Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen

Koko: px
Aloita esitys sivulta:

Download "Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen"

Transkriptio

1 Copyright Isto Jokinen 01 MTEMTIIKK Matematiikkaa pintakäsittelijöille POJ. Isto Jokinen 01 SISÄLTÖ Pinta-alojen laskeminen Tilavuuksien laskeminen Prosenttilaskut Käyttö opetuksessa tekijän luvalla 1

2 Copyright Isto Jokinen 01 PINT-LOJEN LSKEMINEN Pintakäsittelyalan työtehtävissä on pintaalojen laskeminen keskeisin osa matematiikasta. Sitä tarvitaan mm: - Kun arvioiaan maalauskohteen ajan- ja materiaalien kulutusta - Kun lasketaan maalaustyöstä, jonka hinta perustuu maalattuun pinta-alaan - Kun lasketaan työntekijän palkkaa silloin kun palkkaan vaikuttaa maalattu pinta-ala - Kun lasketaan pinnoituksessa tarvittavaa sähkövirtaa. Pinta-ala on pituusmitta toisessa potenssissa. Yleisin käytettävä pinta-alan yksikkö on m eli neliömetri. Sitä käytetään mm. - Ilmoitettaessa asuintilojen pinta-aloja - Laskettaessa maalattavia pinta-aloja Muita yleisesti käytettäviä yksiköitä ovat m, cm, mm ja km. Maapinta-aloista käytetään usein myös yksiköitä hehtaari ( ha ) ja aari ( a ). 1 ha = m ja 1 a = 100 m Yksiulotteisuus Pituusmitta on yksiulotteinen. Esim. kuvan viivan pituus on 0,08 metriä. MONIMUOTOISEN PINNN PINT-L Monimuotoisen pinnan pinta-alaa ei voia laskea laskukaavalla, vaan sen pinta pitää paloitella pieniin osiin ja laskea osien pintaalat yhteen. Esimerkki 1. Kaksiulotteisuus Pinta-ala on kaksiulotteinen. Pinta-alan suuruus riippuu siitä miten ison alan pinta peittää. Esim. kuvan laatikon sivun pinta-ala on 0,00 m. Pinta-ala voiaan laskea vain pienissä osissa, eikä koskaan täysin tarkkaan. Mitä pienempiin osiin ala paloitellaan, sitä tarkempi tulos saaaan. Pinta-ala lasketaan laskemalla yhteen neliöien määrä. Käyttö opetuksessa tekijän luvalla

3 Copyright Isto Jokinen 01 SÄÄNNÖNMUKINEN PINT-L Säännönmukaisten pintojen pinta-alat voiaan laskea tarkasti laskukaavojen avulla. Säännönmukaisia pintoja ovat mm: neliö, suorakulmio, kolmio, suunnikas, puolisuunnikas, ympyrä, lieriö, kartio ja pyramii MITTYKSIKÖT PINT- LLSKUISS Piirustuksissa mitat ilmoitetaan millimetreinä ellei toisin ole ilmoitettu. Pinta-alaa laskettaessa on millimetrimitat muutettava ennen pinta-alan laskemista siihen pituusyksikköön jonka neliönä pinta-alan tulos halutaan. Esimerkiksi jos mitat on annettu millimetreinä ja tulos halutaan neliömetreinä, niin millimetrimitat muutetaan ensin metreiksi ja tämän jälkeen pinta-ala lasketaan näistä metrimitoista. Taulukko. Mittayksiköistä toisiksi: MILLIMETREISTÄ METREIKSI 1 m = 1000 mm, joten millimetrimitta muutetaan metrimitaksi jakamalla se tuhannella. Esimerkkejä muunnoksista alla olevassa taulukossa. mm ,5, 1,8 15, 110 0,85 0,05 0,000 MITTYKSIKÖISTÄ TOISIKSI Pituusyksikköjä cm ja m käytetään yleisesti, vaikka niien käyttöä tulisi pyrkiä välttämään. Taulukossa.yleisimpiä mittayksikköjä muunnettuna metreiksi. m 1 km m m cm mm um , ,0018 0,018 0, , 10-0,004 0,04 0,4 4, ,015 0,15 1, , 10-0, ,0015 1, , , Käyttö opetuksessa tekijän luvalla

4 Copyright Isto Jokinen 01 NELIÖN PINT-LN LSKEMINEN Neliössä kaikki sivut ovat saman mittaisia ja kulmat suoria. SUORKULMION PINT-LN LSKEMINEN Suorakulmiossa kulmat ovat suoria ja sivuparit keskenään samanmittaisia. Neliön pinta-ala lasketaan kaavalla: Suorakulman pinta-ala lasketaan kaavalla: a a Esimerkki. Neliön sivun pituus on, metriä. Mikä on neliön pinta-ala? Esimerkki 5. Suorakulmaisen pihan mitat ovat Mikä on pihan pinta-ala?,m 10,4m 1,5m 8m 50m Esimerkki. Rakennuspiirustuksessa vaatehuone on neliön muotoinen ja sivujen mitta on 800. Mikä vaatehuoneen pinta-ala on yksikössä m? 0,8m 0,64m KOLMION PINT-LN LSKEMINEN Suorakulmaisessa kolmiossa on suorasta kulmasta alkavat kateetit ja niien toisia päitä yhistävä hypotenuusa. Esimerkki 4. Neliönmuotoisen pihavaraston pinta-ala voi olla 9,9 m. Mikä on varaston sivujen pituus? a 9,9m, 146m Käyttö opetuksessa tekijän luvalla 4

5 Copyright Isto Jokinen 01 Suorakulmaisen kolmion pinta-ala lasketaan kaavalla: Esimerkki 6. a Suorakulmaisen kolmion sivujen pituuet ovat 100 ja 800. mikä on kolmion pinta-ala? Suunnikkaan pinta-ala lasketaan kaavalla: Esimerkki 8. a c Suunnikkaan sivujen pituuet ovat: a=180, =60 ja c= 60. Mikä on suunnikkaan pinta-ala? 1,m Esimerkki 7. 0,8m 0,48m 0,18m 0,01m 0,6m 1,m 0,06m Suorakulmaisen kolmion pinta-ala on 18 m ja korkeus 1,5 m. Mikä on kolmion leveys? a a 18m 4m 1,5m PUOLISUUNNIKKN PINT- LN LSKEMINEN Puolisuunnikkaassa sivut a ja c ovat samansuuntaisia. Sivu on suorassa kulmassa sivuihin a ja c nähen. Kuva: Puolisuunnikas SUUNNIKKN PINT-LN LSKEMINEN Suunnikkaassa sivut a ja c ovat keskenään samansuuntaisia. Sivu on sivujen a ja c etäisyys. Puolisuunnikkaan pinta-ala voiaan laskea kaavalla: a tai a c : a Käyttö opetuksessa tekijän luvalla 5

6 Copyright Isto Jokinen 01 Esimerkki 9. Puolisuunnikkaan mitat ovat: a=1500; =800;c=1000. Mikä on puolisuunnikkaan ala? a c ,8m 0,5m 1,5 m 0,8m 1m YMPYRÄN L Ympyrän pinta-ala voiaan laskea joko ympyrän halkaisijan tai säteen avulla. Ympyrän säe ( r ) on ½ ympyrän halkaisijasta ( ). Esim. 10. Ympyrän halkaisija on 5 m. Mikä on sen pinta-ala? 5m 4 YMPYRÄN PIIRI Ympyrän piiri ( P ) on: P 96m Esim. 11. Ympyrän ala on 10 m. Mikä on sen halkaisija ja piiri? m 4 1.6m tai 4 r r P 8, 8m Esim. 1. Ympyrän piiri on 400m. Mikä on ympyrän pinta-ala, säe ja halkaisija? P P 400m 17, m 17,m r 6, 66m s r 6,66m 17 m Käyttö opetuksessa tekijän luvalla 6

7 Copyright Isto Jokinen 01 PINT-LYKSIKKÖJEN MUUNTMINEN Pinta-alaa laskettaessa on laskun tulos annettava siinä yksikössä missä se halutaan. Jos yksikköä ei erikseen mainita annetaan vastaus neliömetreinä. Metallipinnoitustöissä käytetään usein yksikköä m. Muita käytetään hyvin harvoin. Muunnettaessa pinta-alayksikköä pilkku siirtyy aina kahen numeron yli. m m cm mm 0,01, , , , , , , PINT-LN JKMINEN Usein pinta-alaa ei voia laskea suoraan koska se voi muoostua useasta osasta tai sitten ulkomitoista pitää vähentää pinnan osia. Esim. 1. Pinta jaetaan osiin jotka voiaan laskea erikseen. Piirustuksiin merkitään tarpeellinen määrä mittoja, mutta ei kaikkia. nnettujen mittojen avulla voiaan kuitenkin loput mitat laskea. Tässä tapauksessa 1 voiaan laskea suoraan annetuista mitoista. ja :n laskemiseen sen sijaan tarvitaan sivujen mittojen omaa laskemista. :n pystysuoramitta on,m-,8m. :n pystysuoramitta on,m-,8m ja vaakasuoramitta 4,5m-,7m. Lattian pinta-ala on: 1 1,5m,8m 1, 6 4 m,7m 0,4m 1, 08m 1,8 m 0,4m 0, 7m 1,6m 1,08m 0,7m 14,4m OSIEN VÄHENTÄMINEN PINT- LST Maalattavassa tuotteessa voi olla reikiä joita ei maalata. Huoneien seinissä voi olla ovia ja ikkunoita joita ei lasketa maalattavaan pintaalaan. Tällöin on järkevää laskea ulkopintaala ja vähentää siitä pinnat joita ei maalata. Esim. 14. Laske kuvan levyn pinnoitettava pinta-ala. Musta osa on aukko pinnassa. Huoneen lattia jaetaan kolmeen osaan joien pinta-alat voiaan laskea erikseen laskukaavojen avulla. Lopuksi osat summataan yhteen. Käyttö opetuksessa tekijän luvalla 7

8 Copyright Isto Jokinen 01 ulkomitat aukko ulkmitat 0,m 0,5m 0,075m Esimerkki 15. Laske kuution pinta-ala yksiköissä m ja m kun sen sivun pituus on 600. a) Yksikössä m : aukko 0,1m 0,15m 0,015m 6 0,6m,16m 0,06m 0,075m 6m 0,015m Eellisissä esimerkeissä laskettavat pinta-alat olivat yhessä tasossa ( tasogeometria ). KOLMIULOTTEISET KPPLEET Hyvin usein jouutaan laskemaan pinta-aloja kolmiulotteisista kappaleista. Näitä ovat mm. kuutio, suorakulmainen särmiö, kiila, pyramii, pallo, puolipallo ja lieriö. Pintaaloja lasketaan usein myös profiileista joita ovat mm. lauta, lista, putki ja erilaiset palkit. KUUTION PINT-L Kuutiossa on kuusi pintaa jossa kaikki sivut ovat saman mittaisia: ) Yksikössä m : 6 6m 16m Esimerkki 16. Kuution pinta-ala on 1,15m. Mikä on kuution sivun pituus? kuutio kuutio 6 a a 0, 45m 6 SUORKULMISEN SÄRMIÖN PINT-L Suorakulmaisessa särmiössä on kolme keskenään ienttistä sivuparia ja yhteensä 6 sivua. Kuva. Suorakulmainen särmiö Kuva: Kuutio Suorakulmaisen särmiön sivujen yhteenlaskettu pinta-ala on. Kuution sivujen yhteenlaskettu pinta-ala on: 6 a a a c c Käyttö opetuksessa tekijän luvalla 8

9 Copyright Isto Jokinen 01 Esimerkki 16: Laske kuvan suorakulmaisen särmiön pinta-ala yksikössä m. Esimerkki 18. Laske kuvan kiilan sivujen kokonaispinta-ala yksikössä m. 1,5 m (1m 0,4m 1m 0,4m) 5m 1,5 m Esimerkki 17: Laske kuvan suorakulmaisen särmiön pinta-ala yksikössä m. Kolmiosärmiö on kuvattu piirustuksessa yhensuuntaisprojektioina. Sivuja vasemmalta, päältä ja alta on kutakin vain yksi. Sivut eestä ja takaa ovat keskenään samanlaisia. lat lasketaan erikseen : vasemmalta m 0,5m 1,5m alta m 0,5m 1m,5m (6m 10m),5m 00m 6m 10m KOLMIOSÄRMIÖN PINT-L Kolmiosärmiöllä tarkoitetaan suorakulmaista särmiötä joka on puolitettu kahteen osaan niin, että sivusta katsottuna se näyttää kolmiolta. Sillä on viisi pintaa, joista kolme on suorakulmion muotoisia ja kaksi kolmion muotoisia. Jos kolmion hypotenuusan mittaa ei ole annettu on se laskettava Pythagoraan - lauseen avulla, jotta yhen suorakulmio pinta saaaan laskettua. Kahen muun suorakulmion ja kolmioien pinta-alat saaaan laskettua suoraan. eestä takaa m m 6m päältä on hankalampi laskea, koska se on c 0,5 m. Mittaa c ei ole annettu. Se voiaan laske ainoastaan Pythagoraan lauseen avulla, joka on: c:ksi saaaan: c a c m m 1m, 6m päältä,6m 0,5m 1, 8m yhteensä ( 1, ,8) m 10,m Käyttö opetuksessa tekijän luvalla 9

10 Copyright Isto Jokinen 01 LIERIÖN PINT-L Kuva: Lieriö Vaipan pinta-ala lasketaan kaavalla: r h Esimerkki 0. Mikä on kartion vaipan pintaala kun sen halkaisija on 85 cm ja korkeus 1,15 m. 0,45m 1,15m 1,54m PLLON PINT-L Kuva: Pallo h Lieriön pituuen symolina käytetään usein myös l:ää ja s:ää. Putken pinta-ala on sama kuin lieriön pinta-ala. Esimerkki 19. Putken ulkohalkaisija on 150 ja pituus 1 metriä. Mikä on putken pinta-ala? 0,15m 1m 5,65m Pallon pinta-ala lasketaan kaavalla: KRTION PINT-L 4 r Kuva. Kartio Esimerkki 1. Mikä on pallon pinta-ala kun sen halkaisija on 1 m? 4 0,5m,14m Esimerkki. Mikä on pallon säe jos sen pinta-ala on 00 m :ä? 4 r Kartiolla on vaippa ja pohja. Pohjan pinta-ala lasketaan ympyrän pinta-alana ( = r ). 00m r, 99m 4 4 Käyttö opetuksessa tekijän luvalla 10

11 Copyright Isto Jokinen 01 PROFIILIEN PINT-LT Profiilien pinta-ala lasketaan kertomalla niien piiri profiilin pituuella. Usein piiri on annettu yksikössä mm ja pituus yksikössä m. Profiileilla on myös päät, joilla on oma pintaalansa. Päien pinta-ala on kuitenkin sivuihin nähen niin pieni ettei sitä tarvitse laskea ellei erikseen pyyetä. Esimerkki. Kuvan lautoja on 5 kpl. Mikä on lautojen pinta-ala? Päitä ei tarvitse laskea. a = 50, = 00, c = 8 P 0,5m 0,08m 0, 556m lauta 0,556 m,m 1,848 m I-PLKIN PINT-L Kuva: I-palkki I-palkin piiri voiaan laskea kaavalla: P 4 a Laskutapa ei anna aivan tarkkaa tulosta, koska se ei ota huomioon palkin seinämän paksuutta. Jos tuloksesta vähennetään kertaa palkin seinämän paksuus on tulos tarkka. Yleensä eellinen laskukaava antaa maalaustai pinnoituspinta-alojen laskentaan riittävän tarkan tuloksen. Esimerkki 6. I-palkin korkeus on 00, leveys 150 ja pituus 6m. Mikä on palkin ala? Päien alaa ei huomioia. P 4 0,15m 0,m 1m kok 5 1,848 m 45,9m 1m 6m 6m Esimerkki 4. Putken ulkohalkaisija on 14 mm ja pituus 1 m. Mikä on putken pinta-ala yksikössä m? 0,14m 10m 5,8m U-PLKIN PINT-L Kuva: U-palkki Esimerkki 5. Putken pinta-ala on 10m ja sen pituus on 50 metriä. Mikä on putken halkaisija? putki putki l l 10m 50m 6,7 mm U-palkin piiri voiaan laskea kaavalla: P a 4 Käyttö opetuksessa tekijän luvalla 11

12 Copyright Isto Jokinen 01 TILVUUSLSKENT Esineet ovat aina kolmiulotteisia. Kolmiulotteisuuesta johtuen niillä on tilavuus. Yksinkertaisten muotoisten esineien tilavuus voiaan laskea laskukaavojen avulla. Monimuotoisten tilavuutta ei voia suoraan laskea. Tilavuuen yksiköt ovat pituusmittoja kolmannessa potenssissa; esim. m, m, cm ja mm. Tilavuusyksikköjä jouutaan usein muuntamaan. Muunnoksissa pilkku siirtyy aina askelta. Esimerkiksi 00 m on 0, m ja myös 00000cm. Kolmiulotteisia muotoja KUUTION TILVUUS Kuution tilavuus: V = a. Esimerkki 6. Kuution sivun pituus on 100. Mikä on sen tilavuus yksikössä m? Vastaus: Pituusmitta muutetaan yksikköön metri, jolloin vastaus saaaan suoraan yksikössä m. V=(1,m) =,197m Esimerkki 7. Kuution tilavuus on 400 litraa. Mikä on kuution sivun pituus. a 400m 7, 7m Tilavuusmittojen muuntaminen m 0,0015 m ( l ) 000 1,5 cm ( ml ) mm ( µl ) SUORKULMISEN SÄRMIÖN TILVUUS 0, ,0049 4, Yleisimmin käytettyjä yksiköitä ovat m, l ja ml. Suorakulmaisen särmiön tilavuus lasketaan kertomalla sivujen pituuet keskenään, eli V a c Käyttö opetuksessa tekijän luvalla 1

13 Copyright Isto Jokinen 01 Esimerkki 8. Laske suorakulmaisen särmiön tilavuus kun: a = 100, = 600 ja c = 800 V 1,m 0,6m 0,8m 0,576m KOLMIOSÄRMIÖN TILVUUS Esimerkki 0. Lieriön korkeus on 800 ja halkaisija 400. Mikä on sen tilavuus yksikössä litra ( m )? r h V m; 8m 100,5m m 100l 8m Kolmiosärmiön tilavuus lasketaan kaavalla: V L h Esimerkki 9. Kuvan kolmiosärmiön mitat ovat: L = 0000, = 8000,h = 4000 Mikä on sen tilavuus? V 0m 8m 4m LIERIÖN TILVUUS 0m PLLON TILVUUS Pallon tilavuus lasketaan kaavalla: V pallo tai V pallo 4 6 r Esimerkki 1. Pallon halkaisija on 50 mm. Mikä on sen tilavuus litroina? V pallo 0,5m 6 0,065m Esimerkki. Pallon tilavuus on 100 l. Mikä on sen halkaisija? Lieriön tilavuus lasketaan kaavalla V r h V pallo 6 V 6 100m 6 5,76m 576mm Käyttö opetuksessa tekijän luvalla 1

14 Copyright Isto Jokinen 01 KRTION TILVUUS Esimerkki 5. Lattian pinta-ala on 8 m. Lattian päälle levitetään mm tasoitetta. Mikä on tasoitteen tilavuus litroina? V 8m 0,00m 0,04m 4l Laskettaessa tasoitteien kulutusta voiaan käyttää muistisääntöä. Kulutus ( l ) = (m) paksuus ( mm ) Kartion tilavuus saaaan laskukaavalla: V kartio 1 Esimerkki. Kartion korkeus on 800 ja halkaisija 600. mikä on sen tilavuus litroina? 6m 8m V kartio 75, 4m 1 Esimerkki 4. Kartion tilavuus on 10 litraa ja halkaisija 0 cm. Mikä on sen korkeus? V kartio h h V 1 h 1 10m 1 h 4,4m 44mm m Esimerkki 6. Lattian ala on 1 m ja sille levitetään tasoitetta 4,5 mm. Paljonko tasoitetta kuluu litroina? V 1m 4,5mm 54l MLIKLVON TILVUUS Pinnassa olevan maalikalvon tai metallipinnoitteen tilavuus on sen peittämä pinta-ala kerrottuna pinnoitteen paksuuella. Esimerkki 7. Teräslevyjen pinta-ala on 80 m. Niien päälle levitetään 0 µm sinkkiä. Mikä on sinkin tilavuus litroina? V 80m 0,0000m 0,004m Laskettaessa maalien ja metallipinnoitteien kulutusta voiaan käyttää muistisääntöä. Kulutus ( l ) = (m) paksuus (µm )/1000 Esimerkki 8. Lattian ala on 1 m ja sille levitetään tasoitetta 150 µm maalikerros. Paljonko maalia kuluu litroina? PINNOTTEIDEN TILVUUS Pinnassa olevan pinnoitteen tilavuus on sen peittämä pinta-ala kerrottuna pinnoitteen paksuuella. 1m 10 m V 1, 44l 1000 Käyttö opetuksessa tekijän luvalla 14

15 Copyright Isto Jokinen 01 PROSENTTILSKENT Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,4 4 0,01 1, 1,00 100, 1/5 100/5=4 /45 51,1 Tarkista laskimella tulos 51,1 %. PROSENTTIRVON LSKEMINEN Esimerkki 41. Laske prosenttia luvusta ,8 Esimerkki 4. Paljonko on 14 %:a 0 kg:sta? 14 0kg 44, 8kg 100 PROSENTTILUVUN LSKEMINEN Esimerkki 4. Kuinka monta prosenttia 55 kg on 790 kg:sta? 55kg 790kg 100% 6,96% Esimerkki 44. Kuinka monta prosenttia 75 mm on 65 cm:stä? Ennen laskutoimitusta yksiköt on muutettava samoiksi. 75mm 650mm 100% 11,54% Tulos olisi sama jos yksiköt olisivat olleet cm:nä. PERUSRVON LSKEMINEN Esimerkki 45. Mistä rahamäärästä 15 %:a on 8 euroa? 8e 5, e 0,15 LISÄTTY RVO Esimerkki 46 Lisää 0 kg:aan 1 %:a. 0kg 0kg 0,1 57, 6kg Lisäys voiaan laskea myös seuraavasti: 0 kg 1,1 57, 6kg Eellisessä kertoimen 1,1 luku 1 vastaa alkuperäistä arvoa ja 0,1 lisäystä. Esimerkki 47. Lisää 860 euroon 4 %:a. 860 e 1,4 1066, 4e Esimerkki 48. Lisää 45 grammaan 140 %:a 45 g,4 108g tai toisella laskutavalla: 45 g 45g 1,4 108g Käyttö opetuksessa tekijän luvalla 15

16 Copyright Isto Jokinen 01 Käytä sitä laskutapaa joka tuntuu helpommalta. VÄHENNETTY RVO Esimerkki 49. Vähennä 480 eurosta 4%:a. 480 e 480e 0,4 64, 8e Toisella tavalla: 480 e 0,76 64, 8e Eellisessä tavassa kerroin 0,76 on saatu vähentämällä luvusta yksi luku 0,4. Käytä laskutapaa joka tuntuu helpommalta. Jos vähennetystä arvosta halutaan laskea alkuperäinen arvo, saaaan se jakamalla vähennetty arvo vähennyskertoimella. Esimerkki 50. lkuperäisestä massasta on vähennetty 64 %:a jolloin on saatu tulos 100 kg. Mikä on ollut alkuperäinen massa? 100kg 611, 1kg 1 0,64 tai 100kg 611, 1kg 0,6 Käytä laskutapaa joka tuntuu helpommalta. Laskiessa on tärkeää ymmärtää kysymyksen muoosta mikä on alkuperäinen arvo. Esimerkki 51. uton hinta laski omistuksen aikana ostohinnasta e myyntihintaan 8500 e. Paljonko auton arvo laski prosentteina? 14000e 8500e 14000e 100% 9,8% Esimerkki 5. Kunnostettavan huonekalun ostohinta oli 45 e ja myyntihinta oli 80 e. Paljonko huonekalun arvo nousi prosentteina? 80e 45e 45e 100% 77,8% Esimerkki 5. Pekan palkka on 14,5 e tunnilta ja Hilkan palkka 1,75 e tunnilta. Montako prosenttia Pekan palkka on suurempi kuin Hilkan palkka? 14,5e 1,75e 1,75e 100% 11,76% Entä montako prosenttia Hilkan palkka on pienempi kuin Pekan palkka? 14,5e 1,75e 14,5e 100% 10,5% Entä montako prosenttia Hilkan palkka on Pekan palkasta? MUUTOS J VERTILU Prosentuaalista muutos lasketaan: 1,75 14,5 100% 89,47% muutos alkuperäinen_ arvo 100% Käyttö opetuksessa tekijän luvalla 16

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen

Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen Copyright Isto Jokinen 01 MTEMTIIKK Matematiikkaa pintakäsittelijöille POJ. Isto Jokinen 01 SISÄLTÖ Pinta-alojen laskeminen Tilavuuksien laskeminen Käyttö opetuksessa tekijän luvalla 1 Copyright Isto Jokinen

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

[MATEMATIIKKA, KURSSI 9]

[MATEMATIIKKA, KURSSI 9] 2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...

Lisätiedot

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja - 26 - - mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline - yksiköien avulla voiaan verrata mitattujen suureien arvoja - suure on jonkin esineen tai asian mitattava ominaisuus, jonka arvo

Lisätiedot

Tehnyt 9B Tarkistanut 9A

Tehnyt 9B Tarkistanut 9A Tehnyt 9B Tarkistanut 9A Kuitinmäen koulu Syksy 2006 Avaruusgeometrian soveltavia tehtäviä... 3 1. Päästäänkö uimaan?... 3 2. Mummon kahvipaketti... 3 3. Tiiliseinä... 4 4. SISUSTUSTA... 5 5. Kirkon torni...

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o. KERTAUSHARJOITUKSIA KULMA 45 l 6. a) Samankohtaisista kulmista 80( 80456) 08 b) Kolmion kulmien summa on ( 80) 80 6 l 5 80 :( 5) 6 Kysytty kulma 80 8067 Vastaus: a) 08 o b) 7 o 7. Kulmien summa on ( )

Lisätiedot

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 )

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 ) Avaruusgeometria Lieriö 4. a) 0 0 1 7 00 (cm ) 7 00 cm 7, dm 7, l b) A p h 0 15 450 (cm ) 5. Kuution särmän pituus on a 1, cm. a) a 1, 1,78 1,7 (cm ) b) A 6a 6 1, 8,64 8,6 (cm ) 16 6. r d 8 (cm) A p h

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Mitkä kuutiot on taiteltu kuvassa

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli Kertausosa 1. Kulma α on 7 suurempi kuin kulma eli 7. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli 180 7 180 14 : 71,5 Siis 7 71,5 7 108, 5 Vastaus: 108,5, 71, 5. Kuvaan merkityt kulmat

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1 Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita MAB: Avaruuskappaleita Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

1 PROSENTTILASKENTAA 7

1 PROSENTTILASKENTAA 7 SISÄLTÖ 1 PROSENTTILASKENTAA 7 Peruskäsitteitä 8 Prosenttiarvo 9 Prosenttiluku 11 Perusarvo 13 Muutosten laskeminen 15 Lisäys ja vähennys 15 Alkuperäisten arvojen laskeminen 17 Muutosprosentti 19 Prosenttiyksikkö

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29. 1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.

Lisätiedot

Monikulmiot. 1. a) Kulman ovat vieruskulmia, joten α = 180 25 = 155.

Monikulmiot. 1. a) Kulman ovat vieruskulmia, joten α = 180 25 = 155. Monikulmiot 1. Kulmia 1. a) Kulman ovat vieruskulmia, joten α = 180 5 = 155. b) Kulmat ovat ristikulmia, joten α = 8.. Kulma α ja 47 kulma ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia,

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

A. Desimaalilukuja kymmenjärjestelmän avulla

A. Desimaalilukuja kymmenjärjestelmän avulla 1(8) Kymmenjärjestelmä desimaalilukujen ja mittayksiköiden muunnosten pohjana A. Miten saadaan desimaalilukuihin ymmärrystä 10-järjestelmän avulla? B. Miten saadaan mittayksiköiden muunnoksiin ymmärrystä

Lisätiedot

AVOIN MATEMATIIKKA Osio 2: pinta-aloja

AVOIN MATEMATIIKKA Osio 2: pinta-aloja Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA Osio : pinta-aloja Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 SI-järjestelmä ja ISO Päivittäiseen elämäämme liittyy paljon mittaamista.

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

Vastaus: Komplementtikulma on 23 ja suplementtikulma on 113. 404. Nelikulmion kulmien summa on 360.

Vastaus: Komplementtikulma on 23 ja suplementtikulma on 113. 404. Nelikulmion kulmien summa on 360. 9. Särmiä pitkin matka on a. Avaruuslävistäjää pitkin matka on a + a + a a a Matkojen suhde on 0,577, eli avaruuslävistäjää pitkin kuljettu matka on a 00 % 57,7 % 4, % lyhyempi. Vastaus: 4, % 0. Tilavuus

Lisätiedot

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista

Lisätiedot

Kenguru 2011 Benjamin (6. ja 7. luokka)

Kenguru 2011 Benjamin (6. ja 7. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

MAA3 HARJOITUSTEHTÄVIÄ

MAA3 HARJOITUSTEHTÄVIÄ MAA3 HARJOITUSTEHTÄVIÄ 1. Selosta, miten puolitat (jaat kahtia) annetun koveran kulman pelkästään harppia ja viivoitinta käyttäen. 2. Piirrä kolmio, kun tunnetaan sen kaksi kulmaa (α ja β) sekä näiden

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2. Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =

Lisätiedot

= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm.

= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm. Pyramidi Geometria tetävien ratkaisut sivu 149 901 a on lieriö b ei ole, ojat eivät ole ytenevät c on d ei ole, lieriön määritelmän eto suora liikkuu suuntansa säilyttäen ja alaa louksi lätöaikkaansa käymättä

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 7.6.2005 Nimi: Henkilötunnus: Sain kutsun kokeeseen Hämeen amk:lta Jyväskylän amk:lta Kymenlaakson amk:lta Laurea amk:lta

Lisätiedot

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp

Matematiikka 3 osp. Taso T1. OSA 1: Laskennan perusteet 1 osp Taso T1 Matematiikka 3 osp OSA 1: Laskennan perusteet 1 osp Tämän kolmiosaisen materiaalin avulla opiskelija voi suorittaa itsenäisesti tai ohjatusta matematiikan pakollisen osa-alueen tasolla T1. Osa

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

7 Matematiikka. 3. luokka

7 Matematiikka. 3. luokka 7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.

Lisätiedot

454918 PIENET GEOMETRISET KAPPALEET Geometristen kappaleiden tilavuudet

454918 PIENET GEOMETRISET KAPPALEET Geometristen kappaleiden tilavuudet Ohje Tevellan tuotteelle Viinikankatu 49 A, 33800 Tampere Puh (03) 380 5300, Fax (03) 380 5353 E-mail: myynti@tevella.fi, www.tevella.fi Pieni kuutio V=AxH V=(sxs)xH V=(2,5x2,5)x2,5 V=15,6 cm 3 Suuri kuutio

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi Sähköstatiikka ja magnetismi Konensaattorit ja kapasitanssi ntti Haarto 1.5.13 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja

Lisätiedot

MATEMATIIKAN TYÖT KONNEVEDEN KENTTÄTYÖJAKSOLLA / KEVÄT 2015

MATEMATIIKAN TYÖT KONNEVEDEN KENTTÄTYÖJAKSOLLA / KEVÄT 2015 MATEMATIIKAN TYÖT KONNEVEDEN KENTTÄTYÖJAKSOLLA / KEVÄT 2015 Tehtäviin sisältyy Merikiikarin avulla suoritettavia mittauksia ja trigonometrian avulla suoritettavia laskutehtäviä. Tarvikkeet: Merikiikarit,

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita 6

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita 6 MAB: Avaruuskappaleita 6 Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti Tehtävä 1. Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti a) 1 4 b) 1 4 a) - kuvio, annetaan 1,5 p - ympyrä täyttyy neljänneksen kerrallaan, annetaan 1,5 p b) -

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

Cadets 2004 - Sivu 1 RATKAISUT

Cadets 2004 - Sivu 1 RATKAISUT Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2004 4 200= 2004 800= 1204 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Excel syventävät harjoitukset 31.8.2015

Excel syventävät harjoitukset 31.8.2015 Yleistä Excel on taulukkolaskentaohjelma. Tämä tarkoittaa sitä että sillä voi laskea laajoja, paljon laskentatehoa vaativia asioita, esimerkiksi fysiikan laboratoriotöiden koetuloksia. Excel-ohjelmalla

Lisätiedot

Aloita A:sta. Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan.

Aloita A:sta. Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Mittaamisen opettamisesta

Mittaamisen opettamisesta Mittaamisen opettamisesta Vesa-Matti Sarenius Oulun LUMA-keskus Johdatus aiheeseen Keskustele vierustovereidesi kanssa seuraavista asioista: 1. Mitä mittaaminen tarkoittaa? 2. Mitä mittaamisen opettamiseen

Lisätiedot

Esimerkiksi jos käytössä ovat kirjaimet FFII, mahdolliset nimet ovat FIFI ja IFIF. Näistä aakkosjärjestykssä ensimmäinen nimi on FIFI.

Esimerkiksi jos käytössä ovat kirjaimet FFII, mahdolliset nimet ovat FIFI ja IFIF. Näistä aakkosjärjestykssä ensimmäinen nimi on FIFI. A Nimi Uolevi sai koiranpennun, mutta siltä puuttuu vielä nimi. Uolevi on jo päättänyt, mitä kirjaimia nimessä tulee olla. Lisäksi hän haluaa, että nimi muodostuu toistamalla kaksi kertaa sama merkkijono.

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2008

Preliminäärikoe Pitkä Matematiikka 5.2.2008 Preliminäärikoe Pitkä Matematiikka 5..008 Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. Ratkaise

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 3.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 3.2.2010 1 / 36 Esimerkki: asunnon välityspalkkio Kirjoitetaan ohjelma, joka laskee kiinteistönvälittäjän asunnon

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3 : http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON

LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa

Lisätiedot

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lyhyt matematiikka, syksy 015 Mallivastaukset, 3.9.015 Mallivastausten laatimisesta ovat vastanneet filosofian maisteri Teemu Kekkonen ja

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 17.11.2011 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Kenguru 2016 Student lukiosarjan ratkaisut

Kenguru 2016 Student lukiosarjan ratkaisut sivu 1 / 22 Ratkaisut TEHTÄVÄ 1 2 3 4 5 6 7 8 9 10 VASTAUS A C E C A A B A D A TEHTÄVÄ 11 12 13 14 15 16 17 18 19 20 VASTAUS A C B C B C D B E B TEHTÄVÄ 21 22 23 24 25 26 27 28 29 30 VASTAUS D C C E E

Lisätiedot

Laudatur 2. Opettajan aineisto. Polynomifunktiot MAA2. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava

Laudatur 2. Opettajan aineisto. Polynomifunktiot MAA2. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava Laudatur Polynomifunktiot MAA Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava Toimittaja: Sanna Mäkitalo Taitto: Tekijät. painos Painovuosi

Lisätiedot