Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite

Koko: px
Aloita esitys sivulta:

Download "Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite"

Transkriptio

1 TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori. Lisäksi tutkitaan L-piirin sarjaresonanssia. Kaksoiskanavaoskilloskooppi KENWOOD S-45 (0 MHz), vaihtojännitelähde (500), vastus 0 Ω (säätövastus Phywe), vastus kω (esim. Phywe tai 305), käämejä, esim.(600r, 300r, 00r) sekä rautasydän + ies, kondensaattoreita, esim.( µf, nf ja, nf), yleismittari (DT-830B), virtamittari (0), äänitaajuusgeneraattori (3300), johtimia. Käämejä ja kondensaattoreita saa olla useita eri arvoisia. Vaihtovirtapiirin peruskomponentteja ovat vastukset käämit ja kondensaattorit (kuva ). Sähkölähteeseen kytketyt laitteet voidaan tulkita näiden erilaisiksi yhdistelmiksi. Kuva. Vastus (), kondensaattori () ja käämi (L). Sinimuotoinen vaihtojännite u = û sinω t synnyttää laitteeseen sinimuotoisen vaihtovirran i = î sin( ω t -ϕ). Suureet u ja i ovat jännitteen ja virran hetkelliset arvot, û ja î huippuarvot, ω= πf on vaihtojännitteen kulmanopeus ja f vaihtojännitteen taajuus (F4, s (59-6)). Käämin ja kondensaattorin ominaisuuksista johtuu, että jännitteen ja virran välillä on yleisessä tapauksessa vaihe-ero ϕ. Vaihtosähkömittarit osoittavat yleensä ns. tehollisarvoja, jota sinijännitteen tapauksessa ovat û tehollinen jännite U= î ja tehollinen virta I=. Sähkötekniikassa virrat ja jännitteet ilmoitetaan yleensä tehollisina arvoina (F4, s (77-84)). Sinimuotoista vaihtojännitettä tai virtaa, jonka taajuus on f, voidaan esittää kulmanopeudella ω= πf pyörivällä vektorilla eli osoittimella. Osoitinkuvio voidaan piirtää joko huippuarvoille û ja î tai tehollisarvoille U ja I.

2 Kuvassa on sinijännite u = û sinω t on esitetty huippuarvoosoittimen avulla. Osoitin (tasovektori) pyörii origon O ympäri. Osoittimen pituus on jännitteen huippuarvo û. Osoitin pyörii vastapäivään kulmanopeudella ω= πf. Hetkellinen arvo u on osoittimen y-komponentti. Jännitteen vaihekulma α= ω t on osoittimen kulmakoordinaatti vektorisuuntaan nähden. Tarkastelun alkuhetkellä t = 0 ja vaihekulma α= ω t = 0. (F4, s (83-84)). Kuva. Sinimuotoisen vaihtojännitteen osoitindiagrammin avulla. u = û sinω t kuvaaminen Jännitteen ja virran välinen vaihe-ero ϕ eri peruskomponenttien tapauksessa: -piiri: ϕ = 0, ts. puhtaasti resistiivisen kuorman tapauksessa virta ja jännite ovat aina samassa vaiheessa. Tehollisarvolle pätee U = I, jossa on vastuksen resistanssi. L-piiri: ϕ = +π/, ts. puhtaasti induktiivisen kuorman tapauksessa virta on 90 o jännitettä jäljessä (ks. kuva 3). Tehollisarvolle pätee U L = ωli, jossa ωl on käämin induktiivinen reaktanssi -piiri: ϕ = -π/, ts. puhtaasti kapasitiivisen kuorman tapauksessa virta on 90 o jännitettä edellä (ks. kuva 3). Tehollisarvolle pätee U = I, jossa ω ω on kondensaattorin kapasitiivinen reaktanssi. (F4, s (79-8), 05-6 (85-94)). Kuva 3. Vaihe-eron kaksi lajia käämissä ja kondensaattorissa.

3 Käämin induktiivinen reaktanssi X L = ωl ja kondensaattorin kapasitiivinen reaktanssi X = ω. Kulmanopeus ω= πf. Suure X = ωl - ω on piirin reaktanssi eli näennäisvastus. Kuva 4 esittää virtapiiriä, jossa vastus, ideaalinen käämi ja kondensaattori on kytketty sarjaan vaihtojännitelähteeseen. Kuva 4. L-piiri eli vastus, käämi, kondensaattori ja vaihtojännitelähde sarjassa. Kirchhoffin. lain mukaan hetkellinen jännite on u = u + u L + u. Koska komponenttien jännitteet ovat erivaiheisia, tehollisarvot on laskettava yhteen vektoriaalisesti. Tämä suoritetaan mukavammin kuvan 5 mukaisen osoitindiagrammin avulla. Koska hetkellinen virta on sama kaikkialla piirissä, valitaan virtaosoitin perussuunnaksi ja piirretään eri komponenttien jännitteet siihen nähden. Kuva 5. L-piirin a) jännitediagrammi ja b) impedanssidiagrammi. Kuviosta saadaan ( U U ) U = U +. L Sijoittamalla U = I, U L = IωL ja U = I saadaan ω U = I + ω L = IZ. ω Suure Z L = + ω on piirin impedanssi. ω Impedanssi on vaihtovirtapiirin sähkövirtaa rajoittava suure, vaihtovirtavastus. (U = ZI, vrt. Ohmin laki: U = I). (ks. F4, s. 8- (96-99)).

4 Myös impedanssi voidaan esittää osoitindiagrammina, joka saadaan jakamalla jännitediagrammin osoittimet virralla I (kuva 5b). Osoitinkuviosta saadaan edelleen vaihe-erolle ϕ lauseke ω L - U L U ω ϕ = arctan = arctan. U Piirin impedanssilla Z on minimiarvo, kun X L X = 0 eli ω L=. ω U Tällöin Z = ja sähkövirta I= saa suurimman arvonsa; I = I max = Z U. Tällöin vaihe-ero ϕ = 0 ja ω o L=, josta saadaan edelleen ω o=. ω o L Koska kulmanopeus ω o = πf o, niin maksimivirtaa vastaava piirin resonanssitaajuus f o =. π L Piiri on resonanssissa siihen kytketyn vaihtojännitteen kanssa, jos jännitteen taajuus on sama kuin resonanssitaajuus f o. (ks. F4, s (0-08)). adion tai television kanavanvalitsinpiiri on esimerkki L-piiristä. Antenni ottaa vastaan useiden lähiasemien lähettämää taajuutta. Muuttamalla piirissä kapasitanssia muutetaan piirin resonanssitaajuus samaksi kuin etsityn kanavan taajuus. On syntynyt (virta)resonanssi. Näin piiri värähtelee vain tämän halutun taajuuden mukaisesti ja vastaanottimesta kuuluu ja näkyy kyseisen kanavan ohjelmaa. (ks. Ohanian: Physics, second., ed., exp. p ). Suoritusohjeita Työssä mitataan jännitteiden vaihe-ero vaihtovirtapiirissä, jossa on a) kaksi vastusta (-piiri) b) käämi ja vastus (L-piiri) c) kondensaattori ja vastus (-piiri) Lisäksi tutustutaan resonanssiin.

5 Oskilloskoopin lämmettyä asetetaan kaikki kolme VAIABLE-säädintä asentoon: AL. Säädetään intensiteetti ja fokusointi sopivaksi (INTENSITY- ja FOUS säätimet). Säädetään kuvapisteen paikka (XY: ON) origoon POSITION-näppäimillä. Sitten asetetaan XY: OFF. Aseta A-GND-D näppäimet ( kpl) asentoon: A ja x0mag: OFF. Oskilloskoopin VETIAL MODE-kytkin käännetään ALT-asentoon, niin että kumpikin kanava on käytössä. Kummatkin näytöllä olevat signaalit kannattaa asettaa POSITION-säädöllä sopivaan kohtaan kuvaruutua. Tutkimuksessa seurataan oskilloskoopin kuvaruudulta kahta jännitettä ajan funktiona (ty - ja ty -koordinaatistot). Tutkimuksessa luetaan oskilloskoopin näytöltä jännitteiden vaihe-ero ϕ, joten oskilloskoopin aikasäätökytkimestä SWEEP TIME/DIV valitaan tarkasteltavan ilmiön kannalta tarkoituksenmukainen jakoväli ajalle (esim. ms). Pystyakseleille valitaan tarkoituksenmukainen jakoväli jännitteelle VOLTS/DIV-kiertokytkimestä (esim. V). Oskilloskoopin näytöllä oleva kuva näkyy tu-koordinaatistossa (ks. kuva 6). TIGGEING MODE näppäin asetetaan asentoon FIX (tai TV FAME tai TV LINE) ja variable-säätimet ovat asennossa cal. Koska tutkimuksessa maadoitetaan oskilloskoopin mittauskanavat samasta pisteestä komponenttien välistä, täytyy kanavaan (H) tuleva signaali invertoida (kertoa luvulla ). H INV: ON. Tällöin jännitehäviöt ovat kummassakin komponentissa samansuuntaiset. Oskilloskoopin kanavalta (H) luettavan jännitteen vaihe-ero kanavalta (H) luettavaan jännitteeseen verrattuna saadaan selville mittaamalla, kuinka paljon myöhemmin jännite kanavassa (H) on nolla. Tarkastellaan esimerkkinä kuvan 6 esimerkkiä. Kuva 6. Jännitteiden vaihe-eron mittaus oskilloskoopilla. Kuvan 6 tilanteessa jännite on nolla noin 5 ms:n kuluttua siitä, kun -kanavan (H) jännite on nolla. Koska T = 0 ms, niin 5 ms vastaa vaihe-eroa (5/0) π = π/. Kanavan (H) jännite on siis vaiheen π/ verran jäljessä kanavan (H) jännitettä. Oskilloskooppi voidaan kytkeä myös XY-asentoon, jolloin vaihtojännitesignaalin vaihe-ero voidaan määrittää ns. vaihe-ellipsistä (ks. kuva 7). Tällöin vaakasuuntaisena poikkeuttajana on taajuudeltaan tunnettu vaihtojännitesignaali. Jännitteiden vaihe-ero voidaan tällöin laskea lausekkeesta; ϕ = arcsin(a/b). Kuva 7. Vaihe-eroellipsi. Vaihe-ero ϕ = arcsin(a/b ).

6 Mittauspöytäkirja / työohjeet Tutkimus. Kaksi vastusta vaihtovirtapiirissä (-piiri) Tehdään kuvan 8 mukainen kytkentäkaavio, jossa mitataan kahden vaihtovirtapiirissä olevan vastuksen ja jännitehäviöiden vaihe-ero ϕ. Kummankin vastuksen ja resistanssi on 0 Ω. Vastuksina voidaan käyttää esim. säätövastuksia (Phywe), joiden resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6). Jännitteenä on 5,0 V A. Etsi sopivat oskilloskoopin säädöt. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME). Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: V, y : VOLTS/DIV: V. Aseta oskilloskoopin XY-näppäin asentoon: ON ja tutki oskilloskoopissa näkyvää kuvaajaa.. Millainen kuvaaja nyt saatiin? JÄNNITEHÄVIÖIDEN U =U (t) ja U =U (t) VÄLINEN VAIHE-EO - PIIISSÄ ON ϕ =. Kuva 8. Kaksi vastusta ja vaihtovirtapiirissä. Mitä vastuksen resistanssien kasvattaminen (kuva 8) vaikuttaa jännitteen kuvaajiin?

7 Tutkimus. Käämi ja vastus vaihtovirtapiirissä (L-piiri) Tehdään kuvan 9 mukainen kytkentäkaavio, jossa mitataan vaihtovirtapiirissä olevan käämin L ja vastuksen jännitehäviöiden vaihe-ero ϕ. Vastuksen resistanssi on 0 Ω. Vastuksena voidaan käyttää esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Kääminä voidaan käyttää esimerkiksi käämiä, jonka kierrosluku on 600r (0 Ω) tai vastaavaa. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6) ja vaihe-eroellipsistä (kuva 7). Vaihe-eroellipsi saadaan kuvaruudulle asetta oskilloskoopin XY-näppäin asentoon: ON. Jännitteenä 5,0 V A. Etsi sopivat oskilloskoopin säädöt. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME). Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: V, y : VOLTS/DIV: V. Kuva 9. Käämi L ja vastus vaihtovirtapiirissä. JÄNNITEHÄVIÖIDEN U L =U L (t) ja U =U (t) VÄLINEN VAIHE-EO L- PIIISSÄ ON ϕ =. Mitä jännitteen kuvaajiin vaikuttavat: a) vastuksen resistanssin lisääminen b) käämin kierrosluvun vähentäminen c) käämin rautasydämen ieksen liikuttaminen?

8 Tutkimus 3. Kondensaattori ja vastus vaihtovirtapiirissä (-piiri) Tehdään kuvan 0 mukainen kytkentäkaavio, jossa mitataan vaihtovirtapiirissä olevan kondensaattorin ja vastuksen jännitehäviöiden vaihe-ero ϕ. Vastuksen resistanssi on 0 Ω. Vastuksena voidaan käyttää esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Katso ohjeita kuvasta 6 sekä oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Määritä vaihe-ero sinikäyristä (kuva 6). Aseta oskilloskoopissa XY-näppäin asentoon: ON ja tutki myös vaihe-ellipsiä (kuva 7). Jännitteenä 5,0 V A. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME) Etsi sopivat oskilloskoopin säädöt. Esim. SWEEP TIME/DIV: ms, y : VOLTS/DIV: 5 mv, y : VOLTS/DIV: V. Kuva 0. Vastus kondensaattori ja vastus vaihtovirtapiirissä. JÄNNITEHÄVIÖIDEN U =U (t) ja U =U (t) VÄLINEN VAIHE-EO - PIIISSÄ ON ϕ =. Miten vastuksen resistanssin lisääminen vaikuttaa jännitteen kuvaajiin? Miten kondensaattorin kapasitanssin muuttaminen vaikuttaa jännitekäyriin? Miten vaihe-ero muuttuu edellisissä tapauksissa?

9 Tutkimus 4. Vastus, kondensaattori ja käämi vaihtovirtapiirissä (L-piiri) Tehdään kuvan mukainen kytkentäkaavio, jossa määritetään L-piirin resonanssitaajuus ja tutkitaan oskilloskoopilla piirin jännitehäviöitä. Vastuksena on kω: vastus, 0,5 W (335) tai esim. säätövastusta (Phywe), jonka resistanssi voidaan mitata yleismittarilla (DT-830B) vastuksen navoista. Funktiogeneraattorina (FG) on äänitaajuusgeneraattori (3300) ja virtamittarina esim. Is-vetin 0. Äänitaajuusgeneraattori (FG) kytketään piiriin amp. output:ista. Etsi sopivat frekvenssialueet (ANGE) ja amplitudit (AMPLITUDE). Työssä käytetään siniaaltoa frekvenssimodulointia (modulation: f.m). (Osc.out amplifier d.c level - -ei merkitystä tässä työssä). Käämi (300r) + rautasydän ja ies. Virtamittari (0); 0,05 A. Katso oskilloskoopin käyttöohjeita ja asetuksia O-mapista. Etsi sopivat oskilloskoopin säädöt. Vrt. työ 3. Sarja- ja rinnakkaisresonanssi. VETIAL MODE: ALT. TIGGEING MODE: FIX (tai TV LINE, TV FAME) Esim. SWEEP TIME/DIV: 0, ms, y : VOLTS/DIV: mv, y : VOLTS/DIV: V. Muuta äänitaajuusgeneraattorin taajuutta ja etsi se taajuuden arvo, jolla sähkövirta on suurimmillaan ja jännitteiden vaihe-ero on nolla. Tutki oskilloskoopin jännitehäviöiden kuvaajia taajuutta muutettaessa. Kuva. Vastus, kondensaattori ja käämi L vaihtovirtapiirissä (L-piiri). Äänitaajuusgeneraattori; FG: amp. output, - siniaalto, - modulation: f.m ESONANSSITAAJUUS f o.

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

RCL-vihtovirtapiiri: resonanssi

RCL-vihtovirtapiiri: resonanssi CL-vihtovirtapiiri: resonanssi Olkoon tarkastelun kohteena tavallinen LC-vaihtovirtapiiri. Piirissä on kolme komponenttia, ohmin vastus, L henryn induktanssi ja C faradin kapasitanssi. Piiriin syötettyyn

Lisätiedot

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk. TTY FYS-1010 Fysiikan työt I 25.1.2010 205348 Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri 205826 Antti Vainionpää, S, 3. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Vaihtosähköpiiri..................................

Lisätiedot

4B. Tasasuuntauksen tutkiminen oskilloskoopilla.

4B. Tasasuuntauksen tutkiminen oskilloskoopilla. TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 4B. Tasasuuntauksen tutkiminen oskilloskoopilla. Teoriaa oskilloskoopista Oskilloskooppi on laite, joka muuttaa sähköisen signaalin näkyvään muotoon. Useimmiten sillä

Lisätiedot

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1 FY7 Sivu 1 Sähkömagnetismi 24. syyskuuta 2013 22:01 s. 24. t. 1-11. FY7 Sivu 2 FY7-muistiinpanot 9. lokakuuta 2013 14:18 FY7 Sivu 3 Magneettivuo (32) 9. lokakuuta 2013 14:18 Pinta-alan Webber FY7 Sivu

Lisätiedot

Taitaja2004/Elektroniikka Semifinaali 19.11.2003

Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Teoriatehtävät Nimi: Oppilaitos: Ohje: Tehtävät ovat suurimmaksi osaksi vaihtoehtotehtäviä, mutta tarkoitus on, että lasket tehtävät ja valitset sitten

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt

Lisätiedot

Taitaja2007/Elektroniikka

Taitaja2007/Elektroniikka 1. Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä saatavaa virtaa b) rikkoo jännitelähteet c) pienentää kytkennästä saatavaa virtaa d) ei vaikuta jännitelähteistä saatavan virran suuruuteen 2.

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä

Lisätiedot

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET

LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Ei-ideaaliset piirikomponentit Tarkastellaan

Lisätiedot

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan: SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.

Lisätiedot

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet S-108.3020 Elektroniikan häiriökysymykset 1/5 Ryhmän nro: Nimet/op.nro: Tarvittavat mittalaitteet: - Oskilloskooppi - Yleismittari, 2 kpl - Ohjaus- ja etäyksiköt Huom. Arvot mitataan pääasiassa lämmityksen

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

TEHTÄVÄT KYTKENTÄKAAVIO

TEHTÄVÄT KYTKENTÄKAAVIO TEHTÄÄT KYTKENTÄKIO 1. a) Mitkä kytkentäkaavion hehkulampuista hehkuvat? b) Kuinka monta eri kulkureittiä sähkövirralla on pariston plusnavalta miinusnavalle? 2. Piirrä sähkölaitteen tai komponentin piirrosmerkki.

Lisätiedot

Luku 7 Lenzin laki kertoo induktioilmiön suunnan

Luku 7 Lenzin laki kertoo induktioilmiön suunnan Physica 7 Opettajan OPAS 0(9) Luku 7 Lenzin laki kertoo induktioilmiön suunnan 0. Sähkövirran kytkemisen jälkeen virtapiirin sähkövirta kasvaa pienen hetken maksimiarvoonsa. Sähkövirta synnyttää kasvavan

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Perusmittalaitteiden käyttö mittauksissa

Perusmittalaitteiden käyttö mittauksissa Fysiikan laboratorio Työohje 1 / 5 Perusmittalaitteiden käyttö mittauksissa 1. Työn tavoite Työn tavoitteena on tutustua insinöörien tarvitsemiin perusmittalaitteisiin: mikrometriruuviin, työntömittaan,

Lisätiedot

1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala

1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 7 ELEKTRONIIKAN LABORAATIOT H.Honkanen RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET TYÖN TAVOITE - Mitoittaa ja toteuttaa RC oskillaattoreita

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

VAIHTOVIRTAPIIRI. 1. Työn tavoitteet

VAIHTOVIRTAPIIRI. 1. Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP. Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta

Lisätiedot

Fysiikka 7 muistiinpanot

Fysiikka 7 muistiinpanot Fysiikka 7 muistiinpanot 1 Magneettikenttä - Magneetilla navat eli kohtiot S ja N S N - Sovelluksia: kompassi (Maa kuin kestomagneetti) - Kuvataaan kenttäviivoilla kestomagneetit S N N S - tai vektorimerkeillä

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita.

Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita. FYSE300 Elektroniikka 1 (FYSE301 FYSE302) Elektroniikka 1:n (FYSE300) laboratorioharjoitukset sisältävät kaksi työtä, joista ensimmäinen sisältyy A-osaan (FYSE301) ja toinen B-osaan (FYSE302). Pelkän A-osan

Lisätiedot

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN TUUN AMMATTKOKEAKOULU TYÖOHJE 1/7 FYSKAN LABOATOO V. 5.14 Työ 449 4h. SÄHKÖVAN ETENEMNEN TYÖN TAVOTE Perehdytään vaihtovirran etenemiseen värähtelypiirissä eri taajuuksilla eli resonanssi-ilmiöön ja sähköenergian

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että

Lisätiedot

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

Aineopintojen laboratoriotyöt I. Ominaiskäyrät

Aineopintojen laboratoriotyöt I. Ominaiskäyrät Aineopintojen laboratoriotyöt I Ominaiskäyrät Aki Kutvonen Op.nmr 013185860 assistentti: Tommi Järvi työ tehty 31.10.2008 palautettu 28.11.2008 Tiivistelmä Tutkittiin elektroniikan peruskomponenttien jännite-virtaominaiskäyriä

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri virtap5.nb Monisilmukkainen vaihtovirtapiiri Otetaan tarkastelun kohteeksi RLC-vaihtovirtapiiri jossa on käämejä, vastuksia ja kondensaattoreita. Kytkentä Tarkastellaan virtapiiriä, jossa yksinkertaiseen

Lisätiedot

Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla

Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla Esimerkkejä Smithin kartan soveltamisesta Materiaali liittyy OH3AB:llä keväällä 2007 käytyihin tekniikkamietintöihin. 1.5.2007 oh3htu Esimerkit on tehty käyttäen Smith v 1.91 demo-ohjelmaa. http://www.janson-soft.de/seminare/dh7uaf/smith_v191.zip

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

Oikosulkumoottorikäyttö

Oikosulkumoottorikäyttö Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen

Lisätiedot

Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt

Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt Jakso 15. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt Tässä jaksossa käsitllään vaihtovirtapiirjä. Mukana on skä sarjapiirjä ttä linaaripiirjä. Sarjapiirilaskut ovat hkä hlpompia, sillä virta

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

Radioamatöörikurssi 2011

Radioamatöörikurssi 2011 Radioamatöörikurssi 2011 Perusmittalaitteet / mittaaminen Peruskomponentit Vahvistinluokat Sähköturvallisuus NAC VHF kilpailudemo kello 2000-> Tiistai 1.11.2011 Paavo Leinonen, OH2GYT Perusmittalaitteet

Lisätiedot

HARJOITUS 7 SEISOVAT AALLOT TAVOITE

HARJOITUS 7 SEISOVAT AALLOT TAVOITE SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi

Lisätiedot

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

OSKILLOSKOOPPIMITTAUKSIA

OSKILLOSKOOPPIMITTAUKSIA OSKILLOSKOOPPIMITTAUKSIA 1 OSKILLOSKOOPPI 1.1 Katodisädeputki Katodisädeputkioskilloskooppi on elektroninen mittauslaite, jonka avulla voidaan tutkia ajan suhteen muuttuvia sähköisiä ilmiöitä. Oskilloskoopin

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

215.3 MW 0.0 MVR pu MW 0.0 MVR

215.3 MW 0.0 MVR pu MW 0.0 MVR Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)

Lisätiedot

Kondensaattori ja vastus piirissä (RC)

Kondensaattori ja vastus piirissä (RC) Kondensaattori ja vastus piirissä (RC) = QC/C 1. Ratkaisuyrite: 2. Sijoitus yhälöön: Tässä on aikavakio: τ = RC 3. Alkuarvo: Kondensaattori ja vastus piirissä (RC) Kirchhoffin lait ovat hyvä idea I 1.

Lisätiedot

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä? -08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin

Lisätiedot

Van der Polin yhtälö

Van der Polin yhtälö Van der Polin yhtälö RLC-virtapiirissä oleva vastus vaikuttaa varsin olennaisesti piirissä esiintyviin värähtelyilmiöihin. Kuitenkin aivan uuden elementin komponenttitekniikkaan toivat aikoinaan puolijohdediodeja

Lisätiedot

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen

Lisätiedot

EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003

EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 LABORATORIOTÖIDEN OHJEET (Mukaillen työkirjaa "Teknillisten oppilaitosten Elektroniikka";

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset. Fysiikka syksy 2005 1. Nykyinen käsitys Aurinkokunnan rakenteesta syntyi 1600-luvulla pääasiassa tähtitieteellisten havaintojen perusteella. Aineen pienimpien osasten rakennetta sitä vastoin ei pystytä

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa eräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808 C

Lisätiedot

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana

Lisätiedot

Kuunnellanko mittalaitteilla?

Kuunnellanko mittalaitteilla? Kuunnellanko mittalaitteilla? Ilpo J Leppänen (IJL) 6.8.2011 Jo kauan sitten on esitetty kritiikkiä esim. hifi-laitteiden osalta sen johdosta, että mittauksissa hyvänä pidetty laite ei ole kuullostanut

Lisätiedot

M2A.2000. Suomenkielinen käyttöohje. www.macrom.it

M2A.2000. Suomenkielinen käyttöohje. www.macrom.it M2A.2000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 5 6 7 8 9 0 2 3 5 6 7 8 9 2 3 5 6 7 8 9 0 2 3 5 6 7 8 9 RCA-tuloliitäntä matalatasoiselle signaalille High Level -kaiutintasoinen

Lisätiedot

Sähköopin mittauksia 1

Sähköopin mittauksia 1 Sähköopin mittauksia 1 Sisällysluettelo Pikaohje LoggerPro mittausohjelma... 2 Pikaohje sähköopin anturit... 3 Kytkentäalusta... 4 Sähkövirran perusominaisuudet... 6 Jännitteen perusominaisuudet... 8 Virtapiirin

Lisätiedot

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot