MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013"

Transkriptio

1 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

2 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0, ,013 1,3 1, ,2 1/25 100/25=4 23/45 51,1 Tarkista laskimella tulos 51,1 %. Prosenttiarvon laskeminen Esimerkki 41. Laske 32 prosenttia luvusta 640. x ,8 Esimerkki 42. Paljonko on 14 %:a 320 kg:sta? 14 x 320kg 44, 8kg 100

3 PROSENTTILASKENTA Prosenttiluvun laskeminen Esimerkki 43. Kuinka monta prosenttia 55 kg on 790 kg:sta? x 55kg 790kg 100% 6,96% Esimerkki 44. Kuinka monta prosenttia 75 mm on 65 cm:stä? Ennen laskutoimitusta yksiköt on muutettava samoiksi. x 75mm 100% 11,54% 650mm Tulos olisi sama jos yksiköt olisivat olleet cm:nä.

4 PROSENTTILASKENTA Perusarvon laskeminen Esimerkki 45. Mistä rahamäärästä 15 %:a on 38 euroa? 38e x 253, 33e 0,15 Lisätty arvo Esimerkki 46 Lisää 230 kg:aan 12 %:a. x 230kg 230kg0,12 257, 6kg Lisäys voidaan laskea myös seuraavasti: x 230kg1,12 257, 6kg Edellisessä kertoimen 1,12 luku 1 vastaa alkuperäistä arvoa ja 0,12 lisäystä.

5 PROSENTTILASKENTA Lisätty arvo Esimerkki 47. Lisää 860 euroon 24 %:a. x 860e 1, , 4e Esimerkki 48. Lisää 45 grammaan 140 %:a x 45g 2,4 108g tai toisella laskutavalla: Vähennetty arvo Esimerkki 49. Vähennä 480 eurosta 24%:a. x 480e 480e 0,24 364, 8e Toisella tavalla: x 480e 0,76 364, 8e x 45g 45g 1,4 108g Käytä sitä laskutapaa joka tuntuu helpommalta. Edellisessä tavassa kerroin 0,76 on saatu vähentämällä luvusta yksi luku 0,24. Käytä laskutapaa joka tuntuu helpommalta.

6 PROSENTTILASKENTA Vähennetty arvo Jos vähennetystä arvosta halutaan laskea alkuperäinen arvo, saadaan se jakamalla vähennetty arvo vähennyskertoimella. Esimerkki 50. Alkuperäisestä massasta on vähennetty 64 %:a jolloin on saatu tulos 1300 kg. Mikä on ollut alkuperäinen massa? tai 1300kg x 3611, 1kg 0,36 Käytä laskutapaa joka tuntuu helpommalta. 1300kg x 3611, 1kg 1 0,64

7 PROSENTTILASKENTA Muutos tai vertailu Prosentuaalisesti muutos lasketaan: muutos x 100% alkuperäinen arvo Laskiessa on tärkeää ymmärtää kysymyksen muodosta mikä on alkuperäinen arvo. Esimerkki 12. Auton hinta laski omistuksen aikana ostohinnasta e myyntihintaan 8500 e. Paljonko auton arvo laski prosentteina? 14000e 8500e x 100% 39,28% 14000e Alkuperäinen arvo oli auton ostohinta, joten se tulee nimittäjään. Muutos lasketaan aina vähentämällä suuremmasta luvusta pienempi.

8 PROSENTTILASKENTA Esimerkki 13. Kunnostettavan huonekalun ostohinta oli 45 e ja myyntihinta oli 80 e. Paljonko huonekalun arvo nousi prosentteina? x 80e 45e 45e 100% 77,8% Esimerkki 14. Pekan palkka on 14,25 e tunnilta ja Hilkan palkka 12,75 e tunnilta. Montako prosenttia Pekan palkka on suurempi kuin Hilkan palkka? x 14,25e 12,75e 12,75e 100% 11,76%

9 PROSENTTILASKENTA Esimerkki 15. Entä montako prosenttia Hilkan palkka on pienempi kuin Pekan palkka? x 14,25e 12,75e 14,25e 100% 10,52% Esimerkki 16. Entä montako prosenttia Hilkan palkka on Pekan palkasta? x 12,75 100% 14,25 89,47%

10 ONGELMANRATKAISU Työssä ja arkielämässä tulee usein vastaan tilanteita joiden ratkaisuun tarvitaan matematiikkaa. Esimerkkejä näistä ovat mm: 1. Maalia ollaan sekoittamassa eri komponenteista. Jotta maali saadaan tehtyä oikein tarvitaan peruslaskutoimituksia ja murtolukulaskentaa. Piirustusten perusteella tulee laskea mittoja. Tarvitaan mittayksiköiden muutoslaskentaa. Ollaan laskemassa lukuarvoa laskukaavan avulla, jossa kysyttävä termi ei ole laskukaavassa yksin omalla puolella yhtälöä. Tarvitaan mittayksiköiden muutoslaskentaa, tekijänyhtälönratkaisua ja potenssilaskua.

11 ONGELMANRATKAISU Ollaan ostamassa ruokaa kaupasta. Samaa ruokaa on eri pakkauskoissa eri hinnoin. Tarvitaan verrantolaskentaa. Huoneiston seinät pitää maalata. On arvioitava tarvittavan maalin määrä. Jotta maalia hankitaan sopiva määrä, on laskettava huoneiston seinien pinta-alat ja verrannon avulla tarvittavan maalin määrä. Maalia ollaan sekoittamassa tietty määrä johonkin astiaan. Jotta maali saadaan tehtyä oikein tarvitaan tilavuuslaskentaa ja yhtälönratkaisua. Ollaan laskemassa tarvittavan pinnoitteen määrää tietylle pinnoitettavalle alalle. Tarvitaan pinta-ala-, tilavuusja prosenttilaskentaa. Ollaan laskemassa kemikaalilisäystä. Tarvitaan yhtälönluontia ja sen ratkaisua.

12 ONGELMANRATKAISU Usein ongelmat voidaan ratkaista yhdellä tai useammalla peruslaskutoimituksella. Joskus tarvitaan avuksi laskukaavaa, joskus tekijänyhtälöratkaisua ja laskukaavojen yhdistelyä. Usein prosenttilaskentaa ja monesti edellä mainittuja yhdessä. Hankalimmissa tilanteissa on ongelma ratkaistava luomalla yhtälö tai yhtälöpari. Ongelmien ratkaiseminen on usein järkevää tehdä seuraavalla tavalla.

13 ONGELMANRATKAISU 1. Mieti mitä ongelmassa kysytään? Merkitse kysyttävä tekijä sen tunnuksella. 2. Mitä tietoa ongelman ratkaisemiseksi on olemassa? Merkitse tiedetyt tekijät niiden tunnuksilla. 3. Mitä tietoa ongelman ratkaisemiseksi on olemassa? Merkitse tiedetyt tekijät niiden tunnuksilla. 4. Valitse sellainen laskukaava jolla ongelma on ratkaistavissa. Ongelma on laskemalla ratkaistavissa aina silloin kun tuntemattomia tekijöitä on vain yksi. Joskus tarvitaan laskukaavojen yhdistelyä tai puuttuvan tiedon laskemissa joillakin muilla keinoin.

14 ONGELMANRATKAISU 5. Jos on tarpeen, tee laskukaavaan tekijänyhtälönratkaisun avulla muunnos niin, että kysyttävä termi on yksin yhtälön omalla puolellaan. 6. Ratkaise tehtävä laskemalla. Käytä laskennassa mukana yksiköitä. Jos lopputuloksen yksikkö ei ole järkevä, on laskennassa jotakin vikaa. 7. Mieti tuloksen järkevyyttä ja tarkasta tulos.

15 ONGELMANRATKAISU Esimerkki 17. Jos lieriön muotoisen ohennepurkin halkaisija on 20 cm ja siinä on ohennetta 15 cm. niin paljonko ohennetta on litroina? 1. Tehtävässä kysytään tilavuutta. Merkitään ( V=? ) 2. Lieriön tilavuuden laskukaava on: V d 4 2 h Tehtävässä tiedetään Π, d ja h, joten se voidaan laskea suoraan kunhan d ja h muutetaan sopiviin yksikköihin. Saadaan: V dm ,5dm 4,7dm Tulos vaikuttaa järkevältä ja sen yksikkö on oikein. 4,7l.

16 ONGELMANRATKAISU Esimerkki 18. Maalia tarvitaan 1,5 litraa. Maali sekoitetaan lieriön muotoiseen astiaan jonka halkaisija on 15 cm. Paljonko maalia tarvitaan senttimetreinä purkissa? b) Lieriön halkaisija ( d ) c) П:n arvoa d) Tarvittavan maalin määrä joka on sama kuin tilavuus ( V ). 1. Tehtävässä kysytään korkeutta. Merkitään h =?. 2. Tiedetään: a) Lieriön tilavuuden laskukaava, V d 4 2 h Tarvittava tieto on olemassa koska ainoa tekijä jota ei tiedetä on korkeus h. Sen laskemiseksi tarvitaan tekijäyhtälön muokkausta jolloin saadaan. V 4 h d 2

17 ONGELMANRATKAISU Ennen tuloksen laskemista muunnetaan yksiköt sopiviksi jolloin saadaan ,5dm 4 6dm h 0,85dm 8, 5cm 2 2 1,5dm 2,25dm Lopuksi tarkastetaan, että vastauksen yksikkö on oikea ja tulos tuntuu järkevältä. Tulos on järkevä.

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen Copyright Isto Jokinen 01 MTEMTIIKK Matematiikkaa pintakäsittelijöille POJ. Isto Jokinen 01 SISÄLTÖ Pinta-alojen laskeminen Tilavuuksien laskeminen Prosenttilaskut Käyttö opetuksessa tekijän luvalla 1

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

Tehnyt 9B Tarkistanut 9A

Tehnyt 9B Tarkistanut 9A Tehnyt 9B Tarkistanut 9A Kuitinmäen koulu Syksy 2006 Avaruusgeometrian soveltavia tehtäviä... 3 1. Päästäänkö uimaan?... 3 2. Mummon kahvipaketti... 3 3. Tiiliseinä... 4 4. SISUSTUSTA... 5 5. Kirkon torni...

Lisätiedot

1.3 Prosenttilaskuja. pa b = 100

1.3 Prosenttilaskuja. pa b = 100 1.3 Prosenttilaskuja Yksi prosentti jostakin luvusta tai suureesta on tämän sadasosa ja saadaan siis jakamalla ao. luku tai suure luvulla. Jos luku b on p % luvusta a, toisin sanoen jos luku b on p kpl

Lisätiedot

Peruslaskutoimitukset Mittayksiköiden muunnokset Geometria Talousmatematiikka

Peruslaskutoimitukset Mittayksiköiden muunnokset Geometria Talousmatematiikka Työpaja Junki, Kauhava Työpajan puuosasto Matemaattis-luonnontieteellinen osaaminen pakolliset osaamistavoitteet, 4 osp (voimaan 1.8.2018) Peruslaskutoimitukset Mittayksiköiden muunnokset Geometria Talousmatematiikka

Lisätiedot

Betonimatematiikkaa

Betonimatematiikkaa Betonimatematiikkaa.11.017 Kiviaineksen rakeisuusesimerkki Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo % g % Pohja 60 9,0-0,15 30 4,5

Lisätiedot

Betonimatematiikkaa

Betonimatematiikkaa Betonimatematiikkaa.11.017 Kiviaineksen seulontatulokset ja läpäisyarvo Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo g % % Pohja 60 9,0-0,15

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 7.6.2005 Nimi: Henkilötunnus: Sain kutsun kokeeseen Hämeen amk:lta Jyväskylän amk:lta Kymenlaakson amk:lta Laurea amk:lta

Lisätiedot

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja.

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. 113 11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. Esim. Kun sulatetaan 63 g kuparia ja 37 g sinkkiä, saadaan 100 g messinkiä. 63 100 = 114

Lisätiedot

MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin

MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin HAAGA-HELIA MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin Katri Währn Kevät 2012 1 FUNKTIOLASKIMEN KÄYTTÖ Funktiolaskimeen on sisäänrakennettuna laskujärjestelmä eli se osaa laskea kerto-

Lisätiedot

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)

Lisätiedot

Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja.

Suhteellisia osuuksia ilmaistaessa käytetään prosenttilukujen ohella myös murtolukuja. PROSENTTILASKUT Prosenttilaskuun ja sen sovelluksiin, jotka ovat kerto- ja jakolaskun sovelluksia, perustuu suuri osa kaikesta laskennasta, jonka avulla talousyksikön toimintaa suunnitellaan ja seurataan.

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

Ammattimatematiikan tuki

Ammattimatematiikan tuki Ammattimatematiikan tuki 1) Kuinka monta prosenttia a) 350 grammaa on 15 kilogrammasta b) 20 euroa on 260 eurosta c) 15 minuuttia on 3 tunnista d) 80 senttiä on 20 eurosta e) 56 senttimetriä on 3,2 metristä?

Lisätiedot

HUOLTOMATEMATIIKKA 1 TEHTÄVÄT

HUOLTOMATEMATIIKKA 1 TEHTÄVÄT 1 HUOLTOMATEMATIIKKA 1 TEHTÄVÄT 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä

Lisätiedot

Reaktiosarjat

Reaktiosarjat Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi lyhyesti. a) a, c, e, g, b),,, 7,, Ratkaisut: a) i ja k - oikea perustelu ja oikeat kirjaimet, annetaan

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

Neeviikuu 6B: Opettajan oppaan liitteet

Neeviikuu 6B: Opettajan oppaan liitteet Neeviikuu 6B: Opettajan oppaan liitteet KOPIOINTIPOHJAT 1. Kertotaulukortti 2 2. Jaollisuusliuska 1 100 3 3. Senttimetripaperi 4 4. Kymmenjärjestelmätaulukko 5 5. Hämähäkinverkko peilaamiseen 6 6. 360-ruudukko

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN Katri Währn 2013 JOHDANTO Myyntityön koulutusohjelman matematiikan valintakoe perustuu koulumatematiikkaan riippumatta siitä, onko hakijan

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Matematiikan didaktiikka, osa II Estimointi

Matematiikan didaktiikka, osa II Estimointi Matematiikan didaktiikka, osa II Estimointi Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Arviointi Arvionti voidaan jakaa kahteen osaan; laskutoimitusten lopputulosten arviointiin ja arviontiin

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

5.2 Ensimmäisen asteen yhtälö

5.2 Ensimmäisen asteen yhtälö 5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

Trestima Oy Puuston mittauksia

Trestima Oy Puuston mittauksia Trestima Oy Puuston mittauksia Projektissa tutustutaan puuston mittaukseen sekä yritykseen Trestima Oy. Opettaja jakaa luokan 3 hengen ryhmiin. Projektista arvioidaan ryhmätyöskentely, projektiin osallistuminen

Lisätiedot

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

1 Kertausta geometriasta

1 Kertausta geometriasta 1 Kertausta geometriasta 1.1 Monikulmiota 1. a) Kolmion kulmien summa on 180. Koska tiedetään kaksi kulmaa, kulma x voidaan laskea. 180 x 35 80 x 180 35 80 x 65 b) Suunnikkaan vastakkaiset kulmat ovat

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin.

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3. Yhtälöt Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3.1 Ensimmäisen asteen yhtälöt Ratkaise yhtälö. 3 x ( x 3) 4x 5 Kirjoita tehtävä sellaisenaan, maalaa se ja käytä Interactive

Lisätiedot

KORJAUSMATIIKKA 3, TEHTÄVÄT

KORJAUSMATIIKKA 3, TEHTÄVÄT 1 SISÄLTÖ KORJAUSMATIIKKA, TEHTÄVÄT 1) Potenssi 2) Juuri ) Polynomit ) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa ja toisen asteen yhtälön ratkaisukaava TEHTÄVÄT: Käythän

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

KORJAUSMATIIKKA 3, MATERIAALI

KORJAUSMATIIKKA 3, MATERIAALI 1 SISÄLTÖ KORJAUSMATIIKKA, MATERIAALI 1) Potenssi ) Juuri ) Polynomit 4) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa (tehtävissä esitellään myös. asteen yhtälön ratkaisu)

Lisätiedot

[MATEMATIIKKA, KURSSI 9]

[MATEMATIIKKA, KURSSI 9] 2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...

Lisätiedot

kuviot samassa tai eri koordinaatistoissa a)- ja b)-kohdissa riittävät pelkät vastaukset, jos kuviot ovat oikein

kuviot samassa tai eri koordinaatistoissa a)- ja b)-kohdissa riittävät pelkät vastaukset, jos kuviot ovat oikein MAOL ry:n pisteytyssuositus PITKÄ MATEMATIIKKA KEVÄT 00. yhtälöt a) y = ) = + c) y= + + d) y= + + kuviot samassa tai eri koordinaatistoissa + a)- ja )-kohdissa riittävät pelkät vastaukset, jos kuviot ovat

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. MAB2 koe Jussi Tyni Lue ohjeet huolellisesti! Muista, että välivaiheet perustelevat vastauksesi. Muista kirjoittaa konseptille nimesi ja tee pisteytysruudukko konseptin yläreunaan. A-osio. Ei laskinta!

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

(1) Desimaaliluvut ja lukujen pyöristäminen

(1) Desimaaliluvut ja lukujen pyöristäminen (1) Desimaaliluvut ja lukujen pyöristäminen Luvun pyöristäminen Mikäli ensimmäinen pois jäävä numero on 5 tai suurempi, korotetaan sen vasemmalla puolella olevan numeron arvoa yhdellä. Luku 123, 3476 yhden

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

Apua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio

Apua esimerkeistä Kolmio teoriakirja.  nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)

Lisätiedot

i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Jos vaikka kolmosta ei tiedettäisi, sen saisi ratkaisua jakolaskulla

i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Jos vaikka kolmosta ei tiedettäisi, sen saisi ratkaisua jakolaskulla 1 PROSENTTILASKUN PERUSTAPAUKSET 1. Prosenttilaskun perusyhtälö i a = b, jossa i = prosenttiluku desimaalimuodossa a = perusarvo b = prosenttiarvo Kun kaksi kolmesta tunnetaan, voidaan kolmas aina ratkaista

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka 4..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä Calculus Lukion 7 MAA Numeerisia ja algebrallisia menetelmiä Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Numeerisia ja algebrallisia menetelmiä

Lisätiedot

Avaruusgeometrian perusteita

Avaruusgeometrian perusteita Avaruusgeometrian perusteita Määritelmä: Kolmiulotteisen avaruuden taso on sellainen pinta, joka sisältää kokonaan jokaisen sellaisen suoran, jonka kanssa sillä on kaksi yhteistä pistettä. Ts. taso on

Lisätiedot

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?

MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

A. Desimaalilukuja kymmenjärjestelmän avulla

A. Desimaalilukuja kymmenjärjestelmän avulla 1(8) Kymmenjärjestelmä desimaalilukujen ja mittayksiköiden muunnosten pohjana A. Miten saadaan desimaalilukuihin ymmärrystä 10-järjestelmän avulla? B. Miten saadaan mittayksiköiden muunnoksiin ymmärrystä

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja

Lisätiedot

HUOLTOMATEMATIIKKA 2, MATERIAALI

HUOLTOMATEMATIIKKA 2, MATERIAALI 1 SISÄLTÖ HUOLTOMATEMATIIKKA, MATERIAALI 1) Murtoluvut ) Yhtenevyys ja yhdenmuotoisuus 3) Tasokuvioiden pinta-alat ja piirit 4) Kappaleiden tilavuudet 5) Suorakulmainen kolmio ja Pythagoran lause 6) Suorakulmaisen

Lisätiedot

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei

Lisätiedot

Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11

Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11 Osa 1: Prosentti Tehtävä 1. Muunna prosenttikertoimeksi. a) 20 % b) 77 % c) 141 % Muunna prosenttiluvuksi. e) 0,08 f) 0,7 g) 4,11 Tehtävä 1: Vastaukset (max. 10 p) Muunna prosenttikertoimeksi. a) 20 %

Lisätiedot

Prosenttilaskentaa osa 2

Prosenttilaskentaa osa 2 Prosenttilaskentaa osa 2 % 1 9. Perusarvon laskeminen Perusarvo = alkuperäinen arvo Esimerkki 1. Mikä on a) luku, josta 72 % on 216 b) aika, josta 40 % on 38 min c) matka, josta 5 % on 400 m Esimerkki

Lisätiedot

1. Lasketaan käyttäen kymmenjärjestelmävälineitä

1. Lasketaan käyttäen kymmenjärjestelmävälineitä Turun MATIKKAKAHVILA 22.09.2016 Teija Laine 1. OTTEITA UUDESTA OPETUSSUUNNITELMASTA: "Vuosiluokkien 3 6 matematiikan opetuksessa tarjotaan kokemuksia, joita oppilaat hyödyntävät matemaattisten käsitteiden

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Tavoite T2 kannustaa oppilasta ottamaan vastuuta matematiikan oppimisesta sekä yksin että yhdessä toimien

Tavoite T2 kannustaa oppilasta ottamaan vastuuta matematiikan oppimisesta sekä yksin että yhdessä toimien Tavoite 5 6 7 8 9 10 T2 kannustaa ottamaan vastuuta oppimisesta sekä yksin että yhdessä toimien on läsnä oppitunnilla. ottaa vastuuta omasta oppimisestaan. ottaa vastuuta omasta oppimisestaan ja kykenee

Lisätiedot

Matematiikan didaktiikka, osa II Algebra

Matematiikan didaktiikka, osa II Algebra Matematiikan didaktiikka, osa II Algebra Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Mitä on algebra? Algebra on aritmetiikan yleistys. Algebrassa siirrytään operoimaan lukujen sijaan niiden ominaisuuksilla.

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2013

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2013 Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2013 MFKA-Kustannus Oy Rautatieläisenkatu 6, 00520 HELSINKI, puh. (09) 1502 378 http://www.mfka.fi

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

4 TOISEN ASTEEN YHTÄLÖ

4 TOISEN ASTEEN YHTÄLÖ Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on

Lisätiedot

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta

Lisätiedot

O YyKaaK B 2 oo Yli esteiden Nimi

O YyKaaK B 2 oo Yli esteiden Nimi O YyKaaKoo B Yli esteiden Nimi Kappale Piirrä viisarit. Väritä tuntiviisari mustaksi ja minuuttiviisari punaiseksi. klo klo puoli Piirrä viisarit. klo klo puoli klo Tunti ja puoli tuntia Yhdistä kellonaika

Lisätiedot

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti Tehtävä 1. Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti a) 1 4 b) 1 4 a) - kuvio, annetaan 1,5 p - ympyrä täyttyy neljänneksen kerrallaan, annetaan 1,5 p b) -

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja

Lisätiedot

Pisteytyssuositus. Matematiikka lyhyt oppimäärä Kevät

Pisteytyssuositus. Matematiikka lyhyt oppimäärä Kevät Lyhyen matematiikan pisteitysohjeet kevät 0 ver..0 Pisteytyssuositus Matematiikka lyhyt oppimäärä Kevät 0..0 Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty. Ratkaisussa on oltava tarvittavat

Lisätiedot

1516 mb4 2. jakso. 21, ropposen tilavuus. Mikko Rahikka. Valitse teema Lähetä valokuva STREAM. ILMOITUS Mikko Rahikka 26.

1516 mb4 2. jakso. 21, ropposen tilavuus. Mikko Rahikka. Valitse teema Lähetä valokuva STREAM. ILMOITUS Mikko Rahikka 26. m@hyl.fi 1516 mb4 2. jakso Mikko Rahikka Valitse teema Lähetä valokuva STREAM OPISKELIJAT TIETOJA ILMOITUS Mikko Rahikka 26. marraskuuta Harjoittele kokeeseen Pekan polulla Etusivu Polku http://polku.opetus.tv/

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. B-OSA 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. 1.1 Mitä voidaan sanoa funktion f raja-arvosta, kun x a? I Raja-arvo on f(a), jos f on määritelty kohdassa a. II Raja-arvo on f(a),

Lisätiedot

Liite F: laskuesimerkkejä

Liite F: laskuesimerkkejä Liite F: laskuesimerkkejä 1 Lämpövirta astiasta Astiasta ympäristöön siirtyvää lämpövirtaa ei voida arvioida vain astian seinämien lämmönjohtavuuksilla sillä ilma seinämä ja maali seinämä -rajapinnoilla

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

LUKUVUODEN E-KURSSI

LUKUVUODEN E-KURSSI 1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI Kurssin tunnus ja nimi Kurssin opettaja MAB6 Matemaattisia malleja II Frans Hartikainen frans.hartikainen@tyk.fi MAB6-kurssin työtila on nähtävillä myös

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot