea heijastuskertoimen r avua määritemää (.4.) käyttäen. Lopuksi sitten peiien väimatka saadaan ausekkeesta m = n f t /. Siis 4r F= = ( - r ) æö R æp ö = 308,768» 309 R = ç m F Þ m = ç p è ø F è ø m 309 0,6563 μm t= =» 0 μm n f, Kommentti: Hyviä Fary-Perot-interferometreiä R on uokkaa kymmeniä mijoonia (esim. 07 ).

7 73 DIFFRAKTIO Optisea aueea vaon aaonpituus on hyvin yhyt ( : 0-5 cm). Vaoa voidaan hyvin kuvata geometrisen optiikan approksimaatioa ( 0 ), jossa siis vaoenergia etenee säteinä tai aatorintamina. Homogeenisessa ja isotrooppisessa väiaineessa säteet etenevät suoraviivaisesti ja esimerkiksi vaon tiee asetettu esine muodostaa terävän varjon. Diffraktioa tarkoitetaan vaon kuun poikkeamista geometrisen optiikan ennustamata reititä. Diffraktio on siis seurausta vaon aatouonteesta. Sitä esiintyy erityisesti tianteissa, joissa vao kukee ähetä esineiden reunoja tai suuri joukko säteitä kohtaa toisensa. Pisteähde varjostin terävä reuna geometrinen varjo Viereisen kuvan kokeessa diffraktio imenee vaon taipumisena geometrisen varjon aueee. Varjon reuna ei oe enää terävä ja varjossa nähdään kirkkaita ja tummia juovia. Diffraktion tutkimisessa on tapana erottaa kaksi eri tapausta: Fraunhoferin diffraktio ja Fresnein diffraktio. Fraunhoferin diffraktiossa vaoähde ja varjostin ovat kaukana diffraktion aiheuttamasta esineestä (reunasta, aukosta...), jooin aatorintamia voidaan käsiteä tasoaatoina. Puhutaan myös kaukaisen kentän diffraktiosta. Fresnein diffraktiossa aatorintamien kaareutuminen on otettava huomioon ja puhutaankin ähikentän diffraktiosta.

8 74. FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA Lasketaan Fraunhoferin diffraktiokuvio, jonka aiheuttaa yksi suorakumion muotoinen kapea rako (pituus >> eveys). Vaonähde on kaukana, joten rakoon tuevat aatorintamat ovat tasoaatoja. Käytännössä tianne saavutetaan asettamaa vaoähde positiivisen inssin pottopisteeseen (kuva). Raon eveys on. Huygensin periaatteen mukaan aatorintaman saavuttaessa raon tason, jokainen raon piste toimii paoaatorintaman keskuksena. Näiden uusien aatojen resutantti pisteessä P asketaan superpositioperiaatteen mukaisesti. Pisteessä P yhteenaskettavat aaot eivät oe samassa vaiheessa, koska niiden väie syntyy (optinen) matkaero D. Lasku etenee näin: Jaetaan rako ds :n suuruisiin akioihin ja asketaan kunkin akion tuottama aato pisteeseen P. Lopuksi asketaan kokonaisvaikutus integroimaa yi raon. Rakoeementistä ds ähtevä paoaato pisteessä P on

9 75 æ de ö (..) dep = ç 0 ei ( kr -w t ), r è ø missä de0 on ampitudi (yksikköetäisyydeä) ja r optinen matka rakoeementistä ds pisteeseen P (ks. kuva) Paoaaosta: Yeisesti paoaaossa "aato-osa" (esim. ei ( kr -w t ) ) on kuten tasoaaossa, mutta ampitudi ei oe vakio vaan pienenee kääntäen verrannoisena etäisyyteen Pisteen P etäisyys raon keskipisteestä on r0, joten kuvan mukaisesti r = r0 + D = r0 + s sin q. Kun tämä sijoitetaan (..):een, tuee æ de0 ö i[ k ( r0 +D ) -w t ] æ de0 ö i[ k ( r0 +D ) -w t ] dep = ç.»ç e e r r + D è 0 ø è 0 ø Approksimaatio voidaan tehdä, koska D = r0. On huomattava, että vastaavaa approksimaatiota ei saa tehdä vaiheessa. Hyvin pienetkin vaiheen muutokset (ae aaonpituuden) saavat aikaan suuria muutoksia opputuoksessa. Rakoeementistä ds ähtevän säteiyn ampitudi riippuu tietysti akion suuruudesta (eveydestä ds ), ts.

10 de 76 = E ds, 0 L missä E L on raon ampitudi eveysyksikköä kohti. Fraunhoferin diffraktion tapauksessa rakoa vaaistaan tasaisesti, joten E L on vakio yi koko raon. Rakoeementin aiheuttamaksi aaoksi pisteessä P tuee siis æ ELds ö i( kr0 + kssin q-wt ) dep = ç e r è 0 ø ja koko raon tuottama aato saadaan integroimaa raon eveyden yi + / æel ö ikssin q i( kr0 -wt) EP =ç e ds e r ò. (..) è 0 -/ ø Lasketaan: + / ò - / e iks sinq ds ik sinq ik sinq + / iks sinq ik( / )sin q -ik( / )sinq = é ëe ù û = ( e -e ) - / = sin[ k ( / )sin q] sin[ k ( / )sin q] ksinq = = k ( / )sinq sinc( ), missä on käytetty merkintää sin sin k p = q = q. (..3) Kokonaisaato pisteessä P on siis E P E sin e r L i( kr0 -wt) =, jonka ampitudi (merkitään sitä ER : ä) on Irradianssiksi tuee I E R 0 = EL sin r. 0 e 0 c 0 L sin E e c æ E ö R r0 = = ç è ø,

11 josta edeeen 77 I I = 0sinc, (..4) missä vakiotekijät on koottu kertoimeksi I 0. Kapean raon Fraunhoferin diffraktiokuvio on siis sinc-funktion neiö. Kuvassa diffraktiokuvio (katkoviiva) on piirretty : n funktiona. Kuvion keskeä on päämaksimi, siä sinc, kun 0 (siis kuma q 0) ja I = I0. Kuvion muut ääriarvot öydetään esimerkiksi askemaa d æsin ö æsin öæcos -sin ö 0 d ç = ç = ç è ø è øè ø Minimit öydetään ensimmäisestä tekijästä (tai suoraan..4:stä) sin : n noakohdista (kunhan ¹ 0). Minimeie pätee siis = sin k q = mp, missä m =±, ±, K Sivumaksimien paikat saadaan jäkimmäisestä tekijästä cos - sin = 0 Þ tan =. Tämän transkendenttiyhtäön ratkaisut ovat äheä minimien puoiväejä, ts arvoja = ( m + ) p. Seuraavassa tauukossa on esitetty tarkat ratkaisut ja ym. approksimaatioa asketut:

12 78 = (tark):.43p,.46p, 3.47p,... = (appr):.50p,.50p, 3.50p,... Mieivataisen tarkkoja ratkaisuja on heppo askea tavaisea askimea (opettee). Tauukosta havaitaan, että approksimaatio on sitä tarkempi mitä kaukaisemmasta sivumaksimista on kysymys. Ensimmäisen sivumaksimin ja päämaksimin irradianssien suhde yhtäön (..4) perusteea on: I I =.43p = 0 sin (.43 p) /(.43 p) = = 0,047. Ensimmäisen sivumaksimin irradinssi on siis vain noin 4.7% päämaksimin irradinssista. Kuvissa aa on esitetty diffraktiokuvion muodostuminen varjostimee, jonka etäisyys raosta on L (? ja? y ):

13 79 Varjostimea kohdassa y: q = y/l p p y = k sin q» q = L æ sin ö I = I0 ç è ø Aa vieä mitä todeinen kuvio näyttää: Esimerkki: Fraunhoferin kapean raon diffraktiokokeessa raon eveys on 5. Laske a) päämaksimin kumaeveys, ts. raon keskipisteestä katsottuna kuma-aukeama päämaksimin viereisiin. minimeihin, ) päämaksimin puoiarvoeveys (FWHM = Fu Width at Haf Maximum). Ratkaisu: a) ensimmäiset minimit = ±p (ks.sivu 77). On siis p p k sin q» q = (5 )q = 5pq = ±p Þ q = ±/ 5 = ±0,0 rad Päämaksimin kumaeveys on siten Dq = 0,40 rad

14 ) Puoiarvokohdassa (ks. kuva) 80 æsin ö / I = I0ç I0 = è / ø sin/ Þ = / Þsin/ - / = 0. Ratkaistaan numeerisesti iteroimaa askimea:. arvaus kuvasta / = p / =,57 / sin / / (5 ) / 5 / k p p = q» q q pq = = Þ /,39 q = / 0,0885 5p = 5p = rad ja oputa siis puoiarvoeveys on q /» 0,8rad Puoiarvoeveys (0,8 rad) on siis hieman vähemmän kuin puoet koko eveydestä (0,40/ = 0,0 rad)

Erotusrajaksi on määritelty maksimin puoliarvoleveys:

Erotusrajaksi on määritelty maksimin puoliarvoleveys: 69 Erotusrajaksi on määritety maksimin puoiarvoeveys: ' Tarvittava juovien väinen etäisyys on siis 4 ( D d) min = d c =. (.4.5) F Tätä vaihe-eroa vastaava aaonpituusero saadaan seuraavasti: p d = D, missä

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò,

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò, 9 1.3 KAHDN RAON DIFFRAKTIO Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla = ò, + / L ikssinq R e ds r - / missä s on alkion ds etäisyys raon keskipisteestä, ja

Lisätiedot

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA 73 DFFAKTO Optisella alueella valon aallonpituus on hyvin lyhyt ( 5 cm). Valoa voidaan hyvin kuvata geometrisen optiikan approksimaatiolla ( ), jossa siis valoenergia etenee säteinä tai aaltorintamina.

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA 1 VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA MOTIVOINTI Tutustutaan laservalon käyttöön aaltooptiikan mittauksissa. Tutkitaan laservalon käyttäytymistä yhden ja kahden kapean raon takana. Määritetään

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron 9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

AVARUUSGEOMETRIA. Suorat ja tasot avaruudessa

AVARUUSGEOMETRIA. Suorat ja tasot avaruudessa VRUUSGEOMERI varuusgeometria tarkasteee kuvioita, joiden kaikki osat eivät oe samassa tasossa. Sana avaruus tarkoittaa yeisesti n-uotteista, n 3, avaruutta. (Lukiossa ähes aina n = 3.) Suorat ja tasot

Lisätiedot

7 VALON DIFFRAKTIO JA POLARISAATIO

7 VALON DIFFRAKTIO JA POLARISAATIO 7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä

Lisätiedot

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 36 Diffraktio PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Ääni kuuluu helposti nurkan taakse Myös valo voi taipua

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio Diffraktio yhdestä raosta Yhden raon kuvion intensiteetti Monen

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50:

Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: 173 ------------------------------------------------Esimerkki: Tarkastellaan puolipallon muotoista paksua linssiä, jonka taitekerroin on 1,50: Kaarevuussäteet R1 3 cm ja R. Systeemimatriisi on M R T R1,

Lisätiedot

Osoitetaan tämä nyt formaalisti esimerkkitehtävänä lähtien liikkeelle kombinatorisesta tuloksesta

Osoitetaan tämä nyt formaalisti esimerkkitehtävänä lähtien liikkeelle kombinatorisesta tuloksesta Viime uennon opussa äpikäydyssä esimerkkitehtävässä näimme, että ainakin mataissa kertauvuissa :stä pisteestä koostuvia yhtenäisiä graafeia q on äheinen yhteys yeiseen graafisummaan Q N vieäpä niin, että

Lisätiedot

= vakio = λ. V (x) V (0) = V (l) = 0.

= vakio = λ. V (x) V (0) = V (l) = 0. 6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

VALON DIFFRAKTIO JA POLARISAATIO

VALON DIFFRAKTIO JA POLARISAATIO 1 VALON DIFFRAKTIO JA POLARISAATIO 1 Työn tavoitteet Tässä työssä tutkit valoa aaltoliikkeenä. Tutustut valon taipumiseen eli diffraktioon, joka havaitaan esimerkiksi, kun monokromaattinen valo kulkee

Lisätiedot

Työn tavoitteita. 1 Johdanto

Työn tavoitteita. 1 Johdanto FYSP103 / K2 FRAUNHOFERIN DIFFRAKTIO Työn tavoitteita havainnollistaa valon taipumiseen (diffraktio) ja interferenssiin liittyviä ilmiöitä erilaisissa rakosysteemeissä sekä syventää kyseisten ilmiöiden

Lisätiedot

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018

KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018 Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

2 paq / l = p, josta suuntakulma q voidaan ratkaista

2 paq / l = p, josta suuntakulma q voidaan ratkaista 33 Esimerkki: Youngin kokeessa rakojen välimatka on 0, mm ja varjostin on m:n etäisyydellä. Valon aallonpituus on 658 nm. a) Missä kulmassa rakojen keskeltä katsottuna näkyy keskimaksimin viereinen minimi?

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 8 / Smithin-kartan käyttö siirtojohtojen kahden käytettävän sovituspalan tilanteessa

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 8 / Smithin-kartan käyttö siirtojohtojen kahden käytettävän sovituspalan tilanteessa SATE2010 Dnaaminen kenttäteoria sks 2011 1 / Tehtävä 1. Imaeristeisen injan (50 Ω), joka toimii taajuudea 500 MHz, päässä on kuorma Z L = (50 + j50) Ω. 3λ/-virittimen ensimmäinen sovituspaa on sijoitettu

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

Magneettiset materiaalit ja magneettikentän energia

Magneettiset materiaalit ja magneettikentän energia agneettiset ateriaait ja agneettikentän energia ateriaait jaetaan agneettisten oinaisuuksiensa ukaan koeen uokkaan: diaagneettiset, paraagneettiset ja ferroagneettiset aineet. ateria koostuu atoeista,

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 )

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 ) 58 Yhtälön (0.4.) mukaan peräkkästen hejastuneen säteen optnen matkaero on D= n tcosqt ja vahe-eroks tulee (kun r = 0) p = kd= D. (.3.) l ässä on huomattava, että hejastuksssa tapahtuvat mahollset p :

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 11 Interferenssi (YF 35) Interferenssi ja koherentit

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.

Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾. 24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

HILA JA PRISMA. 1. Työn tavoitteet. 2. Työn teoriaa

HILA JA PRISMA. 1. Työn tavoitteet. 2. Työn teoriaa Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt. Työn tavoitteet Tässä työssä tutustut hilaan ja prismaan, joiden avulla valo voidaan hajottaa eri väreiksi eli eri aallonpituuksiksi.

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I PHYS-A140 Aineen rakenne C34 1. Monokromaattinen valo kulkee kaden vierekkäisen raon läpi. Rakojen takana olevalla varjostimella avaitaan valoisia ja mustia juovia. Rakojen välimatka d on samaa suuruusluokkaa

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima

gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima aup Kuinka pajon käytät kurikirjaa (tai jotain muuta oppikirjaa)? a) Tututun aiheeeen ennen uentoja b) Luen kirjaa uentojen jäkeen c) Luen oppikirjaa ähinnä akareita tehdeä d) n koke oppikirjaan aup Kappae

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3.

Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): ja kuvausyhtälö (6.3.2) voidaan kirjoittaa mukavaan muotoon + =. (6.3. 135 Kuvan etäisyys tässä tapauksessa on ns. polttoväli (focal length): R ì f > 0, kovera peili f = í (6.3.3) î f < 0, kupera peili ja kuvausyhtälö (6.3.) voidaan kirjoittaa mukavaan muotoon 1 1 1 + =.

Lisätiedot

Fysiikan valintakoe klo 9-12

Fysiikan valintakoe klo 9-12 Fysiikan valintakoe 2.5.208 klo 9-2. Koripalloilija heittää vapaaheiton. Hän lähettää pallon liikkeelle korkeudelta,83 m alkuvauhdilla 7,53 m/s kulmassa 43,2 vaakatason yläpuolella. Pallon lähtöpisteen

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Osoitetaan esimerkin avulla, että valonnopeuden invarianssi johtaa myös välimatkojen suhteellisuuteen. Puhutaan pituuden kontraktiosta.

Osoitetaan esimerkin avulla, että valonnopeuden invarianssi johtaa myös välimatkojen suhteellisuuteen. Puhutaan pituuden kontraktiosta. Pituuden kontraktio Luento Luento Osoitetaan esimerkin avua, että vaonnopeuden invarianssi johtaa myös väimatkojen suhteeisuuteen Puhutaan pituuden kontraktiosta Ks kuvaa aa Maire istuu junassa (koord

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Vesiliuoksen ph ja poh-arvot

Vesiliuoksen ph ja poh-arvot REAKTIOT JA TASAPAINO, KE5 Vesiiuoksen ph ja poh-arvot Taustaa: Happojen ja emästen aimeissa vesiiuoksissa oksonium- ja hydroksidi-ionien konsentraatiot ovat pieniä, ae 1,0 mo/. Esimerkiksi 0,1 moaarisen

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V.

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V. VALON DIFFRAKTIO 1 Johdanto Tässä laboratoriotyössä havainnollistetaan diffraktiota ja interferenssiä valaisemalla kapeita rakoja laservalolla ja tarkastelemalla rakojen takana olevalle varjostimelle syntyviä

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

FUNKTION KUVAAJAN PIIRTÄMINEN

FUNKTION KUVAAJAN PIIRTÄMINEN FUNKTION KUVAAJAN PIIRTÄMINEN Saat kuvapohjan painamalla @-näppäintä tai Insert/Graph/X-Y-POT. Kuvapohjassa on kuusi paikanvaraaja: vaaka-akselin keskellä muuttuja ja päissä minimi- ja maksimiarvot pstakselin

Lisätiedot

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde SYMBOLILUETTELO a [/s ] ihisen käveystä aiheutuva askettu kiihtyvyys x [] huoneen suurin eveys- tai pituus [] attian eveys eff [] attian värähteevän osan tehoinen eveys e=,78 [-] Neperin uku s [] attiapakkien

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

a ' ExW:n halkaisija/2 5/ 2 3

a ' ExW:n halkaisija/2 5/ 2 3 79 ------------------------------------------------- Esimerkki: Sama systeemi kuin edellä. a) Määritä kenttäkaihdin sekä tulo- ja lähtöikkunat. b) Piirrä äärimmäisten pääsäteiden kartio systeemin läpi.

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

35. Kahden aallon interferenssi

35. Kahden aallon interferenssi 35. Kahden aallon interferenssi 35.1 Interferenssi ja koherentit lähteet Superpositioperiaate: Aaltojen resultanttisiirtymä (missä tahansa pisteessä millä tahansa hetkellä) on yksittäisiin aaltoliikkeisiin

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot