Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite

Koko: px
Aloita esitys sivulta:

Download "Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite"

Transkriptio

1 TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori. Lisäksi tutkitaan L-piirin sarjaresonanssia. Kaksoiskanavaoskilloskooppi KENWOOD S-45 (0 MHz), vaihtojännitelähde (500), vastus 0 Ω (säätövastus Phywe), vastus kω (esim. Phywe tai 305), käämejä, esim.(600r, 300r, 00r) sekä rautasydän + ies, kondensaattoreita, esim.( µf, nf ja, nf), yleismittari (DT-830B), virtamittari (0), äänitaajuusgeneraattori (3300), johtimia. Käämejä ja kondensaattoreita saa olla useita eri arvoisia. Vaihtovirtapiirin peruskomponentteja ovat vastukset käämit ja kondensaattorit (kuva ). Sähkölähteeseen kytketyt laitteet voidaan tulkita näiden erilaisiksi yhdistelmiksi. Kuva. Vastus (), kondensaattori () ja käämi (L). Sinimuotoinen vaihtojännite u = û sinω t synnyttää laitteeseen sinimuotoisen vaihtovirran i = î sin( ω t -ϕ). Suureet u ja i ovat jännitteen ja virran hetkelliset arvot, û ja î huippuarvot, ω= πf on vaihtojännitteen kulmanopeus ja f vaihtojännitteen taajuus (F4, s (59-6)). Käämin ja kondensaattorin ominaisuuksista johtuu, että jännitteen ja virran välillä on yleisessä tapauksessa vaihe-ero ϕ. Vaihtosähkömittarit osoittavat yleensä ns. tehollisarvoja, jota sinijännitteen tapauksessa ovat û tehollinen jännite U= î ja tehollinen virta I=. Sähkötekniikassa virrat ja jännitteet ilmoitetaan yleensä tehollisina arvoina (F4, s (77-84)). Sinimuotoista vaihtojännitettä tai virtaa, jonka taajuus on f, voidaan esittää kulmanopeudella ω= πf pyörivällä vektorilla eli osoittimella. Osoitinkuvio voidaan piirtää joko huippuarvoille û ja î tai tehollisarvoille U ja I.

2 Kuvassa on sinijännite u = û sinω t on esitetty huippuarvoosoittimen avulla. Osoitin (tasovektori) pyörii origon O ympäri. Osoittimen pituus on jännitteen huippuarvo û. Osoitin pyörii vastapäivään kulmanopeudella ω= πf. Hetkellinen arvo u on osoittimen y-komponentti. Jännitteen vaihekulma α= ω t on osoittimen kulmakoordinaatti vektorisuuntaan nähden. Tarkastelun alkuhetkellä t = 0 ja vaihekulma α= ω t = 0. (F4, s (83-84)). Kuva. Sinimuotoisen vaihtojännitteen osoitindiagrammin avulla. u = û sinω t kuvaaminen Jännitteen ja virran välinen vaihe-ero ϕ eri peruskomponenttien tapauksessa: -piiri: ϕ = 0, ts. puhtaasti resistiivisen kuorman tapauksessa virta ja jännite ovat aina samassa vaiheessa. Tehollisarvolle pätee U = I, jossa on vastuksen resistanssi. L-piiri: ϕ = +π/, ts. puhtaasti induktiivisen kuorman tapauksessa virta on 90 o jännitettä jäljessä (ks. kuva 3). Tehollisarvolle pätee U L = ωli, jossa ωl on käämin induktiivinen reaktanssi -piiri: ϕ = -π/, ts. puhtaasti kapasitiivisen kuorman tapauksessa virta on 90 o jännitettä edellä (ks. kuva 3). Tehollisarvolle pätee U = I, jossa ω ω on kondensaattorin kapasitiivinen reaktanssi. (F4, s (79-8), 05-6 (85-94)). Kuva 3. Vaihe-eron kaksi lajia käämissä ja kondensaattorissa.

3 Käämin induktiivinen reaktanssi X L = ωl ja kondensaattorin kapasitiivinen reaktanssi X = ω. Kulmanopeus ω= πf. Suure X = ωl - ω on piirin reaktanssi eli näennäisvastus. Kuva 4 esittää virtapiiriä, jossa vastus, ideaalinen käämi ja kondensaattori on kytketty sarjaan vaihtojännitelähteeseen. Kuva 4. L-piiri eli vastus, käämi, kondensaattori ja vaihtojännitelähde sarjassa. Kirchhoffin. lain mukaan hetkellinen jännite on u = u + u L + u. Koska komponenttien jännitteet ovat erivaiheisia, tehollisarvot on laskettava yhteen vektoriaalisesti. Tämä suoritetaan mukavammin kuvan 5 mukaisen osoitindiagrammin avulla. Koska hetkellinen virta on sama kaikkialla piirissä, valitaan virtaosoitin perussuunnaksi ja piirretään eri komponenttien jännitteet siihen nähden. Kuva 5. L-piirin a) jännitediagrammi ja b) impedanssidiagrammi. Kuviosta saadaan ( U U ) U = U +. L Sijoittamalla U = I, U L = IωL ja U = I saadaan ω U = I + ω L = IZ. ω Suure Z L = + ω on piirin impedanssi. ω Impedanssi on vaihtovirtapiirin sähkövirtaa rajoittava suure, vaihtovirtavastus. (U = ZI, vrt. Ohmin laki: U = I). (ks. F4, s. 8- (96-99)).

4 Myös impedanssi voidaan esittää osoitindiagrammina, joka saadaan jakamalla jännitediagrammin osoittimet virralla I (kuva 5b). Osoitinkuviosta saadaan edelleen vaihe-erolle ϕ lauseke ω L - U L U ω ϕ = arctan = arctan. U Piirin impedanssilla Z on minimiarvo, kun X L X = 0 eli ω L=. ω U Tällöin Z = ja sähkövirta I= saa suurimman arvonsa; I = I max = Z U. Tällöin vaihe-ero ϕ = 0 ja ω o L=, josta saadaan edelleen ω o=. ω o L Koska kulmanopeus ω o = πf o, niin maksimivirtaa vastaava piirin resonanssitaajuus f o =. π L Piiri on resonanssissa siihen kytketyn vaihtojännitteen kanssa, jos jännitteen taajuus on sama kuin resonanssitaajuus f o. (ks. F4, s (0-08)). adion tai television kanavanvalitsinpiiri on esimerkki L-piiristä. Antenni ottaa vastaan useiden lähiasemien lähettämää taajuutta. Muuttamalla piirissä kapasitanssia muutetaan piirin resonanssitaajuus samaksi kuin etsityn kanavan taajuus. On syntynyt (virta)resonanssi. Näin piiri värähtelee vain tämän halutun taajuuden mukaisesti ja vastaanottimesta kuuluu ja näkyy kyseisen kanavan ohjelmaa. (ks. Ohanian: Physics, second., ed., exp. p ). Suoritusohjeita Työssä mitataan jännitteiden vaihe-ero vaihtovirtapiirissä, jossa on a) kaksi vastusta (-piiri) b) käämi ja vastus (L-piiri) c) kondensaattori ja vastus (-piiri) Lisäksi tutustutaan resonanssiin.

5 Oskilloskoopin lämmettyä asetetaan kaikki kolme VAIABLE-säädintä asentoon: AL. Säädetään intensiteetti ja fokusointi sopivaksi (INTENSITY- ja FOUS säätimet). Säädetään kuvapisteen paikka (XY: ON) origoon POSITION-näppäimillä. Sitten asetetaan XY: OFF. Aseta A-GND-D näppäimet ( kpl) asentoon: A ja x0mag: OFF. Oskilloskoopin VETIAL MODE-kytkin käännetään ALT-asentoon, niin että kumpikin kanava on käytössä. Kummatkin näytöllä olevat signaalit kannattaa asettaa POSITION-säädöllä sopivaan kohtaan kuvaruutua. Tutkimuksessa seurataan oskilloskoopin kuvaruudulta kahta jännitettä ajan funktiona (ty - ja ty -koordinaatistot). Tutkimuksessa luetaan oskilloskoopin näytöltä jännitteiden vaihe-ero ϕ, joten oskilloskoopin aikasäätökytkimestä SWEEP TIME/DIV valitaan tarkasteltavan ilmiön kannalta tarkoituksenmukainen jakoväli ajalle (esim. ms). Pystyakseleille valitaan tarkoituksenmukainen jakoväli jännitteelle VOLTS/DIV-kiertokytkimestä (esim. V). Oskilloskoopin näytöllä oleva kuva näkyy tu-koordinaatistossa (ks. kuva 6). TIGGEING MODE näppäin asetetaan asentoon FIX (tai TV FAME tai TV LINE) ja variable-säätimet ovat asennossa cal. Koska tutkimuksessa maadoitetaan oskilloskoopin mittauskanavat samasta pisteestä komponenttien välistä, täytyy kanavaan (H) tuleva signaali invertoida (kertoa luvulla ). H INV: ON. Tällöin jännitehäviöt ovat kummassakin komponentissa samansuuntaiset. Oskilloskoopin kanavalta (H) luettavan jännitteen vaihe-ero kanavalta (H) luettavaan jännitteeseen verrattuna saadaan selville mittaamalla, kuinka paljon myöhemmin jännite kanavassa (H) on nolla. Tarkastellaan esimerkkinä kuvan 6 esimerkkiä. Kuva 6. Jännitteiden vaihe-eron mittaus oskilloskoopilla. Kuvan 6 tilanteessa jännite on nolla noin 5 ms:n kuluttua siitä, kun -kanavan (H) jännite on nolla. Koska T = 0 ms, niin 5 ms vastaa vaihe-eroa (5/0) π = π/. Kanavan (H) jännite on siis vaiheen π/ verran jäljessä kanavan (H) jännitettä. Oskilloskooppi voidaan kytkeä myös XY-asentoon, jolloin vaihtojännitesignaalin vaihe-ero voidaan määrittää ns. vaihe-ellipsistä (ks. kuva 7). Tällöin vaakasuuntaisena poikkeuttajana on taajuudeltaan tunnettu vaihtojännitesignaali. Jännitteiden vaihe-ero voidaan tällöin laskea lausekkeesta; ϕ = arcsin(a/b). Kuva 7. Vaihe-eroellipsi. Vaihe-ero ϕ = arcsin(a/b ).

6 Mittauspöytäkirja / työohjeet Tutkimus. Kaksi vastusta vaihtovirtapiirissä (-piiri) Tehdään kuvan 8 mukainen kytkentäkaavio, jossa mitataan kahden vaihtovirtapiirissä olevan vastuksen ja jännitehäviöiden vaihe-ero ϕ. Kummankin vastuksen ja resistanssi on 0 Ω. Vastuksina voidaan käyttää esim. säätövastuksia (Phywe), joiden resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6). Jännitteenä on 5,0 V A. Etsi sopivat oskilloskoopin säädöt. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME). Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: V, y : VOLTS/DIV: V. Aseta oskilloskoopin XY-näppäin asentoon: ON ja tutki oskilloskoopissa näkyvää kuvaajaa.. Millainen kuvaaja nyt saatiin? JÄNNITEHÄVIÖIDEN U =U (t) ja U =U (t) VÄLINEN VAIHE-EO - PIIISSÄ ON ϕ =. Kuva 8. Kaksi vastusta ja vaihtovirtapiirissä. Mitä vastuksen resistanssien kasvattaminen (kuva 8) vaikuttaa jännitteen kuvaajiin?

7 Tutkimus. Käämi ja vastus vaihtovirtapiirissä (L-piiri) Tehdään kuvan 9 mukainen kytkentäkaavio, jossa mitataan vaihtovirtapiirissä olevan käämin L ja vastuksen jännitehäviöiden vaihe-ero ϕ. Vastuksen resistanssi on 0 Ω. Vastuksena voidaan käyttää esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Kääminä voidaan käyttää esimerkiksi käämiä, jonka kierrosluku on 600r (0 Ω) tai vastaavaa. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6) ja vaihe-eroellipsistä (kuva 7). Vaihe-eroellipsi saadaan kuvaruudulle asetta oskilloskoopin XY-näppäin asentoon: ON. Jännitteenä 5,0 V A. Etsi sopivat oskilloskoopin säädöt. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME). Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: V, y : VOLTS/DIV: V. Kuva 9. Käämi L ja vastus vaihtovirtapiirissä. JÄNNITEHÄVIÖIDEN U L =U L (t) ja U =U (t) VÄLINEN VAIHE-EO L- PIIISSÄ ON ϕ =. Mitä jännitteen kuvaajiin vaikuttavat: a) vastuksen resistanssin lisääminen b) käämin kierrosluvun vähentäminen c) käämin rautasydämen ieksen liikuttaminen?

8 Tutkimus 3. Kondensaattori ja vastus vaihtovirtapiirissä (-piiri) Tehdään kuvan 0 mukainen kytkentäkaavio, jossa mitataan vaihtovirtapiirissä olevan kondensaattorin ja vastuksen jännitehäviöiden vaihe-ero ϕ. Vastuksen resistanssi on 0 Ω. Vastuksena voidaan käyttää esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6). Aseta oskilloskoopissa XY-näppäin asentoon: ON ja tutki myös vaihe-ellipsiä (kuva 7). Jännitteenä 5,0 V A. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME) Etsi sopivat oskilloskoopin säädöt. Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: 5 mv, y : VOLTS/DIV: V. Kuva 0. Vastus kondensaattori ja vastus vaihtovirtapiirissä. JÄNNITEHÄVIÖIDEN U =U (t) ja U =U (t) VÄLINEN VAIHE-EO - PIIISSÄ ON ϕ =. Miten vastuksen resistanssin lisääminen vaikuttaa jännitteen kuvaajiin? Miten kondensaattorin kapasitanssin muuttaminen vaikuttaa jännitekäyriin? Miten vaihe-ero muuttuu edellisissä tapauksissa?

9 Tutkimus 4. Vastus, kondensaattori ja käämi vaihtovirtapiirissä (L-piiri) Tehdään kuvan mukainen kytkentäkaavio, jossa määritetään L-piirin resonanssitaajuus ja tutkitaan oskilloskoopilla piirin jännitehäviöitä. Vastuksena on kω: vastus, 0,5 W (335) tai esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Funktiogeneraattorina (FG) on äänitaajuusgeneraattori (3300) ja virtamittarina esim. Is-vetin 0. Äänitaajuusgeneraattori (FG) kytketään piiriin amp. output:ista. Etsi sopivat frekvenssialueet (ANGE) ja amplitudit (AMPLITUDE). Työssä käytetään siniaaltoa frekvenssimodulointia (modulation: f.m). (Osc.out amplifier d.c level - -ei merkitystä tässä työssä). Käämi (300r) + rautasydän ja ies. Virtamittari (0); 0,05 A. Katso oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Etsi sopivat oskilloskoopin säädöt. Vrt. työ 3. Sarja- ja rinnakkaisresonanssi. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME) Esim. SWEEP TIME/DIV: 0, ms, y : VOLTS/DIV: mv, y : VOLTS/DIV: V. Muuta äänitaajuusgeneraattorin taajuutta ja etsi se taajuuden arvo, jolla sähkövirta on suurimmillaan ja jännitteiden vaihe-ero on nolla. Tutki oskilloskoopin jännitehäviöiden kuvaajia taajuutta muutettaessa. Kuva. Vastus, kondensaattori ja käämi L vaihtovirtapiirissä (L-piiri). Äänitaajuusgeneraattori; FG: amp. output, - siniaalto, - modulation: f.m ESONANSSITAAJUUS f o.

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin. VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS Tehtävä Välineet Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. Kaksoiskanavaoskilloskooppi KENWOOD

Lisätiedot

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä. Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,

Lisätiedot

OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ

OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ FYSP110/K2 OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ 1 Johdanto Työn tarkoituksena on tutustua oskilloskoopin käyttöön perusteellisemmin ja soveltaa työssä Oskilloskoopin peruskäyttö hankittuja taitoja. Ko. työn

Lisätiedot

Taitaja2004/Elektroniikka Semifinaali 19.11.2003

Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Teoriatehtävät Nimi: Oppilaitos: Ohje: Tehtävät ovat suurimmaksi osaksi vaihtoehtotehtäviä, mutta tarkoitus on, että lasket tehtävät ja valitset sitten

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

4B. Tasasuuntauksen tutkiminen oskilloskoopilla.

4B. Tasasuuntauksen tutkiminen oskilloskoopilla. TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 4B. Tasasuuntauksen tutkiminen oskilloskoopilla. Teoriaa oskilloskoopista Oskilloskooppi on laite, joka muuttaa sähköisen signaalin näkyvään muotoon. Useimmiten sillä

Lisätiedot

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1 FY7 Sivu 1 Sähkömagnetismi 24. syyskuuta 2013 22:01 s. 24. t. 1-11. FY7 Sivu 2 FY7-muistiinpanot 9. lokakuuta 2013 14:18 FY7 Sivu 3 Magneettivuo (32) 9. lokakuuta 2013 14:18 Pinta-alan Webber FY7 Sivu

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Luennon keskeinen termistö ja tavoitteet Osoitin eli kompleksiluku: Trigonometrinen muoto

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita oppia tuntemaan analogisen ja digitaalisen yleismittarin tärkeimmät erot ja niiden suorituskyvyn rajat oppia yleismittareiden oikea ja rutiininomainen

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: EAOL 1/6 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:

Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio: AMTEK 1/7 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet

Lisätiedot

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään

Lisätiedot

Fysiikka 7. Sähkövaraukset. Varaukset. Kondensaattori. Sähkökenttä. Sähkö-opin pikakertaus. Sähkömagnetismi

Fysiikka 7. Sähkövaraukset. Varaukset. Kondensaattori. Sähkökenttä. Sähkö-opin pikakertaus. Sähkömagnetismi http://www.foxitsoftware.com For evaluation only. 7.. Fysiikka 7 Sähkö-opin pikakertaus Sähkömagnetismi Juhani Kaukoranta aahen lukio Sähkövaraukset Elektronin ja protonin varauksen itseisarvoa kutsutaan

Lisätiedot

MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA

MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA KAJAANIN AMMATTIKORKEAKOL Tekniikan ja liikenteen ala TYÖ 21 ELEKTRONIIKAN LABORAATIOT H.Honkanen MITTALAITTEIDEN OMINAISKSIA ja RAJOITKSIA TYÖN TAVOITE: Tässä laboratoriotyössä tutustumme mittalaitteiden

Lisätiedot

6. Kertaustehtävien ratkaisut

6. Kertaustehtävien ratkaisut Fotoni 7 6-6. Kertaustehtävien ratkaisut Luku. Oheisessa kuvassa on kompassineulan punainen pohjoisnapa osoittaa alaspäin. a) Mikä johtimen ympärille muodostuvan magneettikentän suunta? b) Mikä on johtimessa

Lisätiedot

Työ 41B28. SÄHKÖISIÄ PERUSMITTAUKSIA YLEISMITTARILLA JA OSKILLOSKOOPILLA

Työ 41B28. SÄHKÖISIÄ PERUSMITTAUKSIA YLEISMITTARILLA JA OSKILLOSKOOPILLA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/13 Työ 41B28. SÄHKÖISIÄ PERUSMITTAUKSIA YLEISMITTARILLA JA OSKILLOSKOOPILLA TYÖN TAVOITE Varmistetaan yleismittareiden käytön osaaminen ja tutustutaan oskilloskoopin

Lisätiedot

VAIHTOVIRTAPIIRI. 1. Työn tavoitteet

VAIHTOVIRTAPIIRI. 1. Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP. Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta

Lisätiedot

Perusmittalaitteiden käyttö mittauksissa

Perusmittalaitteiden käyttö mittauksissa Fysiikan laboratorio Työohje 1 / 5 Perusmittalaitteiden käyttö mittauksissa 1. Työn tavoite Työn tavoitteena on tutustua insinöörien tarvitsemiin perusmittalaitteisiin: mikrometriruuviin, työntömittaan,

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

SÄHKÖSUUREIDEN MITTAAMINEN

SÄHKÖSUUREIDEN MITTAAMINEN FYSP107 / K3 Sähkösuureiden mittaaminen yleismittarilla - 1 - FYSP107 / K3 YLEISMITTARILLA SÄHKÖSUUREIDEN MITTAAMINEN Työn tavoitteita oppia tuntemaan digitaalisen yleismittarin suorituskyvyn rajat oppia

Lisätiedot

Ongelmia mittauksissa Ulkoiset häiriöt

Ongelmia mittauksissa Ulkoiset häiriöt Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

S1. SÄHKÖISIÄ PERUSMITTAUKSIA Osa A: Yleismittarit.

S1. SÄHKÖISIÄ PERUSMITTAUKSIA Osa A: Yleismittarit. TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/13 S1. SÄHKÖISIÄ PERUSMITTAUKSIA Osa A: Yleismittarit. 1. Työn tavoite 2. Teoriaa Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on? SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy

Lisätiedot

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen

Lisätiedot

Luku 7 Lenzin laki kertoo induktioilmiön suunnan

Luku 7 Lenzin laki kertoo induktioilmiön suunnan Physica 7 Opettajan OPAS 0(9) Luku 7 Lenzin laki kertoo induktioilmiön suunnan 0. Sähkövirran kytkemisen jälkeen virtapiirin sähkövirta kasvaa pienen hetken maksimiarvoonsa. Sähkövirta synnyttää kasvavan

Lisätiedot

TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 2004

TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 2004 TST:n laboratoriotyöt Tekniikan Yksikkö / Oamk, Jaakko Kaski, Jukka Jauhiainen, Heikki Kurki 004 Tst:n labratyöt liittyvät kiinteästi fysiikan laboratoriotöihin. Tämän vuoksi tähän monisteeseen ei ole

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

1 Yleismittarin käyttäminen

1 Yleismittarin käyttäminen Työn tavoitteet 1 Yleismittarin käyttäminen Oppia tuntemaan tutkittujen yleismittareiden rakenne pääpiirteissään Oppia tuntemaan tutkittujen yleismittareiden suorituskyky pääpiirteissään Oppia tuntemaan

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

OSKILLOSKOOPPI JA KOKOAALTOTASASUUNTAUS

OSKILLOSKOOPPI JA KOKOAALTOTASASUUNTAUS 1 OSKILLOSKOOPPI JA KOKOAALTOTASASNTAS 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä tutustut sähköisten perusmittausten tärkeimpään mittalaitteeseen - oskilloskooppiin. Opit mittaamaan oskilloskoopilla

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET

LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET Työ 1 Mittausvahvistimet LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET Päivitetty: 5/01/010 TP 1 1 Työ 1 Mittausvahvistimet 1. MITTAUSVAHVISTIMET Työn tarkoitus: Työn tarkoituksena on tutustua operaatiovahvistimen

Lisätiedot

VIM RM1 VAL0123136 / SKC9068201 VIBRATION MONITOR RMS-MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. VIM-RM1 FI.docx 1998-06-04 / BL 1(5)

VIM RM1 VAL0123136 / SKC9068201 VIBRATION MONITOR RMS-MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. VIM-RM1 FI.docx 1998-06-04 / BL 1(5) VIM RM1 VAL0123136 / SKC9068201 VIBRATION MONITOR RMS-MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA FI.docx 1998-06-04 / BL 1(5) SISÄLTÖ 1. KOMPONENTTIEN SIJAINTI 2. TOIMINNAN KUVAUS 3. TEKNISET TIEDOT 4. SÄÄTÖ 5. KALIBROINTI

Lisätiedot

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Elektroniikka ja sähkötekniikka

Elektroniikka ja sähkötekniikka Elektroniikka ja sähkötekniikka Sähköisiltä ilmiöiltä ei voi välttyä, vaikka ei käsittelisikään sähkölaitteita. Esimerkiksi kokolattiamatto, muovinen penkki, piirtoheitinkalvo tai porraskaide tulevat sähköisiksi,

Lisätiedot

BY-PASS kondensaattorit

BY-PASS kondensaattorit BY-PA kondensaattorit H. Honkanen Lähes kaikki piirikortille rakennetut elektroniikkalaitteet vaativat BY PA -kondensaattorin käyttöä. BY-pass kondensaattorilla on viisi merkittävää tarkoitusta: Estää

Lisätiedot

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN TUUN AMMATTKOKEAKOULU TYÖOHJE 1/7 FYSKAN LABOATOO V. 5.14 Työ 449 4h. SÄHKÖVAN ETENEMNEN TYÖN TAVOTE Perehdytään vaihtovirran etenemiseen värähtelypiirissä eri taajuuksilla eli resonanssi-ilmiöön ja sähköenergian

Lisätiedot

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita.

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita. FYSE300 Elektroniikka 1 (FYSE301 FYSE302) Elektroniikka 1:n (FYSE300) laboratorioharjoitukset sisältävät kaksi työtä, joista ensimmäinen sisältyy A-osaan (FYSE301) ja toinen B-osaan (FYSE302). Pelkän A-osan

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ

TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ Työselostus xxx yyy, ZZZZZsn 25.11.20nn Automaation elektroniikka OAMK Tekniikan yksikkö SISÄLLYS SISÄLLYS 2 1 JOHDANTO 3 2 LABORATORIOTYÖN TAUSTA JA VÄLINEET

Lisätiedot

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan: SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot

Lisätiedot

Induktiivisuus WURTH ELEKTRONIK. Induktiivisuuden ABC

Induktiivisuus WURTH ELEKTRONIK. Induktiivisuuden ABC Induktiivisuus 1 WURTH ELEKTRONIK Induktiivisuuden ABC ESIPUHE Osa 1: ABC Osa 2: Sovellukset Osa 3: Komponentit Nämä oppaat on tehty yhteistyössä parhaiden asiantuntijoiden kanssa. 2 Induktiivisuuden ABC

Lisätiedot

2. DC-SWEEP, AC-SWEEP JA PSPICE A/D

2. DC-SWEEP, AC-SWEEP JA PSPICE A/D 11 2. DC-SWEEP, AC-SWEEP JA PSPICE A/D Oleellista sweep -sovelluksissa on se, että DC-sweep antaa PSpice A/D avulla graafisia esityksiä, joissa vaaka-akselina on virta tai jännite, AC-sweep antaa PSpice

Lisätiedot

FysE301/A Peruskomponentit: vastus, diodi ja kanavatransistori

FysE301/A Peruskomponentit: vastus, diodi ja kanavatransistori Tiia Monto Työ tehty:.3. ja 8.3.00 tiia.monto@jyu. 040758560 FysE30/A Peruskomponentit: vastus, diodi ja kanavatransistori Assistentti: Arvostellaan: Abstract Työssä tutkittiin vastusta, diodia ja transistoria.

Lisätiedot

Théveninin teoreema. Vesa Linja-aho. 3.10.2014 (versio 1.0) R 1 + R 2

Théveninin teoreema. Vesa Linja-aho. 3.10.2014 (versio 1.0) R 1 + R 2 Théveninin teoreema Vesa Linja-aho 3.0.204 (versio.0) Johdanto Portti eli napapari tarkoittaa kahta piirissä olevaa napaa eli sellaista solmua, johon voidaan kytkeä joku toinen piiri. simerkiksi auton

Lisätiedot

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Kondensaattori ja vastus piirissä (RC)

Kondensaattori ja vastus piirissä (RC) Kondensaattori ja vastus piirissä (RC) = QC/C 1. Ratkaisuyrite: 2. Sijoitus yhälöön: Tässä on aikavakio: τ = RC 3. Alkuarvo: Kondensaattori ja vastus piirissä (RC) Kirchhoffin lait ovat hyvä idea I 1.

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Aineopintojen laboratoriotyöt I. Ominaiskäyrät

Aineopintojen laboratoriotyöt I. Ominaiskäyrät Aineopintojen laboratoriotyöt I Ominaiskäyrät Aki Kutvonen Op.nmr 013185860 assistentti: Tommi Järvi työ tehty 31.10.2008 palautettu 28.11.2008 Tiivistelmä Tutkittiin elektroniikan peruskomponenttien jännite-virtaominaiskäyriä

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni.

a) Kun skootterilla kiihdytetään ylämäessä, kitka on merkityksettömän pieni. AVOIN SARJA Kirjoita tekstaten koepaperiin oma nimesi, kotiosoitteesi, sähköpostiosoitteesi, opettajasi nimi sekä koulusi nimi. Kilpailuaikaa on 1 minuuttia. Sekä tehtävä- että koepaperit palautetaan kilpailun

Lisätiedot

2. Sähköisiä perusmittauksia. Yleismittari.

2. Sähköisiä perusmittauksia. Yleismittari. TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla

Lisätiedot

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ 4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

FYSP104 / K2 RESISTANSSIN MITTAAMINEN

FYSP104 / K2 RESISTANSSIN MITTAAMINEN FYSP104 / K2 RESISTANSSIN MITTAAMINEN Työn tavoite tutustua erilaisiin menetelmiin, jotka soveltuvat pienten, keskisuurten ja suurten vastusten mittaamiseen Työssä tutustutaan useisiin vastusmittauksen

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

Analogiapiirit III. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet

Analogiapiirit III. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 2. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet 1. Analysoi kuvan 1 operaatiotranskonduktanssivahvistimen

Lisätiedot

S-108.3020. Elektroniikan häiriökysymykset. Laboratoriotyö 1

S-108.3020. Elektroniikan häiriökysymykset. Laboratoriotyö 1 1/8 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö 1 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä 13.9.2007 TJ 2/8 3/8 Johdanto Sähköisiä häiriöitä on kaikkialla ja

Lisätiedot

Raportti 31.3.2009. Yksivaiheinen triac. xxxxxxx nimi nimi 0278116 Hans Baumgartner xxxxxxx nimi nimi

Raportti 31.3.2009. Yksivaiheinen triac. xxxxxxx nimi nimi 0278116 Hans Baumgartner xxxxxxx nimi nimi Raportti 31.3.29 Yksivaiheinen triac xxxxxxx nimi nimi 278116 Hans Baumgartner xxxxxxx nimi nimi 1 Sisältö KÄYTETYT MERKINNÄT JA LYHENTEET... 2 1. JOHDANTO... 3 2. KIRJALLISUUSTYÖ... 4 2.1 Triacin toimintaperiaate...

Lisätiedot

Radioamatöörikurssi 2011

Radioamatöörikurssi 2011 Radioamatöörikurssi 2011 Perusmittalaitteet / mittaaminen Peruskomponentit Vahvistinluokat Sähköturvallisuus NAC VHF kilpailudemo kello 2000-> Tiistai 1.11.2011 Paavo Leinonen, OH2GYT Perusmittalaitteet

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

MICRO-CAP: in lisäominaisuuksia

MICRO-CAP: in lisäominaisuuksia MICRO-CAP: in lisäominaisuuksia Jännitteellä ohjattava kytkin Pulssigeneraattori AC/DC jännitelähde ja vakiovirtageneraattori Muuntaja Tuloimpedanssin mittaus Makrot mm. VCO, Potentiometri, PWM ohjain,

Lisätiedot

OSKILLOSKOOPPIMITTAUKSIA

OSKILLOSKOOPPIMITTAUKSIA OSKILLOSKOOPPIMITTAUKSIA 1 OSKILLOSKOOPPI 1.1 Katodisädeputki Katodisädeputkioskilloskooppi on elektroninen mittauslaite, jonka avulla voidaan tutkia ajan suhteen muuttuvia sähköisiä ilmiöitä. Oskilloskoopin

Lisätiedot