VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

Koko: px
Aloita esitys sivulta:

Download "VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA"

Transkriptio

1 1 VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA MOTIVOINTI Tutustutaan laservalon käyttöön aaltooptiikan mittauksissa. Tutkitaan laservalon käyttäytymistä yhden ja kahden kapean raon takana. Määritetään laservalon aallonpituus. Laseria voidaan käyttää prosessiteollisuudessa jatkuvana ja tarkkana mittalaitteena. TEORIAA I Valon taipuminen (diffraktio) kapeassa raossa Rako AB (ks. Kuva 1.) on kohtisuorassa paperin tasoa vastaan. Raon tasossa on laserin valolla joka kohdassa sama vaihe. Huygensin periaatteen mukaan jokaisesta raon pisteestä lähtee raon taakse etenemään samassa vaiheessa oleva valoaalto. Nämä aallot interferoivat keskenään. Interferenssin seurauksena syntyy raon takana olevalle varjostimelle jaksottainen intensiteettijakautuma. Kuva 1. Kuvaan on piirretty raon AB taakse pisteeseen P kolmen valonsäteen reitit. Ylimmän ja alimman valonsäteen kulkema matkaero on = a sin θ. Koska valoaaltojen matkat raon AB takana sijaitsevan varjostimen keskipisteessä olevaan leikkauspisteeseen ovat raon reunoilta lukien pareittain yhtä pitkät, saadaan tähän intensiteettijakautuman keskipisteeseen valaistu kohta. Ensimmäisen kerran valo häviää kohdassa P, jos reunasäteiden matkaero on käytetyn valon aallonpituus λ. Voimme nimittäin ajatella raon jaetuksi suun-

2 nassaan esimerkiksi 100 osaan (yhtä hyvin 1000, 10000, jne.). Ensimmäisen ja 51. säteen matkaero on λ/2 samoin 2. ja 52., jne. joten valoaallot hävittävät toisensa pisteessä P. Toisen kerran valo häviää, kun matkaero on 2λ; kolmannen kerran, kun matkaero on 3λ. Kuvan (1) mukaan saadaan intensiteettiminimien paikat määräävä yhtälö missä k = 1, 2, 3,. a sinθ = kλ, (1) 2 Kuva 2. Kuvassa varjostimelle syntyvä taipumis- eli diffraktiokuvio yhden kapean raon tapauksessa. Minimien avulla voidaan määrätä käytetyn laservalon aallonpituus λ, jos tunnetaan raon leveys a sekä mitataan minimien poikkeamat y i (i=1,2,3, ) intensiteettijakautuman keskikohdasta ja varjostimen etäisyys D raosta AB. asinθ y 1 λ = a, (2) k D k missä k = 1, 2, 3,. Jos y on paljon pienempi kuin D, niin yhtälön (2) likimääräinen yhtäsuuruus pätee. II Valon taipuminen (diffraktio) kahdessa kapeassa raossa Kuva 3. Kaksi kapeaa rakoa, joiden leveydet ovat a ja niiden välimatka on d.

3 Jos toinen kuvan (3) raoista peitetään, saadaan varjostimelle kuvan (2) mukainen yhden raon intensiteettijakautuma. Jos taas toinen peitetään, saadaan edellisen päälle sen kanssa yhtenevä intensiteettijakautuma (rakojen pieni välimatka -luokkaa 0,1 mm ei vaikuta varjostimen noin 20 cm kuvioon huomattavia eroja). Samaan aikaan vaikuttavina eri raoista lähtevät valoaallot interferoivat keskenään. Tästä on seurauksena, että yhden raon intensiteettijakautumaan syntyy uusia pimeitä kohtia. Yhden raon maksimit jakautuvat näin ollen osiin. Osamaksimit sattuvat kohdille, jotka saadaan yhtälöstä d sinθ = nλ, (3) missä n = 0,1,2,. Rakojen lukumäärän lisääntyessä osamaksimit tulevat terävimmiksi (kapenevat) säilyen paikoillaan (yhtälö (3) voimassa). Suuretta n nimitetään interferenssin kertaluvuksi. Jos käytetty valo sisältää useampia aallonpituuksia, suuretta n kutsutaan spektrin kertaluvuksi. Yhtälön (3) perusteella voidaan määrittää joko käytetyn valon aallonpituus tai, jos se tunnetaan, niin rakojen välimatka d λ D d = n n λ. (4) sinθ y Yhtälön (4) likimääräinen yhtäsuurus pätee, jos varjostimen etäisyys rakosysteemistä D on paljon suurempi kuin osamaksimien etäisyys y. 3 Kuva 4. Tämä on taipumiskuvio kahden kapean raon tapauksessa (d = 3a).

4 4 II Laserin käyttö valon suuntauksessa Lasersuihku voidaan jakaa suoraksi viivaksi suuntaamalla se kohtisuorasti keskelle ohutta (luokkaa 5 mm) umpinaista lasitankoa. Tapahtuma on esitetty kuvassa (5). Kuva 5. Laser-valon jakaminen suoraksi viivaksi. Laserviivaa voidaan käyttää teollisuudessa ja rakentamisessa esiintyvissä suuntaustilanteissa. Laserviiva on suhteellisen helppo saada liikkumaan ohjatusti esimerkiksi kuvan (6) mukaisella järjestelyllä. Kuva 6. Laserviivan liikuttaminen. Peiliä 2 kiertämällä saadaan lasersuihku liikkumaan pitkin lasitankoa ja laserviiva liikkumaan ylhäältä katsottuna kuvan (7) mukaisesti. Kuva 7. Laserviivan liike ylhäältä katsottuna.

5 5 TYÖN SUORITUS JA TULOSTEN ARVIOINTI ÄLÄ KOSKAAN KATSO SUORAAN LASERVALOA KOHTI! I) Aseta yhden raon elementti optiseen penkkiin siten, että laservalo osuu suoraan rakoon. Säädä raon ja varjostimen etäisyys sopivaksi tarkastelemalla silmämääräisesti varjostimelle syntyvän diffraktiokuvion terävyyttä. Aseta varjostimelle A4 paperiarkki, ja merkitse siihen jokainen havaittavissa olevan minimi sekä intensiteettijakautuman keskikohta. Määrää minimien poikkeamat y i mittaamalla paperiarkille merkityt välimatkat 2y i (i = 1,2,3, ) (ks kuva (2)). Mittaa myös varjostimen etäisyys D. II) Kahden raon tapauksessa aseta kahden raon elementti optiseen penkkiin ja tarkista rakosysteemin tiedoista rakojen välimatka d. Mittaa osamaksimien etäisyys intensiteettijakautuman keskikohdasta välimatkojen 2y 2, 2y 4, 2y 5 ja 2y 7 perusteella. Yhden raon tapauksessa määrää laservalon aallonpituus λ ja kahden raon tapauksessa määrää rakojen välimatka d virherajoineen.

Työn tavoitteita. 1 Johdanto

Työn tavoitteita. 1 Johdanto FYSP103 / K2 FRAUNHOFERIN DIFFRAKTIO Työn tavoitteita havainnollistaa valon taipumiseen (diffraktio) ja interferenssiin liittyviä ilmiöitä erilaisissa rakosysteemeissä sekä syventää kyseisten ilmiöiden

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti: OPTIIKAN TYÖ Vastaa ensin seuraaviin ennakkotietoja mittaaviin kysymyksiin. 1. Mitä tarkoittavat

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò,

12.3 KAHDEN RAON DIFFRAKTIO. Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla E = ò, 9 1.3 KAHDN RAON DIFFRAKTIO Yhden kapean raon aiheuttama amplitudi tarkastelupisteeseen P laskettiin integraalilla = ò, + / L ikssinq R e ds r - / missä s on alkion ds etäisyys raon keskipisteestä, ja

Lisätiedot

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V.

Kuva 1. Kaaviokuva mittausjärjestelystä. Laserista L tuleva valonsäde kulkee rakojärjestelmän R läpi ja muodostaa diffraktiokuvion varjostimelle V. VALON DIFFRAKTIO 1 Johdanto Tässä laboratoriotyössä havainnollistetaan diffraktiota ja interferenssiä valaisemalla kapeita rakoja laservalolla ja tarkastelemalla rakojen takana olevalle varjostimelle syntyviä

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Diffraktio. Luku 36. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 36 Diffraktio PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Ääni kuuluu helposti nurkan taakse Myös valo voi taipua

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007 TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 Työ 24AB S4h. LASERTYÖ JA VALON SPEKTRIN ANALYSOINTI TYÖN TARKOITUS LASERTYÖ Lasereita käytetään esimerkiksi tiedonsiirrossa, analysoinnissa ja terapiassa ja työstämisessä.

Lisätiedot

VALON DIFFRAKTIO JA POLARISAATIO

VALON DIFFRAKTIO JA POLARISAATIO 1 VALON DIFFRAKTIO JA POLARISAATIO 1 Työn tavoitteet Tässä työssä tutkit valoa aaltoliikkeenä. Tutustut valon taipumiseen eli diffraktioon, joka havaitaan esimerkiksi, kun monokromaattinen valo kulkee

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio Diffraktio yhdestä raosta Yhden raon kuvion intensiteetti Monen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

HILA JA PRISMA. 1. Työn tavoitteet. 2. Työn teoriaa

HILA JA PRISMA. 1. Työn tavoitteet. 2. Työn teoriaa Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt. Työn tavoitteet Tässä työssä tutustut hilaan ja prismaan, joiden avulla valo voidaan hajottaa eri väreiksi eli eri aallonpituuksiksi.

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron

YOUNGIN KOE. varmistaa, että tuottaa vaihe-eron 9 10. YOUNGIN KOE Interferenssin perusteella voidaan todeta, onko jollakin ilmiöllä aaltoluonne. Historiallisesti ajatellen Youngin (ja myös Fresnelin) kokeet 1800-luvun alussa olivat hyvin merkittäviä.

Lisätiedot

24AB. Lasertutkimus ja spektrianalyysi

24AB. Lasertutkimus ja spektrianalyysi TURUN AMMATTIKORKAKOULU TYÖOHJ 1/7 24AB. Lasertutkimus ja spektrianalyysi 1. Työn tarkoitus Lasereilla on runsaasti käytännön sovelluksia esimerkiksi tiedonsiirrossa, aineiden analysoinnissa ja työstämisessä

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

7 VALON DIFFRAKTIO JA POLARISAATIO

7 VALON DIFFRAKTIO JA POLARISAATIO 7 VALON DIFFRAKTIO JA POLARISAATIO 7.1 Valon luonne Valon mallit: Hiukkasmalli: Valo koostuu pienistä hiukkasista Aaltomalli: Valo on aaltoliikettä Aaltohiukkasdualismi: Valoa voidaan tarkastella sekä

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA

12 DIFFRAKTIO 12.1 FRAUNHOFERIN DIFFRAKTIO KAPEASSA RAOSSA 73 DFFAKTO Optisella alueella valon aallonpituus on hyvin lyhyt ( 5 cm). Valoa voidaan hyvin kuvata geometrisen optiikan approksimaatiolla ( ), jossa siis valoenergia etenee säteinä tai aaltorintamina.

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

35. Kahden aallon interferenssi

35. Kahden aallon interferenssi 35. Kahden aallon interferenssi 35.1 Interferenssi ja koherentit lähteet Superpositioperiaate: Aaltojen resultanttisiirtymä (missä tahansa pisteessä millä tahansa hetkellä) on yksittäisiin aaltoliikkeisiin

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 11 Interferenssi (YF 35) Interferenssi ja koherentit

Lisätiedot

FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA

FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA FYSA2031/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

ja siis myös n= nk ( ). Tällöin dk l l

ja siis myös n= nk ( ). Tällöin dk l l Tästä havaitaan, että jos nopeus ei riipu aallonpituudesta, ts. ei ole dispersiota, vg = v p. Tilanne on tällainen esimerkiksi tyhjiössä, missä vg = v p = c. Dispersiivisessä väliaineessa v p = c/ n, missä

Lisätiedot

Fysiikan valintakoe klo 9-12

Fysiikan valintakoe klo 9-12 Fysiikan valintakoe 2.5.208 klo 9-2. Koripalloilija heittää vapaaheiton. Hän lähettää pallon liikkeelle korkeudelta,83 m alkuvauhdilla 7,53 m/s kulmassa 43,2 vaakatason yläpuolella. Pallon lähtöpisteen

Lisätiedot

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

Todennäköisyys ja epämääräisyysperiaate

Todennäköisyys ja epämääräisyysperiaate Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain

Lisätiedot

Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12

Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12 Valo aaltoliikkeenä DFCL3 Fysiikan hahmottava kokeellisuus kokonaisuus 12 Sirpa Pöyhönen ja Taisto Herlevi Ryhmä E4 Ohj. Ari Hämäläinen HY 30.11.2001 1 Sisällysluettelo 1. PERUSHAHMOTUS JA ESIKVANTIFIOINTI...3

Lisätiedot

2 paq / l = p, josta suuntakulma q voidaan ratkaista

2 paq / l = p, josta suuntakulma q voidaan ratkaista 33 Esimerkki: Youngin kokeessa rakojen välimatka on 0, mm ja varjostin on m:n etäisyydellä. Valon aallonpituus on 658 nm. a) Missä kulmassa rakojen keskeltä katsottuna näkyy keskimaksimin viereinen minimi?

Lisätiedot

35 VALON INTERFERENSSI (Interference)

35 VALON INTERFERENSSI (Interference) 13 35 VALON INTERFERENSSI (Interference) Edellisissä kappaleissa tutkimme valon heijastumista ja taittumista peileissä ja linsseissä geometrisen optiikan approksimaation avulla. Approksimaatiossa aallonpituutta

Lisätiedot

267 Rengasprofiilin muoto, eli transmittanssin (11.4.2) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta:

267 Rengasprofiilin muoto, eli transmittanssin (11.4.2) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta: 67 Rengasprofiiin muoto, ei transmittanssin (.4.) muoto d :n funktiona, riippuu siten ensisijaisesti heijastuskertoimen r arvosta: Kuvan käyrät vastaavat siis esimerkiksi interferenssikuvion keskikohdassa

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Fysiikan kotityöt. Fy 3.2 (24.03.2006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo)

Fysiikan kotityöt. Fy 3.2 (24.03.2006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo) Fysiikan kotityöt Fy 3. (4.03.006) Heikki Juva, Aarne Niittyluoto, Heidi Kiiveri, Irina Pitkänen, (Risto Uusitalo) Pieni kevennys tähän alkuun: Kuvalähteet: http://www.hotquanta.com/twinrgb.jpg http://www.visi.com/~reuteler/vinci/world.jpg

Lisätiedot

Seuraa huolellisesti annettuja ohjeita. Tee taitokset tarkkaan,

Seuraa huolellisesti annettuja ohjeita. Tee taitokset tarkkaan, Origami on perinteinen japanilainen paperitaittelumuoto, joka kuuluu olennaisena osana japanilaiseen kulttuuriin. Länsimaissa origami on kuitenkin suhteellisen uusi asia. Se tuli yleiseen tietoisuuteen

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

Valo, laser ja optiikka -havaintovälineistö

Valo, laser ja optiikka -havaintovälineistö Valo, laser ja optiikka -havaintovälineistö Pakkauksen sisältö 1 punainen laservalorasia, 635 nm,

Lisätiedot

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ 25B INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Kuva 1. Michelsonin interferometrin periaate. Michelsoninn interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästää

Lisätiedot

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I

π yd cos 2 b) Osoita, että lauseke intensiteetille sirontakulman funktiona on I PHYS-A140 Aineen rakenne C34 1. Monokromaattinen valo kulkee kaden vierekkäisen raon läpi. Rakojen takana olevalla varjostimella avaitaan valoisia ja mustia juovia. Rakojen välimatka d on samaa suuruusluokkaa

Lisätiedot

YO-KYSYMYKSIÄ KURSSISTA FY3: Aallot

YO-KYSYMYKSIÄ KURSSISTA FY3: Aallot YO-KYSYMYKSIÄ KURSSISTA FY3: Aallot 1. Selosta lyhyesti, mihin fysikaalisiin ilmiöihin perustuvat a) polaroivien aurinkolasien häikäisyä vähentävä vaikutus, b) veden pinnalla olevassa ohuessa öljykalvossa

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

Ajattele julkisivu jonka kauneus on ikuista

Ajattele julkisivu jonka kauneus on ikuista Ajattele julkisivu jonka kauneus on ikuista Half Round Portsmouth Shake Puolipyöreät paanupaneelit Asennusohje Puolipyöreät Asennusohje Yleistä Varoitus: Muista, että paneelit laajenevat ja kutistuvat

Lisätiedot

Kertaustehtävien ratkaisuja

Kertaustehtävien ratkaisuja Kertaustehtävien ratkaisuja. c) Jaksonaika on 300 s T = = 0,50 s, f = = 600 T 0,50 s =,0 Hz.. b) Lasketaan ensin jousivakion suuruus ja sitten värähdysaika. k = - mg,0 kg 9,8 m/ s = = 98, N/ m x 0,0 m

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)

- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) 1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Aallot. voima F on suoraan verrannollinen venymään x. k = jousivakio Jousivakion yksikkö [k] = 1 N/m = 1 kg/s 2

Aallot. voima F on suoraan verrannollinen venymään x. k = jousivakio Jousivakion yksikkö [k] = 1 N/m = 1 kg/s 2 Aallot Harmoie voima voima F o suoraa verraollie veymää x Hooke laki F = kx k = jousivakio Jousivakio yksikkö [k] = N/m = kg/s Jouse potetiaalieergia E p = kx syyttää harmoise värähtely yhtee värähdyksee

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Kuva 1. Michelsonin interferometrin periaate.

Kuva 1. Michelsonin interferometrin periaate. INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Michelsonin interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästä peilistä, kahdesta tasopeilistä ja varjostimesta.

Lisätiedot

Fysikaalisen kemian syventävät työt CCl 4 -molekyylin Ramanspektroskopia

Fysikaalisen kemian syventävät työt CCl 4 -molekyylin Ramanspektroskopia Fysikaalisen kemian syventävät työt CCl 4 -molekyylin Ramanspektroskopia Tiina Kiviniemi 11. huhtikuuta 2008 1 Johdanto Tämän työn tarkoituksena on tutustua käytännön Ramanspektroskopiaan sekä molekyylien

Lisätiedot

Mekko. Koot: 80(92)104(116)128(140)152 cm.

Mekko. Koot: 80(92)104(116)128(140)152 cm. Mekko Koot: 80(92)10(116)128(10)12 cm. Tarvikkeet: Napakkaa trikoota tai collegeneulosta 0,0(0,)0,8(0,90)1,00(1,0)1,1 m, leveys 10 cm ja trikoota halkiokaitaleisiin ja an 0,20 m, leveys 10 cm. 1, cm:n

Lisätiedot

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta

Lisätiedot

Kirjanen. TAKE-hanke. Kirsi Träskelin

Kirjanen. TAKE-hanke. Kirsi Träskelin Kirjanen TAKE-hanke Tarvikkeet: kierrätyspahvia, paperia, ohutta aaltopahvia, kierrätyskangasta tai tapettia yms. suttupaperia suojaukseen liimaa ja liimapensseli Sakset, mattoveitsi sekä leikkausalusta

Lisätiedot

Ajotaitomerkkisäännöt matkailuautolle voimaan 1.1.2012

Ajotaitomerkkisäännöt matkailuautolle voimaan 1.1.2012 Ajotaitomerkkisäännöt matkailuautolle voimaan..202 Tarkoitus on saada jokainen karavaanari kiinnostumaan ajotaitonsa kehittämisestä oman ajoneuvonsa käsittelyssä. On tärkeää, että mahdollisimman moni kokee

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut.

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. LUKUJONOT 2 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. 2, 4,, 8,, 12,,, 7,, 3, 1 3) Keksi oma lukujono ja kerro

Lisätiedot

2.1 Yksinkertaisen geometrian luonti

2.1 Yksinkertaisen geometrian luonti 2.1 Yksinkertaisen geometrian luonti Kuva 2.1 Tiedon portaat Kuva 2.2 Ohjelman käyttöliittymä suoran luonnissa 1. Valitse Luo, Suora, Luo suora päätepistein. 2. Valitse Pystysuora 3. Valitse Origo Origon

Lisätiedot

Radiointerferometria. Plateau de Bure (millimetrialue) Very Large Telescope (näkyvä valo ja infrapuna)

Radiointerferometria. Plateau de Bure (millimetrialue) Very Large Telescope (näkyvä valo ja infrapuna) Radiointerferometria Plateau de Bure (millimetrialue) Very Large Telescope (näkyvä valo ja infrapuna) Sähkömagneettiset aallot (1) Maxwellin yhtälöistä seuraa homogeeniset aaltoyhtälöt sähkökentän voimakkuudelle

Lisätiedot

9 VALOAALTOJEN SUPERPOSITIO

9 VALOAALTOJEN SUPERPOSITIO 09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,

Lisätiedot

VALONTAITTOMITTARIN KÄYTTÖ

VALONTAITTOMITTARIN KÄYTTÖ VALONTAITTOMITTARIN KÄYTTÖ MERKITSE KUVAAN VALONTAITTOMITTARIN OSAT. 1. Okulaarin säätörengas 2. Asteikkorengas 3. Käyttökatkaisin 4. Linssipitimen vapautin 5. Linssialusta 6. Linssipidin 7. Linssipöytä

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

Asiaa käsitteleviä artikkeleita on koottu kansioon, jonka saa lainaan oppilaslaboratorion kopista. s ja kontaktipotentiaalierosta K.

Asiaa käsitteleviä artikkeleita on koottu kansioon, jonka saa lainaan oppilaslaboratorion kopista. s ja kontaktipotentiaalierosta K. FYSP106 / 1 VALOSÄHKÖINEN ILMIÖ Työssä määritetään valosähköisen ilmiön avulla Planckin vakion ja elektronin varauksen suhde h/e. Valolähteenä käytettävän kaasunpurkausputken spektristä erotetaan eri aallonpituudet

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 8 Tavoitteet Sähkömagneettiset aallot Sähkömagneettisten aaltojen energia ja liikemäärä Seisovat sähkömagneettiset aallot

Lisätiedot

Fiskars Boordilävistäjä

Fiskars Boordilävistäjä Fiskars Boordilävistäjä Paperi on helppo kohdistaa oikeaan kohtaan boordilävistäjän apuviivojen avulla. Suuri painike, jota on helppo käyttää. Useita eri kuviovaihtoehtoja Maksimipaperinpaksuus 180 g,

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

Energiapuun mittaus. Antti Alhola MHY Päijät-Häme

Energiapuun mittaus. Antti Alhola MHY Päijät-Häme Energiapuun mittaus Antti Alhola MHY Päijät-Häme Laki puutavaran mittauksesta Laki puutavaran mittauksesta (414/2013) Mittausta koskevista muuntoluvuista säädetään METLAN määräyksillä. Muuntoluvut ovat

Lisätiedot

Tee itse: Kangashuppu Serla Talousarkki -pakkaukselle

Tee itse: Kangashuppu Serla Talousarkki -pakkaukselle Nopea apu arjen tilanteisiin, yhden käden käänteessä. Tee itse: Kangashuppu Tarvikkeet 25 cm tukevaa, joustamatonta kangasta (leveys vähintään 130 cm) 18 cm ohutta kuminauhaa 2 nappia (halkaisija 1,5 2,5

Lisätiedot

SOTILASPENKKIPUNNERRUS

SOTILASPENKKIPUNNERRUS 1(5) SOTILASPENKKIPUNNERRUS 1 YLEISTÄ Kilpailu on penkkipunnerruskilpailu, jossa nostetaan yhdellä nostokerralla kilpailijan painoon suhteutettuna mahdollisimman suuri toistomäärä. Kilpailussa käytetään

Lisätiedot

KUITUPUUN PINO- MITTAUS

KUITUPUUN PINO- MITTAUS KUITUPUUN PINO- MITTAUS Ohje KUITUPUUN PINOMITTAUS Ohje perustuu maa- ja metsätalousministeriön 16.6.1997 vahvistamaan pinomittausmenetelmän mittausohjeeseen. Ohjeessa esitettyä menetelmää sovelletaan

Lisätiedot

KESKEISIMMÄT OPPIMISTAVOITTEET KOROSTETTAVAT YDINKOHDAT. TEKNISET TAIDOT kuljettaminen

KESKEISIMMÄT OPPIMISTAVOITTEET KOROSTETTAVAT YDINKOHDAT. TEKNISET TAIDOT kuljettaminen 100 SA KESKEISIMMÄT OPPIMISTAVOITTEET KOROSTETTAVAT YDINKOHDAT TEKNISET TAIDOT kuljettaminen syöttäminen syötön vastaanottaminen PELITAIDOT pallollinen pelaaja palloton pelaaja SÄÄNNÖT sähly koulupelimuotona

Lisätiedot

Paradise 6K ja 8K. Asennusohjeet Huvimajoille. Tarvittavat työvälineet asennuksessa. Perustus. Pohja 2.2.2015 1

Paradise 6K ja 8K. Asennusohjeet Huvimajoille. Tarvittavat työvälineet asennuksessa. Perustus. Pohja 2.2.2015 1 Asennusohjeet Huvimajoille Paradise 6K ja 8K Tarvittavat työvälineet asennuksessa. Vatupassi, vasara, mattopuukko, mittanauha, ruuviväännin, (esim. akkuporakone), TORX-ruuvipääsarja, poranterä 4 mm ja

Lisätiedot

A* Reitinhaku Aloittelijoille

A* Reitinhaku Aloittelijoille A* Reitinhaku Aloittelijoille Alkuperäisen artikkelin kirjoittanut Patrick Lester, suomentanut Antti Veräjänkorva. Suom. huom. Tätä kääntäessäni olen pyrkinyt pitämään saman alkuperäisen tyylin ja kerronnan.

Lisätiedot

Rakennusprojekti Rakenna penkki, joka on samalla säilytyslaatikko

Rakennusprojekti Rakenna penkki, joka on samalla säilytyslaatikko Rakennusprojekti Rakenna penkki, joka on samalla säilytyslaatikko Rakenna penkki, jonka kannen alle voit kätkeä muovisen pehmustelaatikon. Laatikon ison lokeron mitat ovat 46 x 116 x 55 cm. Useimmat muoviset

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot