Tehnyt 9B Tarkistanut 9A

Koko: px
Aloita esitys sivulta:

Download "Tehnyt 9B Tarkistanut 9A"

Transkriptio

1 Tehnyt 9B Tarkistanut 9A Kuitinmäen koulu Syksy 2006

2 Avaruusgeometrian soveltavia tehtäviä Päästäänkö uimaan? Mummon kahvipaketti Tiiliseinä SISUSTUSTA Kirkon torni Säästöpakkauspulma PAHVIRISTI VIININ METSÄSTYS Talon maalaaminen Mausteita Jarin pelikassi Pallomeri KUPOLITEATTERI Kauppakassi Ikkunapulma MAALI! Ratkaisut Päästäänkö uimaan? Mummon kahvipaketti Tiiliseinä SISUSTUSTA Kirkon torni Säästöpakkauspulma PAHVIRISTI VIININ METSÄSTYS Talon maalaaminen Mausteita Jarin pelikassi Pallomeri KUPOLITEATTERI Kauppakassi Ikkunapulma MAALI! Tehnyt 9B, tarkistanut 9A Etusivun kuva: (viittaus ) 2

3 Avaruusgeometrian soveltavia tehtäviä 1. Päästäänkö uimaan? Uima-allasta täytetään. Täyttämiseen on käytettävissä litraa vettä. Kuinka korkea vesikerros altaaseen muodostuu? Altaan mitat ovat: pituus: 9m leveys: 4m syvyys: 5m 2. Mummon kahvipaketti Laitetaan suorakulmaisensärmiön muotoisen kahvipaketin sisältö lasipurkkiin. Kuinka monta desilitraa jää tyhjää tilaa? Kahvipaketti Lasipurkki 3

4 3. Tiiliseinä Rakennat taloosi väliseinää tiilistä ja sementistä. Väliseinästä tehdään yhden tiilen leveyden paksuinen. Tiiliä on 200 ja yhden tiilen mitat ovat: korkeus 7 cm, pituus 26 cm ja leveys 13 cm. Miten suuri seinästä tulee pinta-alaltaan tiilien ja sementin avulla, kun sementti lisää seinän pinta-alaa 10%? 4

5 4. SISUSTUSTA Tiia haluaa maalata huoneensa lilalla. Kuinka paljon maalattavan alan pinta-ala on, kun huoneen korkeus on 3m, leveys 6m ja pituus 10m? Kuitenkin päätyseinässä on ympyränmuotoinen ikkuna, jonka halkaisija on 1,2m ja toisessa päätyseinässä on ovi, jonka mitat ovat 2m ja 1,2m. Kaikki pinnat maalataan, paitsi lattia. 5

6 5. Kirkon torni Ranskan pohjoisosassa on kirkko nimeltä Sacre bleu. Yhtä kirkon tornin kattoa remontoidaan, mutta kirkon pohjapiirustuksissa ei ole tarvittavia tietoja sen tekemiseen. Selvitä tornin katon korkeus. 6

7 6. Säästöpakkauspulma Perhe osti kaakaojauhetta suuren säästöpakkauksen. Kotona perheen äiti huomasi, ettei kaakaojauhe välttämättä mahtuisikaan vanhaan ympyrälieriön muotoiseen säilytysrasiaan. Selvitä laskemalla, mahtuuko kaakaojauhe säilytysrasiaan. 7

8 7. PAHVIRISTI Laske pahviristin tilavuus, kun sen syvyys on 0,2cm, leveys on 3cm ja korkeus on 3,6cm. Pahvilevyn leveys on 0.6 cm. 3,6 cm 0,6 cm 3 cm 8

9 8. VIININ METSÄSTYS Viinipikariin kaadetaan vettä melkein piripintaan asti. Vajaaksi jää yhden senttimetrin verran. Laske kuinka monta desilitraa vettä viinipikariin mahtuu? 9

10 9. Talon maalaaminen Kuinka monta purkkia maalia tarvitaan vajan seinien maalaamiseen? Kun maalin riittoisuus 1prk/10m 2 ja ikkunoiden ja oven yhteenlaskettu pinta-ala on 4m 2. 10

11 10. Mausteita SÄILYTYSPULLON HALKAISIJAN PITUUS ON 6,3 cm, KORKEUS 10 cm JA PULLON NOKAN KORKEUS ON 2,5 cm. SIIHEN TYHJENNETÄÄN MAUSTEPURKIN SISÄLTÖ. MAUSTEPURKIN PITUUS ON 5 cm, LEVEYS 3 cm JA KORKEUS 13 cm. MAHTUUKO SE SIIHEN KOKONAAN? 11. Jarin pelikassi Jarilla on suoran ympyrälieriön muotoinen pelikassi, jonka pituus on 70 cm ja pääty-ympyrän halkaisija 30cm. Kassissa on pallo, jonka halkaisija on 20cm ja kuution muotoinen kenkälaatikko, jonka tilavuus on 3375cm³. Laske, kuinka monta Toblerone-suklaapötikköä mahtuu vielä kassiin, kun Tobleronen pohjan pinta-ala on 8cm 2 ja korkeus 17 cm. Toblerone on kolmesivuisen särmiön muotoinen. Patukoiden asettelulla ei ole väliä. 11

12 12. Pallomeri a) Risteilyaluksen pallomerelle tarkoitetun altaan leveys on 3m, pituus 5m ja korkeus 0,9m, kuinka monta halkaisijaltaan 8cm olevaa palloa altaaseen mahtuu? b) Päättele: Jos palloja laitetaan koko allas täyteen, miten käy, kun sekaan menee lisäksi muutama lapsi? 12

13 13. KUPOLITEATTERI Suorakulmaisen muotoisen oopperatalon päälle rakennetaan puolipallon muotoinen kupoliteatteri. Oopperatalon pituus on 30m, leveys 25m ja korkeus 10m. Kupoliteatterin halkaisija on 20m. Laske tarvittava maalin määrä, kun koko yhdistelmärakennuksen seinät ja katto maalataan. Maalin riittoisuus on 5 m 2 / litra. 14. Kauppakassi 1. Kauppakassiin pakataan pikkupaketteja. Laske kuinka monta pikkupakettia kassiin mahtuu. Pikkupaketit pakataan siististi riveittäin ja pinoittain. Kauppakassin mitat: leveys 32cm, korkeus 48cm, syvyys 10cm Pikkupaketin mitat: leveys 8cm, korkeus 4cm, syvyys 2cm 2. Kauppakassiin kaadetaan riisiä pikkupaketeista. Kuinka monta pikkupaketillista riisiä kassiin voidaan kaataa? 13

14 15. Ikkunapulma a) Huoneessa on ympyrän muotoinen ikkuna, jonka halkaisija on 107,3 cm. Ikkuna menee rikki ja sinun täytyy selvittää ikkunan pinta-ala. Muista että ikkunaan tarvitaan kaksinkertainen lasi. b) Kun ikkunassa on kaksinkertainen lasi, sen paksuus on 3,7 cm. Laske kuinka paljon kokonainen lasi painaa. Lasin tiheys on 2,5 kg/dm 3. 14

15 16. MAALI! Jalkapallomaalin mitat ovat 4.25 m ja 2.0m. Maalissa on maalivahtina puusta tehty este, jonka pään halkaisija on 20 cm, kokonaiskorkeus on 1.5 m, leveys 30 cm ja kädet ovat 25cm pitkiä ja 12 cm korkeita suorakulmioita. Kuinka paljon tyhjää tilaa maalintekoon jää? 15

16 Ratkaisut 1. Päästäänkö uimaan? litraa= dm 3 =150m 3 pohjan pinta-ala: 9m 4m=36m 2 Koska veden korkeutta ei tiedetä, jaetaan veden tilavuus pohjan pinta-alalla, jotta saadaan tietoon veden korkeus. h=v/a P 150m 3 : 36m 2 4,2m tulos: Veden korkeus on noin 4,2 metriä 2. Mummon kahvipaketti Kahvipaketin V = 10cm 10cm 15cm = 1500cm 3 ( 5cm) 4 π Lasipurkin V = ,4cm cm + π 2 Lasipurkin V Kahvipaketin V = 594,4cm 3 = 594,4ml 5,9dl 2 20cm 16

17 3. Tiiliseinä 7cm 26cm (7cm 26cm 200) : 10 = cm dm 2 4. SISUSTUSTA Katto: 6m 10m = 60m 2 1 seinä: 3m 10m = 30 m 2 2 seinä: 3m 10m = 30 m 2 ikkuna seinä: ikkunan pa: (0.6) 2 = 1,1 m 2 seinän pa: 3m 6m = 18 m 2 maalataan: 18 m 2 ( ) = 17 m 2 ovi seinä: oven pa: 2m 1.2m = 2,4 m 2 seinän pa: 6m 3m = 18 m 2 maalataan: 18 m 2 (2m 1,2m) = 15,6 m 2 V: maalattava pinta-ala tarkoilla arvoilla laskettuna on 152, m 2 5. Kirkon torni 10 2 = x 2 + 2,5 2 x 2 = ,5 2 x 2 = 100 6,24 x 2 = 93,75 x = 93, 75 x 9, x 9,7m Vast. Kirkon tornin katon korkeus on 9,7m. 17

18 6. Säästöpakkauspulma Lasketaan kaakaopaketin tilavuus: 30cm 23cm 45cm = 31050cm³ Vähennetään kaakaojauheen tilavuus peltipurkin tilavuudesta. (π 15² )cm² 50cm cm³ 4293cm³ Lasketaan lieriön tilavuus. Ensin lasketaan lieriön pohjan pinta-ala, π r² π 15² = 706,9cm² Sen jälkeen lasketaan pohjan pa:n avulla koko lieriön tilavuus, (π 15² )cm² 50cm 35343cm³ Koska tyhjää tilaa jää, kaakaojauhe mahtuu säilytyspurkkiin. 7. PAHVIRISTI 18

19 8. VIININ METSÄSTYS Ensiksi katso tarkkaan ja huomaat, että pohjan jalusta on prikulleen yhtä pitkä kuin pikari päältä. Ratkaistaan korkeus pythagoraan lauseen avulla. Saadaan korkeus, jolloin mietitään laskukaava, jolla kartion tilavuus saadaan selville. Pohjan pinta-ala korkeus : 3. Saadaan vastaus, jolloin se muutetaan dm 3, koska 1dm 3 = 1l. 2,5 2 + X 2 = ,25 + X 2 = 169-6,25 X 2 = 162,25 X 2 = 12,8cm πr 2 π 2,5 2 = 19,6 cm 2 Pohjan pinta-ala Pohjan pinta-ala korkeus : 3 (π 2,5 2 ) 12,8cm : 3 Pitää muistaa vähentää 1cm niin kuin ohjeessa luki. (π 2,5 2 ) 11,8cm : 3 = 77,2cm 3 = 0,077dm 3 = 0,077l = 0,77dl 9. Talon maalaaminen 2 (4m 3m) + 2 (3m 3m) = 42 m 2 42m 2 4m 2 =38m 2 38m 2 : 10m 2 = 3,8 Vast: Maalaamiseen tarvitaan 4 purkkia maalia. 19

20 10. Mausteita MAUSTEPURKIN TILAVUUS: V= 5 cm. 3 cm. 13 cm= 195 cm 2 SÄILYTYSPURKIN TILAVUUS: A p= πr 2 π. (3,15) 2 = 31,17245 cm 2 31,17245 cm 2. 10cm= 311,7245 cm 3 PULLON NOKAN TILAVUUS: 2 A p =. πr h π. ( 1,5 cm) 2. 2,5 cm 17,67145 cm 3 311,7245 cm ,67145 cm 3 = n. 329,4cm 3 MAUSTEET MAHTUVAT SÄILYTYSPULLOON KOSKA PULLON TILAVUUS ON n. 329,4cm 3 ja MAUSTEIDEN 195cm 3 20

21 11. Jarin pelikassi 4πr Pallon tilavuus: V= 3 3 r= 20cm:2=10cm (4 π (10cm)³): ,8cm³ 4200cm³ Kassin tilavuus: V=πr²h r= 30cm:2=15cm π (15cm)² 70cm 49480,1cm³ 49000cm³ Tyhjää tilaa jää: (π (15cm)² 70cm) - (4 π (10cm)³): cm³=41916,29409 Tobleronen tilavuus: V=hA p V= 8cm² 17cm=136cm³ 41916,29409cm³:136cm³ 308,2 Vastaus: Tobleroneja mahtuu kassiin siis 308 kappaletta. 12. Pallomeri Altaan tilavuus: 500cm 300cm 90cm= cm 3 Pallon tilavuus: V= (4Лr 3 ): 3= (4 Л (8cm:2) 3 ):3 =268, cm cm 3 : 268, cm 3 = , palloa a) Pallomerelle varattuun altaaseen mahtuu yhteensä palloa. b) Kun täyteen pallomereen menee sekaan lapsia, pallot vierivät yli. 21

22 13. KUPOLITEATTERI A v = 30m 10m m 10m 2 = 1100m 2 20m = 10m 2 A = 4π ( 10m) ,3m 2 A = л (10m) 2 314,2m 2 A = 30m 25m = 750m 2 ((750m 2 л (10m) 2 ) + Vastaus: 433 litraa 4π ( 10m) m 2 ) : 5 432, Kauppakassi 1. Kassin pohjalle mahtuu pikkupaketteja riviin: 32cm : 2cm = 16 Päällekkäin paketteja mahtuu: 48cm : 4cm = 12 Leveys suuntaan kassi oli 10cm leveä, joten siihen mahtuu yksi 8cm leveä paketti = 192 Vastaus: kassiin mahtuu 192 pikkupakettia 2. Kassin tilavuus: 32cm 10cm 48cm = 15360cm³ Pikkupaketin tilavuus: 8cm 4cm 2cm = 64cm³ 15360cm³ : 64cm³ = 240 Vastaus: kassiin voidaan kaataa 240 paketillista riisiä 22

23 15. Ikkunapulma a) 107,3cm = 53,65 cm 2 π 53, = 9042, = 18085,03364 cm 2 1,8 m 2 b) 18085,03364 cm 2 3,7 cm = 66914,62447 cm 3 laskukaava m ρ = V = 66, dm 3 2,5 kg/dm 3 = 167, kg 170 kg 16. MAALI! 4.25m 2m = 8.5m² = m² m² (30cm (150cm 20 cm) + 12cm 25cm 2 + π (20 cm / 2) ²) = cm² Maalintekoon jää siis n. 8 m² 23

24 24

25 25

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

[MATEMATIIKKA, KURSSI 9]

[MATEMATIIKKA, KURSSI 9] 2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 )

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 ) Avaruusgeometria Lieriö 4. a) 0 0 1 7 00 (cm ) 7 00 cm 7, dm 7, l b) A p h 0 15 450 (cm ) 5. Kuution särmän pituus on a 1, cm. a) a 1, 1,78 1,7 (cm ) b) A 6a 6 1, 8,64 8,6 (cm ) 16 6. r d 8 (cm) A p h

Lisätiedot

= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm.

= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm. Pyramidi Geometria tetävien ratkaisut sivu 149 901 a on lieriö b ei ole, ojat eivät ole ytenevät c on d ei ole, lieriön määritelmän eto suora liikkuu suuntansa säilyttäen ja alaa louksi lätöaikkaansa käymättä

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o. KERTAUSHARJOITUKSIA KULMA 45 l 6. a) Samankohtaisista kulmista 80( 80456) 08 b) Kolmion kulmien summa on ( 80) 80 6 l 5 80 :( 5) 6 Kysytty kulma 80 8067 Vastaus: a) 08 o b) 7 o 7. Kulmien summa on ( )

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68

Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68 LUKKPIRUETTEJ Peruslaskutoimitukset Perustehtävät Laske a) 1 + 2 5 b) 7 c) 2 7 + 8 7 d) 2 + 75 + 68 Muunna sekunneiksi a) 8 min b) 4,5 min Muunna minuuteiksi. a) 120 s b) 150 s c) 1 h 1. Jalkapallo-ottelun

Lisätiedot

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen Copyright Isto Jokinen 01 MTEMTIIKK Matematiikkaa pintakäsittelijöille POJ. Isto Jokinen 01 SISÄLTÖ Pinta-alojen laskeminen Tilavuuksien laskeminen Prosenttilaskut Käyttö opetuksessa tekijän luvalla 1

Lisätiedot

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli Kertausosa 1. Kulma α on 7 suurempi kuin kulma eli 7. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli 180 7 180 14 : 71,5 Siis 7 71,5 7 108, 5 Vastaus: 108,5, 71, 5. Kuvaan merkityt kulmat

Lisätiedot

454918 PIENET GEOMETRISET KAPPALEET Geometristen kappaleiden tilavuudet

454918 PIENET GEOMETRISET KAPPALEET Geometristen kappaleiden tilavuudet Ohje Tevellan tuotteelle Viinikankatu 49 A, 33800 Tampere Puh (03) 380 5300, Fax (03) 380 5353 E-mail: myynti@tevella.fi, www.tevella.fi Pieni kuutio V=AxH V=(sxs)xH V=(2,5x2,5)x2,5 V=15,6 cm 3 Suuri kuutio

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 7.6.2005 Nimi: Henkilötunnus: Sain kutsun kokeeseen Hämeen amk:lta Jyväskylän amk:lta Kymenlaakson amk:lta Laurea amk:lta

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.

Lisätiedot

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Kenguru 2011 Benjamin (6. ja 7. luokka)

Kenguru 2011 Benjamin (6. ja 7. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

Aloita A:sta. Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan.

Aloita A:sta. Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)

Lisätiedot

MAA3 HARJOITUSTEHTÄVIÄ

MAA3 HARJOITUSTEHTÄVIÄ MAA3 HARJOITUSTEHTÄVIÄ 1. Selosta, miten puolitat (jaat kahtia) annetun koveran kulman pelkästään harppia ja viivoitinta käyttäen. 2. Piirrä kolmio, kun tunnetaan sen kaksi kulmaa (α ja β) sekä näiden

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

Esimerkiksi jos käytössä ovat kirjaimet FFII, mahdolliset nimet ovat FIFI ja IFIF. Näistä aakkosjärjestykssä ensimmäinen nimi on FIFI.

Esimerkiksi jos käytössä ovat kirjaimet FFII, mahdolliset nimet ovat FIFI ja IFIF. Näistä aakkosjärjestykssä ensimmäinen nimi on FIFI. A Nimi Uolevi sai koiranpennun, mutta siltä puuttuu vielä nimi. Uolevi on jo päättänyt, mitä kirjaimia nimessä tulee olla. Lisäksi hän haluaa, että nimi muodostuu toistamalla kaksi kertaa sama merkkijono.

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa

Lisätiedot

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Mitkä kuutiot on taiteltu kuvassa

Lisätiedot

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen? LASKUTOIMITUKSET Nimi: ) Muista laskutoimituksissa käytettävät nimet. a) Mikä on lukujen 650 ja 70 summa erotus b) Kun vähenevä on 000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Kenguru Écolier (4. ja 5. luokka) sivu 1/5

Kenguru Écolier (4. ja 5. luokka) sivu 1/5 Kenguru Écolier (4. ja 5. luokka) sivu 1/5 3 pisteen tehtävät 1. Miettisen perhe syö 3 ateriaa päivässä. Kuinka monta ateriaa he syövät viikon aikana? A) 7 B) 18 C) 21 D) 28 E) 37 2. Aikuisten pääsylippu

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

AVOIN MATEMATIIKKA 9 Osio 3: Geometrian tietojen syventämistä

AVOIN MATEMATIIKKA 9 Osio 3: Geometrian tietojen syventämistä Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 9 Osio : Geometrian tietojen syventämistä Sisältö on lisensoitu avoimella CC BY.0 -lisenssillä. 1 8. Kappaleiden pinta-aloja Kappaleiden kokonaispinta-alassa

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

MATERIAALI- TEHOKKUUS OMAKOTI- RAKENTAMISEN KANNALTA

MATERIAALI- TEHOKKUUS OMAKOTI- RAKENTAMISEN KANNALTA MATERIAALI- TEHOKKUUS OMAKOTI- RAKENTAMISEN KANNALTA MUISTILISTA AVUKSESI Kartoita tarve paljonko tilaa tarvitaan tilat tehokkaaseen käyttöön tilojen muutosmahdollisuus, tilat joustavat eri tarkoituksiin

Lisätiedot

Tilanjako-oven mittausohjeet

Tilanjako-oven mittausohjeet Tilanjako-oven mittausohjeet Tilanjako-oven oikea mitoitus näitä mittausohjeita noudattaen. Alla kolme yleisintä asennus- / mittausvaihtoehtoa. Mittausmalli Seinäkiinnitys oviaukon päälle Esimerkin oviaukon

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita MAB: Avaruuskappaleita Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Benjamin sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ

LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ LATTIAKIVET LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ Käyttökohteita sisälattiat, takkojen edustat, terassien ja portaiden pinnoitukset, pihakiveykset maakosteaan betoniin asennettuna

Lisätiedot

LISTAT. Tehtävä 1: LISTAT

LISTAT. Tehtävä 1: LISTAT LISTAT Tammikuussa julkaistiin Rokkisydän ja Sarvipäät -yhtyeiden uudet CD:t. Helmikuussa niitä seurasivat Sinkkubingo ja Metalliväki -yhtyeiden CD:t. Alla oleva kuvaaja esittää näiden yhtyeiden CD-levyjen

Lisätiedot

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista

Lisätiedot

Vastaus: Komplementtikulma on 23 ja suplementtikulma on 113. 404. Nelikulmion kulmien summa on 360.

Vastaus: Komplementtikulma on 23 ja suplementtikulma on 113. 404. Nelikulmion kulmien summa on 360. 9. Särmiä pitkin matka on a. Avaruuslävistäjää pitkin matka on a + a + a a a Matkojen suhde on 0,577, eli avaruuslävistäjää pitkin kuljettu matka on a 00 % 57,7 % 4, % lyhyempi. Vastaus: 4, % 0. Tilavuus

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Monikulmiot. 1. a) Kulman ovat vieruskulmia, joten α = 180 25 = 155.

Monikulmiot. 1. a) Kulman ovat vieruskulmia, joten α = 180 25 = 155. Monikulmiot 1. Kulmia 1. a) Kulman ovat vieruskulmia, joten α = 180 5 = 155. b) Kulmat ovat ristikulmia, joten α = 8.. Kulma α ja 47 kulma ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia,

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita 6

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita 6 MAB: Avaruuskappaleita 6 Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ

LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ LATTIAKIVET LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ Käyttökohteita sisälattiat, takkojen edustat, terassien ja portaiden pinnoitukset, pihakiveykset maakosteaan betoniin asennettuna

Lisätiedot

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92 MAB Kertaustehtävien ratkaisut 10. a) α = 15 16 1 16 1 15 60 β = 95 58 45 600 15,669 95 58 45 95,979 60 600 b) α = 11,987 0,987 = 0,987 60 = 59, 0, = 0, 60 = 1,9 α = 11 59 1,9 = 11 59 14 β = 95,4998 0,

Lisätiedot

Elementtirakennukset. Roskakatokset - Huvimajat - Leikkimökki Puucee - Saunat - Varastot - Katokset ja tallit

Elementtirakennukset. Roskakatokset - Huvimajat - Leikkimökki Puucee - Saunat - Varastot - Katokset ja tallit Elementtirakennukset Roskakatokset - Huvimajat - Leikkimökki Puucee - Saunat - Varastot - Katokset ja tallit ROSKAKATOKSET elementtitoimitus paketti ei sisällä ovielementtiä, katemateriaalia, ruuveja eikä

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

UPPOPALLOALTAAN SPESIFIKAATIO

UPPOPALLOALTAAN SPESIFIKAATIO UPPOPALLOALTAAN SPESIFIKAATIO Riku Riikonen 4.12.2002 (Ed. versio Esa Mäkitalo 16.12.1990) 1 JOHDANTO Tämä dokumentti kuvaa uppopallopelin tarpeet ja vaatimukset uimahallirakenteissa ja -muodossa. Suomessa

Lisätiedot

Iho- ja allergiasairaalan lastenosaston sisustaminen

Iho- ja allergiasairaalan lastenosaston sisustaminen Iho- ja allergiasairaalan lastenosaston sisustaminen Tehtävän Kuvaus: Sisustuksen budjetti: 5 000 7 000 euroa Koko osaston pohjapiirustus Sisustettavat huoneet merkitty punaisella. Leikki-/odotushuone

Lisätiedot

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja - 26 - - mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline - yksiköien avulla voiaan verrata mitattujen suureien arvoja - suure on jonkin esineen tai asian mitattava ominaisuus, jonka arvo

Lisätiedot

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1 Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit

Lisätiedot

Kenguru 2014 Cadet (8. ja 9. luokka)

Kenguru 2014 Cadet (8. ja 9. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Kenguru 2015 Cadet (8. ja 9. luokka)

Kenguru 2015 Cadet (8. ja 9. luokka) sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ

LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ LATTIAKIVET LATTIA-ASENNUKSIIN VALIKOITUJA VAPAA- MUOTOISIA LIUSKEKIVIÄ Käyttökohteita sisälattiat, takkojen edustat, terassien ja portaiden pinnoitukset, pihakiveykset maakosteaan betoniin asennettuna

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14 Yksikkömuunnokset Pituus pinta-ala ja tilavuus lördag 8 februari 4 SI-järjestelmän perussuureet ja yksiköt Suure Suureen tunnus Perusyksikkö Yksikön lyhenne Määritelmä Lähde: Mittatekniikan keskus MIKES

Lisätiedot

2-OSAINEN KOMPOSTORI (voidaan toteuttaa myös 1-osaisena)

2-OSAINEN KOMPOSTORI (voidaan toteuttaa myös 1-osaisena) 2-OSAINEN KOMPOSTORI (voidaan toteuttaa myös 1-osaisena) Mitat: Korkeus max. 80 cm Syvyys n. 75 cm Leveys n. 125 cm Kuormalava tai muu rakenne ilman kiertoa varten Kompostori sivusta, kansi auki kansi

Lisätiedot

A. Desimaalilukuja kymmenjärjestelmän avulla

A. Desimaalilukuja kymmenjärjestelmän avulla 1(8) Kymmenjärjestelmä desimaalilukujen ja mittayksiköiden muunnosten pohjana A. Miten saadaan desimaalilukuihin ymmärrystä 10-järjestelmän avulla? B. Miten saadaan mittayksiköiden muunnoksiin ymmärrystä

Lisätiedot

AMMATIKKA top 16.11.2006

AMMATIKKA top 16.11.2006 AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2013 Ecolier sivu 1 / 6 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

Lasiseinän asennusohje

Lasiseinän asennusohje Lasiseinän asennusohje Sun Sauna Oy Kuormaajantie 40 40320 Jyväskylä puh. 0403470220 info@sunsauna.fi 1. Katon panelointi Lasiseinän yläreunassa käytetään normaalitilanteessa upotettavaa lasilistaa. Tällä

Lisätiedot

Tuotekortit SÄILYTTIMET

Tuotekortit SÄILYTTIMET Tuotekortit SÄILYTTIMET KOMBI 2709 Kaapit Leveys 800 mm, syvyys 426 mm, korkeus 403 mm. Pystylistat 1250 ja 1985 mm. Vaakalistat 1850 ja 2500 mm. Hyllyt Leveys 800 mm, syvyys 305 mm, paksuus 22 mm. Listat:

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29. 1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.

Lisätiedot

2-OSAINEN KOMPOSTORI Tämä kompostori voidaan toteuttaa myös 1-osaisena ilman väliseinää ja yhdellä kannella.

2-OSAINEN KOMPOSTORI Tämä kompostori voidaan toteuttaa myös 1-osaisena ilman väliseinää ja yhdellä kannella. 2-OSAINEN KOMPOSTORI Tämä kompostori voidaan toteuttaa myös 1-osaisena ilman väliseinää ja yhdellä kannella. NÄKYMÄ EDESTÄ Mitat: Korkeus max. 80 cm Syvyys n. 75 cm Leveys n. 100-160 cm riippuen siitä,

Lisätiedot

LASKUTOIMITUKSET. Montako ötökkää on kussakin ruudussa? Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos:

LASKUTOIMITUKSET. Montako ötökkää on kussakin ruudussa? Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: LASKUTOIMITUKSET Montako ötökkää on kussakin ruudussa? Nimi: 1 Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Tulos: Jos laskit ötökät yksitellen, harjoittele ja mieti, miten voit tehdä laskun

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe.6.009 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on tuntia (klo 1.00 14.00). Kokeesta saa poistua aikaisintaan klo 1.0..

Lisätiedot