Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia."

Transkriptio

1 Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin virta i liikkuu generaattorista vastaanottajaan R, määräytyy kulkusuunta generaattorin tuottaman jännitteen v perusteella (kuva 1). Vastaanottajaan kulkeva suora teho R on tällöin yhtä suuri suureiden U ja I:n kanssa. i Generaattori Kuva1 Vastaanottaja Mikäli jännite ja virta ovat DC, on keskimääräinen teho U x I yhtä kuin välitön teho U x I. Mikäli jännite ja virta ovat sini AC, on jännitteen ja virran välillä yleensä vaihesiirto (kuva 2). Jännitteen v sekä virran i suora arvo lasketaan seuravien kaavojen mukaisesti: v = U max cos ωt i = I max cos (ωt - ) Jossa ω, pulssi, on suhteessa taajuuteen. f (ω = 2 x π x f). T=1/f Kuva 2

2 Vaihesiirto lasketaan yleensä positiiviseksi virran seuratessa jännitettä viiveellä. Suoran tehon arvo voidaan arvioida seuraavan kaavan mukaisesti: U max. I max. cos ω. cos (ωt - ). Suureelle on saatava keskiarvo, jotta generaattorin (G) vastaanottimeen (R) tuottama teho olisi nähtävissä. Kyseistä tehoa kutsutaan pätötehoksi: P V max I max 2 cos V eff cos P = U x I X cos ω Tehomittari suorittaa tämän laskelman joko elektro- tai ferrodynaamisen laitteen avulla, tuottamalla DC-virtaa tai -jännitettä, mikä on suhteessa tehoon. Saadut mittaustulokset näkyvät laitteen näytöllä. Vaihesiirron sijaitessa virran ja jännitteen välillä, pätee seuraava AC-virroille kolmen eri suurein: Näennäisteho S = U eff. I eff, volttiampeereissa (VA), määrittelee jännitteen U eff ja virran I eff vastaanottimessa. Tehokerroin: cos P S P V eff virran ja jännitteen ollessa sinimuotoisia. Loisteho Q = U eff. I eff. sin, reaktiivisissa volttiampeereissa (VAr). Tämä voidaan mitata wattimittarin avulla mikäli jännite U max. cos ωt on vaihesiirretty π/2, eli: U max x cos (ωt -π/2). Saadaan kaava: V max I max cos t 2 cos t joka ilmoitetaan muodossa: Q V max I max 2 cos 2 V eff sin Mikäli P ja Q tunnetaan, voidaan laskea näennäistehon arvo sekä tehokerroin: Näennäisteho: S P 2 Q 2 Tehokerroin: PF P S P P 2 Q 2 Koska tunnetaan seuraavat suureet: pätöteho, loisteho, näennäsiteho sekä tehokerroin, saadaan suoritettua oikeanalaisia laskelmia seuraaville parametreille: kuormalle (kulutettu), cos :lle sekä muille käyttöä rajoittaville tekijöille. Kyseisiin mittauksiin käytettävät tehomittarit ovat tänä päivänä lähes poikkeuksetta elektronisia.

3 Pätötehon mittaus 4-johdin tasapainoinen 3-vaihemittaus (3 vaihetta + nollajohdin) Kolmessa vaiheessaa kiertävät virrat ovat yhtä kuin rms-arvot I 1 = I 2 = I 3 ja niiden vaihesiirto suhteessa kuhunkin jännitteeseen. Mikäli U1N on yksittäinen, 1- ja nollajohtimen välillä mitattu jännite, näytetään 1 vaiheelta saatu teho, mikäli tehomittari kytketään kuvan 3 mukaisesti. Tämä arvo on: P 1 = U 1N. I 1.cos Tehon arvo yhteensä P on yhtä kuin kolmeen vaiheen teho P1. Kuva 3 HUOM: Kaava P 1 = U 1N. I 1. cos on kahden vektorin tulo. U 1N ja I 1 antaa seuraavan: P U1N I1 Sekä 3-vaihesovelluksissa: P U1N I1 U2N I2 U3N I3 3-johdin tasapainoinen 3-vaihemittaus (3 vaihetta ilman nollaa) Kolmen vaiheen virta yhteensä: I 1 = I 2 = I 3 Keinotekoinen nollajohdin on saatu aikaiseksi R, R sekä R :n avulla. Summa R + r tulee olla yhtä kuin R (r on yksikön jännitteen vastus).

4 Alla kuvaus tilanteesta, jossa U1N sijaitsee 1-vaiheen ja keinotekoisen nollan välissä (kuva 4). Kuva 4 P 1 = 1-vaiheen tehoarvo P yhteensä = 3 U 1N. I 1. Cos = 3P 1. Keinotekoinen nollajohdin lasketaan usein automaattisesti tasapainoisissa 3-vaihemittauksissa (3 vaihetta ilman nollaa) R, R sekä R -vastusten avulla. Tämä osa on merkitty katkoviivalla kuvassa 4. 3-johdin tasapainoinen 3-vaihemittaus (3 vaihetta ilman nollaa) kahden tehomittarin (wattimittarin) avulla. Sekä tasapainoisissa että epätasapainoisissa verkoissa ilman nollajohdinta pätee I 1 + I 2 + I 3 = 0. Tehon yleiskaava on tässä tapauksessa yksinkertaistettu muotoon: P U1N U 3N I1 U 2N U 3N I 2 so P U13 I1 U 23 I 2 Ja tästä syystä onnistuu kokonaistehon mittaus kahdella tehomittarilla (kuva 5). U 13 sekä U 23 ovat vaihe-vaihe jännitteitä mitattuna yksitellen jokaiselta vaiheelta väliltä vaihe 1 ja vaihe 3 sekä väliltä vaihe 2 ja vaihe 3.

5 Kuva 5 Alla kuvattuna kaksi eri mahdollisuutta: a) P 1 0 ja P 2 0, sillä P total = P 1 + P 2 b) tehomittarit osoittavat vastakkaisiin suuntiin. Toisen mittarin antaman tuloksen lukemiseksi; kytke mittari jännitepiiriin: U*.U :sta tulee tällöin U.U*. Saatu tulos luetaan negatiivisena arvona seuraavanlaisesti: P total = P 1 - P 2 Mikäli kyseessä on digitaalinen tehomittari, lasketaan molemmat arvot yhteen ja matemaattinen arvo näytetään. HUOM: on mahdollista käyttää ainoastaan yhtä tehomittaria kytkettynä molempiin mittauspisteisiin, mikäli käytössä on invertterikytkin. 4-johdin tasapainoinen 3-vaihemittaus (3 vaihetta sekä nolla) Kuva 6 Saadaan: P total = P 1 + P 2 + P 3 (kuva 6). Tässä tapauksessa meidän tulee käyttää 3 :a tehomittaria ja laskea yhteen saadut arvot. Mikäli mittausarvot ovat vakaita, voidaan mittaukset suorittaa yksinkertaisen tehomittarin avulla.

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Kondensaattori ja vastus piirissä (RC-piiri)

Kondensaattori ja vastus piirissä (RC-piiri) Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.

Lisätiedot

eql Laatumittauslaitteet eql Laatuvahti2 -mittari

eql Laatumittauslaitteet eql Laatuvahti2 -mittari eql Laatumittauslaitteet eql Laatuvahti2 -mittari EDF3GL / EDFTL Seppo Vehviläinen MX Electrix Oy seppo.vehviläinen@electrix.fi 1 Energia/laatumittari etäluenta 3G Ethernet (TCP/IP) energiamittaus: pätö-

Lisätiedot

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään

Lisätiedot

Energiamittarit ja mittalaitteet

Energiamittarit ja mittalaitteet R12 Energiamittarit ja mittalaitteet Kerää, mittaa, tallenna: Hagerin energiamittareilla ja mittalaitteilla saat tiedot koostetusti. Laaja valikoima tuotevalikoima suoramittaukseen 63A ja 100A sekä virtamuuntajamittaukseen

Lisätiedot

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan

Lisätiedot

S Piirianalyysi 1 2. välikoe

S Piirianalyysi 1 2. välikoe S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä

Lisätiedot

Kondensaattori ja vastus piirissä (RC-piiri)

Kondensaattori ja vastus piirissä (RC-piiri) Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.

Lisätiedot

Energian hallinta. Energiamittari. Malli EM23 DIN. Tuotekuvaus. Tilausohje EM23 DIN AV9 3 X O1 PF. Mallit. Tarkkuus ±0.5 RDG (virta/jännite)

Energian hallinta. Energiamittari. Malli EM23 DIN. Tuotekuvaus. Tilausohje EM23 DIN AV9 3 X O1 PF. Mallit. Tarkkuus ±0.5 RDG (virta/jännite) Energian hallinta Energiamittari Malli EM23 DIN Tuotekuvaus Tarkkuus ±0.5 RDG (virta/jännite) Energiamittari Hetkellissuureiden näyttö: 3 numeroa Energiamittaukset: 7 numeroa 3-vaihesuureet: W, var, vaihejärjestys

Lisätiedot

MIKROAALTOMITTAUKSET 1

MIKROAALTOMITTAUKSET 1 MIKROAALTOMITTAUKSET 1 1. TYÖN TARKOITUS Tässä harjoituksessa tutkit virran ja jännitteen käyttäytymistä gunn-oskillaattorissa. Piirrät jännitteen ja virran avulla gunn-oskillaattorin toimintakäyrän. 2.

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015 Kolmivaihejärjestelmän perusteet Pekka Rantala 29.8.2015 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä

Lisätiedot

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy

Lisätiedot

Energiamittarit ja mittalaitteet

Energiamittarit ja mittalaitteet R12 Energiamittarit ja mittalaitteet Kerää, mittaa, tallenna: Hagerin energiamittareilla ja mittalaitteilla saat tiedot koostetusti. Laaja valikoima tuotevalikoima suoramittaukseen 63A ja 100A sekä virtamuuntajamittaukseen

Lisätiedot

Oikosulkumoottorikäyttö

Oikosulkumoottorikäyttö Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen

Lisätiedot

Energian hallinta Energiamittari Tyyppi EM110

Energian hallinta Energiamittari Tyyppi EM110 Energian hallinta Energiamittari Tyyppi EM110 Yksivaihe energiamittari Luokka 1 (kwh) EN62053-21 mukaan Luokka B (kwh) EN50470-3 mukaan Sähkömekaaninen näyttö Energialukema näytössä: 6+1 numeroa Mittaukset

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1 SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Cewe Kiertorautamittarit AC Kiertokäämimittarit DC

Cewe Kiertorautamittarit AC Kiertokäämimittarit DC Keskus Taulumittarit Cewe Kiertorautamittarit AC Kiertokäämimittarit DC Pikakiinnitys painamalla 48x48 mm, 72x72 mm tai 96x96 mm Kosketussuoja vakiona Toiminta Cewe kiertorautamittarit on tarkoitettu AC-virran

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

SPTM 8A1, SPTM 6A2, SPTM 6A3 Muunninmoduulit. Käyttöohje ja tekninen selostus

SPTM 8A1, SPTM 6A2, SPTM 6A3 Muunninmoduulit. Käyttöohje ja tekninen selostus SPTM 8A1, SPTM 6A2, SPTM 6A3 Muunninmoduulit Käyttöohje ja tekninen selostus 1MRS 751733-MUM FI Julkaistu 99-12-07 Versio A Tarkastanut EP Hyväksynyt TK Pidätämme itsellämme oikeuden muutoksiin ilman ennakkoilmoitusta

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

ELEC-E8419 syksy 2016 Jännitteensäätö

ELEC-E8419 syksy 2016 Jännitteensäätö ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on

Lisätiedot

KÄYTTÖOHJE JÄNNITTEENKOESTIN BT-69. v 1.0

KÄYTTÖOHJE JÄNNITTEENKOESTIN BT-69. v 1.0 KÄYTTÖOHJE JÄNNITTEENKOESTIN BT-69 v 1.0 S&A MATINTUPA - WWW.MITTARIT.COM - 2009 1 1) 2/4mm testimittapäät (4mm mittapäät irroitettavissa) 2) Punainen mittapää, ( + / L ) kaikissa toiminnoissa 3) Musta

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

2. Sähköisiä perusmittauksia. Yleismittari.

2. Sähköisiä perusmittauksia. Yleismittari. TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!

Lisätiedot

Energian hallinta. Energiamittari. Tyyppi EM23 DIN. Tuotekuvaus. Tilausohje EM23 DIN AV9 3 X O1 X. Tyypin valinta

Energian hallinta. Energiamittari. Tyyppi EM23 DIN. Tuotekuvaus. Tilausohje EM23 DIN AV9 3 X O1 X. Tyypin valinta Energian hallinta Energiamittari Tyyppi EM23 DIN Luokka 1 (kwh) EN62053-21 mukaan Luokka B (kwh) EN50470-3 mukaan Luokka 2 (kvarh) EN62053-23 mukaan Tarkkuus ±0.5 lukemasta (virta/jännite) Energiamittari

Lisätiedot

Tasasähkövoimansiirto

Tasasähkövoimansiirto TAMK Tasasähkövoimansiirto 1 () Sähkölaboratorio Jani Salmi 13.04.014 Tasasähkövoimansiirto Tavoite Työn tavoitteena on muodostaa tasasähkövoimansiirtoyhteys kahden eri sähköverkon välille. Tasasähkölinkillä

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin

Lisätiedot

EQL sähkön laadun hallinta sähkönjakeluverkoille

EQL sähkön laadun hallinta sähkönjakeluverkoille EQL sähkön laadun hallinta sähkönjakeluverkoille Seppo Vehviläinen Tekninen johtaja, MX Electrix Oy seppo.vehvilainen@electrix.fi puh. +358 3 5784847 gsm, +358 405 797844 www.electrix.fi Anssi Seppälä

Lisätiedot

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Luento 6. DEE Piirianalyysi Risto Mikkonen

Luento 6. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 6 1 DEE-11000 Piirianalyysi Ensimmäinen välikoe keskiviikkona 19.11. klo 13-16 salissa S1. Aihepiiri: Tasasähköpiirin analyysi (monisteen luvut 1-6) 2 Solmupistemenetelmä

Lisätiedot

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015 1 SAT1050 PANAYYS / MAAT VSAPUSTO: APA, MATAB JA SMUNK -HAJOTUSTYÖ / SYKSY 2015 Harjoitustyön tarkoituksena on ensisijaisesti tutustua Aplac-, Matab ja Simulink simulointiohjelmistojen ominaisuuksiin ja

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.

Lisätiedot

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4. LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA

MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4. LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA OAMK / Tekniikan yksikkö MITTAUSTEKNIIKAN LABORATORIOTYÖOHJE TYÖ 4 LÄMPÖTILA ja PAINELÄHETTIMEN KALIBROINTI FLUKE 702 PROSESSIKALIBRAATTORILLA Tero Hietanen ja Heikki Kurki TEHTÄVÄN MÄÄRITTELY Työn tehtävänä

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Laboratoriotyöt Ti 8 10, Ti 10 12, To 10 12, Pe 8 10 (vain A) 4 labraa joka toinen viikko, 2 h 15 min, ei koeviikolla. Labrat alkavat ryhmästä riippuen

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA

MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA KAJAANIN AMMATTIKORKEAKOL Tekniikan ja liikenteen ala TYÖ 21 ELEKTRONIIKAN LABORAATIOT H.Honkanen MITTALAITTEIDEN OMINAISKSIA ja RAJOITKSIA TYÖN TAVOITE: Tässä laboratoriotyössä tutustumme mittalaitteiden

Lisätiedot

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan: SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619

KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619 KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619 2007 S&A MATINTUPA 1. ILMAVIRTAUKSEN MITTAUS Suora, 1:n pisteen mittaus a) Kytke mittalaitteeseen virta. b) Paina UNITS - näppäintä ja valitse haluttu mittayksikkö

Lisätiedot

TILAUSTIEDOT: F V F200 -sarjalle. 1.5 V F400 / F600 -sarjoille

TILAUSTIEDOT: F V F200 -sarjalle. 1.5 V F400 / F600 -sarjoille J F200 Sarja F400 Sarja F600 Sarja Malli F201 F203 F205 F401 F403 F405 F407 F601 F603 F605 F607 Leukojen maksimiaukeama 34 mm 48 mm 60 mm Näyttö LCD Taustavalaistu LCD Taustavalaistu LCD Taustavalaistu

Lisätiedot

ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla

ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Chydenius Saku 8.9.2003 Ikävalko Asko ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Työn valvoja: Pekka

Lisätiedot

SÄHKÖSUUREIDEN MITTAAMINEN

SÄHKÖSUUREIDEN MITTAAMINEN FYSP107 / K3 Sähkösuureiden mittaaminen yleismittarilla - 1 - FYSP107 / K3 YLEISMITTARILLA SÄHKÖSUUREIDEN MITTAAMINEN Työn tavoitteita oppia tuntemaan digitaalisen yleismittarin suorituskyvyn rajat oppia

Lisätiedot

11 mallia 1000 V CAT IV -luokituksella Kaiken tyyppisiin mittauksiin!

11 mallia 1000 V CAT IV -luokituksella Kaiken tyyppisiin mittauksiin! 11 mallia 1000 V CAT IV -luokituksella Kaiken tyyppisiin mittauksiin! F200 Sarja F400 Sarja F600 Sarja Monitoimiset AC, DC sekä AC+DC TRMS -pihdit F200 Sarja F400 Sarja 2000 A AC / 3000 A DC AC/DC differentiaalimittaukset

Lisätiedot

215.3 MW 0.0 MVR pu MW 0.0 MVR

215.3 MW 0.0 MVR pu MW 0.0 MVR Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi

Lisätiedot

Energianhallinta. Energiamittari. Malli EM10 DIN. Tuotekuvaus. Tilausohje EM10 DIN AV8 1 X O1 PF. Mallit

Energianhallinta. Energiamittari. Malli EM10 DIN. Tuotekuvaus. Tilausohje EM10 DIN AV8 1 X O1 PF. Mallit Energianhallinta Energiamittari Malli EM10 DIN Luokka 1 (kwh) EN62053-21 mukaan Luokka B (kwh) EN50470-3 mukaan Energiamittari Energia: 6 numeroa Energian mittaukset: kokonais kwh TRMS mittaukset vääristyneelle

Lisätiedot

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA 1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-4 2017, Kimmo Silvonen Osa IV, 9.10.2017 1 Vaihtovirran teho ja kompleksinen teho Tasavirran tehon kaava pätee myös vaihtovirran ja vaihtojännitteen hetkellisarvoille,

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on? SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee

Lisätiedot

Jännitteensäädön ja loistehon hallinnan kokonaiskuva. Sami Repo Sähköenergiatekniikka TTY

Jännitteensäädön ja loistehon hallinnan kokonaiskuva. Sami Repo Sähköenergiatekniikka TTY Jännitteensäädön ja loistehon hallinnan kokonaiskuva Sami Repo Sähköenergiatekniikka TTY Agenda Taustaa Tutkimuskysymykset ja tavoitteet Simuloitava malli Skenaarioiden tarkastelu Tekniset tulokset Taloudelliset

Lisätiedot

Sähkötekniikan perusteita. Pekka Rantala Syksy 2016

Sähkötekniikan perusteita. Pekka Rantala Syksy 2016 Sähkötekniikan perusteita Pekka Rantala Syksy 2016 Sisältö 1. Sähköasennuksia sääteleviä säännöksiä 2. Sähkötekniikan perusteita 3. 3-vaihejärjestelmä 4. Muutamia perusjuttuja 1. Sähköasennuksia sääteleviä

Lisätiedot

Valvonta- ja aikareleet Mittarit ja verkkoanalysaattorit Kuormituksenvartijat

Valvonta- ja aikareleet Mittarit ja verkkoanalysaattorit Kuormituksenvartijat Valvonta- ja aikareleet Mittarit ja verkkoanalysaattorit Kuormituksenvartijat Sisällys Verkkoanalysaattorit ja kwh-mittarit RS485-portilla... 3-4 Virta- ja jännitemittarit... 5 Väylämuuntimet... 6 Ampeerimittarit

Lisätiedot

Pumppujen käynnistys- virran rajoittaminen

Pumppujen käynnistys- virran rajoittaminen Pumppujen käynnistys- virran rajoittaminen Seppo Kymenlaakson Sähköverkko Oy Urakoitsijapäivä Sokos Hotel Vaakuna 12.3. 2014 Kouvola Käynnistysvirrat, yleistä Moottori ottaa käynnistyshetkellä ns. jatkuvan

Lisätiedot

Muuntajat ja sähköturvallisuus

Muuntajat ja sähköturvallisuus OAMK Tekniikan yksikkö LABORATORIOTYÖ 1 Muuntajat ja sähköturvallisuus 1.1 Teoriaa Muuntaja on vaihtosähkömuunnin, jossa energia siirtyy ensiokaamista toisiokäämiin magneettikentän välityksellä. Tavanomaisen

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

Lasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on

Lasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on ELEC-E849. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0, ohm/km ( ohmia/johto). Kunkin johdon virta on 000. Jätä rinnakkaiskapasitanssit

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

TEHOLÄHTEET JA MUUNTAJAT

TEHOLÄHTEET JA MUUNTAJAT TEHOLÄHTEET JA MUUNTAJAT TABILOIDUT TEHOLÄHTEET Galvaanisesti erotettu verkosta, elektronisella sulakkeella. Ohjaus ja automaatiojärjestelmien syöttöön, versiot 12 ja 24V. TABILOIDUT ÄÄDETTÄVÄT TEHOLÄHTEET

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIIANALYYSI I Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Kirja: luku 3 Luentomoniste: luvut 4.2, 4.3 ja 4.4

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

LOISSÄHKÖN TOIMITUKSEN JA LOISTEHORESERVIN YLLÄPITO

LOISSÄHKÖN TOIMITUKSEN JA LOISTEHORESERVIN YLLÄPITO SOVELLUSOHJE 1 (5) LOISSÄHKÖN TOIMITUKSEN JA LOISTEHORESERVIN YLLÄPITO 1 Johdanto Tätä ohjetta sovelletaan kantaverkosta Asiakkaalle luovutettavan loissähkön toimituksissa, toimitusten seurannassa ja loissähkön

Lisätiedot

SÄHKÖNMITTAUS PIENJÄNNITTEELLÄ

SÄHKÖNMITTAUS PIENJÄNNITTEELLÄ OHJE 1 (5) SÄHKÖNMITTAUS PIENJÄNNITTEELLÄ Yleistä Ohjeeseen on koottu Kymenlaakson Sähköverkko Oy:n uusien ja saneerattavien pysyvien pienjännitteisten suora- ja virtamuuntaja liitäntäisten mittausten

Lisätiedot

Sami Tikkanen sami.tikkanen@combicool.fi. kwh-mittaus kylmälaitoksesta

Sami Tikkanen sami.tikkanen@combicool.fi. kwh-mittaus kylmälaitoksesta Sami Tikkanen sami.tikkanen@combicool.fi kwh-mittaus kylmälaitoksesta kwh-mittaus ADAP-KOOL:ssa tai m2:ssa m2 virtamuuntajat 3 vaihesyöttö virtatieto AKL 111A jännitetieto kwh-mittarin ominaisuudet Mittari

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: EAOL 1/6 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet

Lisätiedot

5. Sähkövirta, jännite

5. Sähkövirta, jännite Nimi: LK: SÄHKÖOPPI Tarmo Partanen Laboratoriotyöt 1. Työ 1/7, jossa tutkit lamppujen rinnan kytkennän vaikutus sähkövirran suuruuteen piirin eri osissa. Mitataan ensin yhden lampun läpi kulkevan virran

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot

Tasavirtakäyttö. 1 Esiselostus. TEL-1400 Sähkömoottorikäyttöjen laboratoriotyöt

Tasavirtakäyttö. 1 Esiselostus. TEL-1400 Sähkömoottorikäyttöjen laboratoriotyöt Tasavirtakäyttö 1 Esiselostus 1.1 Mitä laitteita kuuluu Leonard-käyttöön, mikä on sen toimintaperiaate ja mihin ja miksi niitä käytetään? Luettele myös Leonard-käytön etuja ja haittoja. Kuva 1.1 Leonard-käyttö.

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q EEC-E89 syksy 06 Ttkitaan alla olevan kvan mkaista heikkoon verkkoon kytkettyä srjännitteistä tasasähköyhteyttä. Tässä tapaksessa syöttävän verkon impedanssi (Theveninin impedanssi, kvassa j on j0,65,

Lisätiedot