Informaatio ja Strateginen käyttäytyminen

Koko: px
Aloita esitys sivulta:

Download "Informaatio ja Strateginen käyttäytyminen"

Transkriptio

1 Informaatio ja Strateginen käyttäytyminen Nuutti Kuosa

2 Sisältö Johdanto Duopoli ja epätietoisuutta kilpailijan kustannuksista Kilpailijan tietämyksen manipulointi Duopoli ja epätietoisuutta kysynnästä Toimialalle tulo ja epätietoisuutta kilpailijan kustannuksista

3 Johdanto Oligopolistiin vaikuttaa usein muuttujia, joiden suuruutta ei tiedetä. Omat kustannukset Kilpailijan kustannukset Kysynnän suuruus Kilpailijan valinnat Tällöin käytetään epätäydellisen informaation peliteoriaa

4 Johdanto Yrityksen menneisyyden valinnat paljastavat tietoa muille yrityksille tuntemattomista muuttujista Rationaalinen yritys pyrkii manipuloimaan kilpailijoidensa tietämystä tuntemattomista muuttujista Kutsutaan investoinniksi harhaanjohtavaan informaatioon

5 Johdanto Yritykset voivat nostaa hintoja harhauttaakseen kilpailijoita tulevien voittojen toivossa Yritykset voivat laskea hintoja estääkseen uusien yritysten tulon toimialalle Merkitys yhteiskunnan kokonaishyvinvoinnille tapauskohtaista

6 Staattinen kilpailu toimialalla Aloitetaan yksinkertaisella staattisella mallilla Paljastaa kuitenkin paljon dynaamisen tilanteen intuitiosta Kuvaa myös kaksivaiheisen pelin jälkimmäistä kierrosta kun uskomuksia on päivitetty ensimmäisen kierroksen informaatiolla Selventää kilpailijoiden haluttuja uskomuksia

7 Staattinen malli 2 yritystä. Yksi kierros. Yrityksen 1 kustannukset voivat olla korkeat tai matalat ja vain yritys 1 tietää tilanteensa Yrityksen 2 kustannukset vakioiset ja kaikkien tiedossa Kysyntä muotoa: D i (p i,p j )=a-bp i +dp j Tässä 0 < d < b eli jos molemmat nostavat hintoja niin molemmat menettävät myyntiä

8 Staattinen malli Yrityksen 2 hinnaksi saadaan: p * 2 2ab + = 2 2b c 2b ad 2 d + bdc e 1 Kasvava funktio yrityksen 1 kustannuksista ja korkeiden kustannusten todennäköisyydestä

9 Reaktiokäyrät p 2 R 1 L R 1 e R 1 H R 2 p 2 * p 1 L p 1 p 1 e p 1 H

10 Tiedon vaihto Oletetaan, että yritys 1 voi informoida ilmaiseksi yritystä 2 kustannuksistaan Tällöin yritys 1 myös tekee näin, koska jos korkeat kustannukset, niin hyötyy ja jos matalat niin informoimatta jättäminen kertoo että kustannukset matalat. Kustannusten kertominen pehmentää kilpailua kun korkeat kustannukset Johtopäätös: Yritys 1 hyötyy, jos pystyy vakuuttamaan yrityksen kaksi että sillä on korkeat kustannukset. Ei ilmaista jatkossa!

11 Riippuvuus oletuksista Komplementit vs. substituutit Myös tällöin insentiivi teeskennellä korkeita kustannuksia, mutta nyt yritetään saada kilpailijaa laskemaan hintaa Informaatio kustannuksista vs. kysynnästä teeskennellään korkeaa kysyntää hintakilpailu vs. määräkilpailu tällöin teeskennellään, että matala kustannus, jotta kilpailija tuottaisi vähän

12 Kilpailijan manipulointi 1/2 Oletetaan että ilmainen tietojenvaihto ei mahdollista Valitaan sellaisia käyttäytymisiä, jotka eivät ole optimaalisia kyseiselle periodille, jotta kilpailija tekisi vääriä tulkintoja tilanteesta Staattisen toimialan kilpailu : korotetaan hintoja nyt jotta annetaan kuva, että olisi korkea kustannukset

13 Kilpailijan manipulointi 2/2 Monopoli alalla ja halutaan estää alalle tulo: matalat hinnat, jotta uskoteltaisiin että on matalat kustannukset Kahdenlaisia malleja: Hinta näkyy kilpailijalle Kysyntä tai voitto näkyy kilpailijalle Havaintoon tulee hälyä Signaalin häirintä

14 Hinnannosto malli Yritys nostaa hintaa, jotta kilpailija uskoisi sillä olevan korkeat kustannukset Ortega-Reichert väitöskirja 1967 kaksikierroksisesta alin hinta huutokaupasta Esittelemme Riordan (1985) mallin

15 Epätietoisuus kysynnästä 1/2 2 yritystä. Epätietoisuus kysynnän vakiotermistä Kysyntäfunktio taas: D i (p i,p j )=a-bp i +dp j Yksiperiodisessa mallissa kummakin hinta: a e! Yrittävät huijata periodilla 1, jotta kilpailija tulkitsisi kysynnän liian suureksi.

16 Epätietoisuus kysynnästä 2/2 Korottamalla hintaa yhdellä yksiköllä saadaan kilpailija korottamaan hintaa yhdellä yksiköllä toisella kierroksella Maksimoivat koko pelin voiton Nyt ensimmäisen periodin hinta : a e (1+δ) δ on diskonttaustekijä

17 Rajahinnoittelu Yrityksellä 1 monopoli toimialalla ja yritys kaksi harkitsee mukana tuloa Perinteinen väite on ollut, että yritys 1 pitää alhaista hintaa (Bain 1949), mutta perustelut eivät ole olleet kovin hyviä Hintaa voi muuttaa nopeasti. Kapasiteetillä enemmän signalointivaikutusta

18 Milgrom-Roberts 1982 malli Kaksi periodia ja kaksi yritystä Ensimmäisellä periodilla toimialalla vain yritys 1 Toisella periodilla edelleen yrityksen 1 monopoli tai yritysten 1 & 2 muodostama duopoli Riippuu yrityksen 2 mukaantulopäätöksestä Yritys 2 ei tiedä yrityksen 1 kustannuksia: Korkeat C 1H todennäköisyydellä x Matalat C 1L todennäköisyydellä 1-x Havaitsee yrityksen 1 hinnan

19 Milgron-Roberts malli osa 2 periodin 1 monopolihinnat : p ml ja p m H Monopolivoitot vastaavasti: M 1L ja M 1 H Yritys 2 tietää yrityksen 1 kustannukset heti kun tulee toimialalle Toisella periodilla duopoli ja duopolivoitot: D 1t ja D 2t, missä t on yrityksen 1 tila Yrityksen 2 duopolivoitot riippuvat yrityksen 1 tilasta : D 2H >0>D L 2 diskonttauskerroin δ

20 Milgron-Roberts malli osa 3 Yritys 1 haluaa olla monopolissa, joten haluaa antaa yritykselle 1 kuvat, että kustannukset ovat matalat. Signalointi hinnalla. Ensimmäisen periodin tappiot korvautuvat toisen periodin voitoilla. Yritys 2 tietää tämän ja ei välttämättä usko. Yritys 1 tietää että yritys 2 epäilee valehtelua 2 tasapainoa: hinta eri riippuen yrityksen 1 tilasta ja sama hinta riippumatta tilasta

21 Milgron-Roberts malli osa 4 Hinnat eri ratkaisu Korkean kustannustason yrityksellä insentiivi teeskennellä matalan kustannustason yritystä Matalan kustannustason yritys tietää tämän ja estää teeskentelyn Tällöin matalan kustannustason yritys laskee hinnan niin alas ettei korkean kustannustason yritykselle ole kannattavaa teeskennellä matalaa kustannustasoa näin alhaisella hinnalla Korkean kustannustason yrityksen hinta aiheuttaa alalle tulon ja se valitsee tämän vuoksi monopolihinnan p m H

22 Sama formaalisti (osa 5) M 1H +δd 1 H M 1H (p 1L )+ δm 1 H M 1L (p 1L )+ δm 1L M 1 L +δd 1 L Oletetaan lisäksi että p ml ei kelpaa: M 1H (p ml )+ δm 1H >M 1H +δd H 1 Tällöin alhaisen kustannuksen yritys valitsee korkeimman hinnan, jolla voi viestittää, että on matalan kustannuksen yritys ja hinta on alempi kuin monopolihinta.

23 Milgron-Roberts malli osa 6 Samat hinnat ratkaisu Tällöin alalle tuleva yritys ei saa lisätietoa hinnoista ja sen päätös alalle tulosta muuttumaton Edellyttää että ei tulisi mukaan alun perinkään : x D L 2 + (1-x) D 2H < 0

24 Milgron-Roberts malli osa 7 Tällöin matalan kustannuksen yrityksellä ei ole tarvetta todistaa olevansa matalan kustannuksen yritys Korkean kustannuksen yritys haluaa esittää matalan kustannuksen yritystä Joten matalan kustannuksen yritys laskuttaa monopolihinnan p ml ja korkean kustannuksen yritys myös (pitää olla varaa)

25 Yhteiskunnan kokonaishyöty Erihinnat: Ensimmäisellä periodilla alempi hinta (tila L) ja toisella sama eli hyöty kasvaa Samat hinnat Ensimmäisellä periodilla alempi hinta (tila H), mutta nyt toimialalle tullaan harvemmin ja toisen kierroksen hyöty alempi Riippuu kumpi efekti suurempi

26 Päätelmiä käytäntöön Johtopäätöksien tekeminen eri alojen tilanteesta vaikeaa Jos alalla olija ei varma haluaako estää alalle tulon, niin hinta arvoitus Miten polkuhinnoittelu määritellään? hinta vaikutus kilpailijaan Saattaa kasvattaa kokonaishyvinvointia

27 Kotitehtävä 1. Mitä jos alalle tulija ei tiedä kustannustasoaan ja oppii että se on sama kuin alalla olijan kustannustaso sitten kun tulee alalle. Miten vaikuttaa alalla olijan hintaan 2. Yhdysvalloissa oikeusistuimissa käytetään tuomioperusteena sitä, että jos hinnat ovat alhaisemmat kuin muuttuvat kustannukset, Mitä ongelmia tässä on?

28 Kotitehtävä jatkuu Jos yritys nostaa ei laskekaan hintaa vaan nostaa sitä, kun kilpailija tulee alalle niin voidaanko tästä päätellä, että yritys ei ole syyllistynyt rajahinnoitteluun? Miksi?

Dynaaminen hintakilpailu ja sanattomat sopimukset

Dynaaminen hintakilpailu ja sanattomat sopimukset Dynaaminen hintakilpailu ja sanattomat sopimukset Pasi Virtanen 12.3.2003 Johdanto Hintakilpailu jossa pelaajat kohtaavat toisensa toistuvasti Pelaajien on otettava hintaa valittaessa huomioon hintasodan

Lisätiedot

Fuusio vai konkurssi? Hintakilpailun satoa

Fuusio vai konkurssi? Hintakilpailun satoa Fuusio vai konkurssi? Hintakilpailun satoa Pia Kemppainen-Kajola 02.04.2003 Optimointiopin seminaari - Syksy 2000 / 1 Johdanto Yrityskaupat ilmoitetaan kaupparekisteriin. Kauppa kiinnostaa kilpailuviranomaisia,

Lisätiedot

Hintakilpailu lyhyellä aikavälillä

Hintakilpailu lyhyellä aikavälillä Hintakilpailu lyhyellä aikavälillä Virpi Turkulainen 5.3.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Johdanto Bertrandin ristiriita ja sen lähestyminen Bertrandin ristiriita Lähestymistavat:

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen

Lisätiedot

Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli 2/2. S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli / Monopolimarkkinat - oletuksia Seuraavissa tarkasteluissa oletetaan, että monopolisti tuntee kysyntäkäyrän täydellisesti monopolisti myy suoraan tuotannosta, ts. varastojen vaikutusta ei huomioida

Lisätiedot

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17)

11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) 11 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Ch 17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen riippuvan

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

Signalointi: autonromujen markkinat

Signalointi: autonromujen markkinat Signalointi: autonromujen markkinat Mat-.414 Optimointiopin seminaari Klaus Mattila 1.0.008 1 Esityksen rakenne Johdanto Autonromujen markkinat: Akerlofin malli Kustannuksellinen signalointi: Spencen malli

Lisätiedot

Dynaaminen hintakilpailu ja sanattomat (epäsuorat) sopimukset osa II

Dynaaminen hintakilpailu ja sanattomat (epäsuorat) sopimukset osa II Dynaaminen hintakilpailu ja sanattomat (epäsuorat) sopimukset osa II Olavi Toivainen 12.3.2003 Sanattomien sopimusten mallintaminen ja kontrollointi, miksi? EU Artikla 81 yritysten välisistä kilpailua

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Luento 8. June 3, 2014

Luento 8. June 3, 2014 June 3, 2014 Luokka pelejä, joissa pelaajilla on epätäydellistä informaatiota toistensa preferensseistä ja joissa valinnat tehdään samanaikaisesti. Tämä tarkoittaa, että pelaajat eivät tiedä toistensa

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus

Lisätiedot

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä A31C00100 Mikrotaloustiede Kevät 2017 1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= 18 1.5P, missä q on käyntejä kuukaudessa keskimäärin. Yhden käyntikerran rajakustannus

Lisätiedot

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille

suurtuotannon etujen takia yritys pystyy tuottamaan niin halvalla, että muut eivät pääse markkinoille KILPAILUMUODOT Kansantaloustieteen lähtökohta on täydellinen kilpailu. teoreettinen käsitteenä tärkeä Yritykset ovat tuotantoyksiköitä yhdistelevät tuotannontekijöitä o työvoimaa o luonnon varoja o koneita

Lisätiedot

Pystysuuntainen hallinta 2/2

Pystysuuntainen hallinta 2/2 Pystysuuntainen hallinta 2/2 Noora Veijalainen 19.2.2003 Yleistä Tarkastellaan tilannetta jossa: - Ylävirran tuottajalla on yhä monopoliasema - Alavirran sektorissa vallitsee kilpailu - Tuottaja voi rajoitteillaan

Lisätiedot

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '

Lisätiedot

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016

Laskuharjoitus 1. Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Laskuharjoitus 1 Markkinoitten mallintaminen ja Internet-markkinat Saara Hämäläinen, Helsingin yliopisto, syksy 2016 Tässä laskusetissä on kymmenen tehtävää (10 pistettä ), yksi per luento (6 Saaran, 4

Lisätiedot

4. www-harjoitusten mallivastaukset 2016

4. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

Uusien keksintöjen hyödyntäminen

Uusien keksintöjen hyödyntäminen Uusien keksintöjen hyödyntäminen Otso Ojanen 9.4.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisältö Käyttöönoton viiveet Ulkoisvaikutukset ja standardointi Teknologiaodotusten koordinointimalli Lisensiointi

Lisätiedot

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w)

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) Markkinat tasapainossa, kun löydetään

Lisätiedot

Kvalitatiivinen analyysi. Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry

Kvalitatiivinen analyysi. Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry Laadullinen eli kvalitatiiivinen analyysi Yrityksen tutkimista ei-numeerisin perustein, esim. yrityksen johdon osaamisen, toimialan kilpailutilanteen

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Haitallinen valikoituminen: Kahden tyypin malli

Haitallinen valikoituminen: Kahden tyypin malli Haitallinen valikoituminen: Kahden tyypin malli Mat-2.4142 Optimointiopin seminaari Mikko Hyvärinen 29.1.2008 Haitallinen valikoituminen kahden tyypin malli Haitallinen valikoituminen tarkoittaa että päämies

Lisätiedot

Pystysuuntainen ohjaus

Pystysuuntainen ohjaus Pystysuuntainen ohjaus Satu Vapaakallio satu.vapaakallio@hut.fi 19.2.2003 Optimointiopin seminaari - Kevät 2003 / 1 Sisällys Luku 4.1 Pystysuuntainen perusviitekehys Peruskäsitteitä Yleisimmät pystysuuntaiset

Lisätiedot

Uusien keksintöjen kannustimet

Uusien keksintöjen kannustimet Uusien keksintöjen kannustimet Ville Koskenvuo 9.4.2003 Optimointiopin seminaari Kevät 2003 / 1 Päivän agenda 1. luento: Uusien keksintöjen kannustimet ja patenttikisat (Koskenvuo) 2. luento: Uusien keksintöjen

Lisätiedot

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla

Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien

Lisätiedot

Sekastrategiat ja intensiiviyhteensopivuus

Sekastrategiat ja intensiiviyhteensopivuus Sekastrategiat ja intensiiviyhteensopivuus Petteri Räty 2010-03-14 God does not play dice with the universe Albert Einstein Agenda Intensiiviyhteensopivuuden käsite Yrittää vastata kysymykseen, mitä sekastrategiat

Lisätiedot

Pelien teoriaa: tasapainokäsitteet

Pelien teoriaa: tasapainokäsitteet Pelien teoriaa: tasapainokäsitteet Salanién (2005) ja Gibbonsin (1992) mukaan Mat-2.4142 Optimointiopin seminaari Jukka Luoma 1 Sisältö Staattinen Dynaaminen Staattinen Dynaaminen Pelityyppi Täydellinen

Lisätiedot

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA

PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA PELITEORIAN TALOUSTIETEELLISIÄ SOVELLUKSIA Matti Estola 29 marraskuuta 2013 Sisältö 1 Cournot'in duopolimalli 2 2 Pelin Nash -tasapainon tulkinta 3 3 Cournot'in mallin graanen ratkaisu 4 4 Bertrandin duopolimalli

Lisätiedot

Rajatuotto ja -kustannus, L7

Rajatuotto ja -kustannus, L7 ja -kustannus, L7 1 Kun yritys valmistaa tuotetta jaksossa määrän q (kpl/jakso), niin kassaan kertyvä tuotto on R(q) = p q = p(q) q. Esimerkki. Jos kysyntäfunktio on p = 20 0.1q, niin tuotto funktio on

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

TENTTIKYSYMYKSET

TENTTIKYSYMYKSET MIKROTALOUSTEORIA (PKTY1) Ari Karppinen TENTTIKYSYMYKSET 20.10.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään kysymykseen! Muista kirjoittaa nimesi

Lisätiedot

Johdanto peliteoriaan Kirja kpl. 2

Johdanto peliteoriaan Kirja kpl. 2 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

Mainonta ja laatu tuotteiden erilaistamisessa

Mainonta ja laatu tuotteiden erilaistamisessa Mainonta ja laatu tuotteiden erilaistamisessa Samuel Aulanko Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Mainonta Tiedollinen ja ohjaileva mainonta Monopolistinen kilpailu Oligopolinen kilpailu

Lisätiedot

Sopimusteoria: Salanie luku 3.2

Sopimusteoria: Salanie luku 3.2 Sopimusteoria: Salanie luku 3.2 Antti Pirjetä Taloustieteiden kvantitatiiviset menetelmät Helsingin kauppakorkeakoulu 12.2.2008 1 Kilpaillut markkinat, yksi tai useampi päämies Agenttien 1 ja 2 tuottamat

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä 0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).

Lisätiedot

Voitonmaksimointi, L5

Voitonmaksimointi, L5 , L5 Seuraavassa tullaan systemaattisesti käyttämään seuraavia merkintöjä q = tuotannon määrä (quantity) (kpl/kk) p = tuotteen hinta (price) (e/kpl) R(q) = tuotto (revenue) R(q) = pq MR(q) = rajatuotto

Lisätiedot

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Kommunikaatio Visa Linkiö. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Kommunikaatio MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 2.11.2016 Visa Linkiö The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Televisiossa jaetaan torstaisin rahaa julkkiksille Speden

Televisiossa jaetaan torstaisin rahaa julkkiksille Speden Kymppitonni Televisiossa jaetaan torstaisin rahaa julkkiksille Speden ideoimassa ohjelmassa Kymppitonni. Vastaamalla oikein muutamaan tyhmään kysymykseen voi rikastua useita tuhansia markkoja. Kyllä rahantulo

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

KEVÄT 2009: Mallivastaukset TERVEYSTALOUSTIEDE. 1. Määrittele seuraavat käsitteet (4. p, Sintonen - Pekurinen - Linnakko):

KEVÄT 2009: Mallivastaukset TERVEYSTALOUSTIEDE. 1. Määrittele seuraavat käsitteet (4. p, Sintonen - Pekurinen - Linnakko): KEVÄT 2009: Mallivastaukset TERVEYSTALOUSTIEDE 1. Määrittele seuraavat käsitteet (4. p, Sintonen - Pekurinen - Linnakko): 1.1. Vakuutettujen epätoivottava valikoituminen (1 p.) Käsite liittyy terveysvakuutuksen

Lisätiedot

Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola)

Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme

Lisätiedot

Luento 9. June 2, Luento 9

Luento 9. June 2, Luento 9 June 2, 2016 Otetaan lähtökohdaksi, että sopimuksilla ei voida kattaa kaikkia kontingensseja/maailmantiloja. Yksi kiinnostava tapaus on sellainen, että jotkut kontingenssit ovat havaittavissa sopimusosapuolille,

Lisätiedot

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Moraalinen uhkapeli: laajennuksia ja sovelluksia

Moraalinen uhkapeli: laajennuksia ja sovelluksia Moraalinen uhkapeli: laajennuksia ja sovelluksia Sisältö Kysymysten asettelu Monen tehtävän malli Sovellusesimerkki: Vakuutus Sovellusesimerkki: Palkkion määrääminen Johtajan palkitseminen Moraalisen uhkapelin

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

Yhteistyötä sisältämätön peliteoria

Yhteistyötä sisältämätön peliteoria Yhteistyötä sisältämätön peliteoria jarkko.murtoaro@hut.fi Optimointiopin seminaari Kevät 2003 / 1 Sisältö Johdanto Käsitteistö Työkalut Nashin tasapaino Täydellinen tasapaino Optimointiopin seminaari

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Investointistrategioista kilpailluilla markkinoilla

Investointistrategioista kilpailluilla markkinoilla Investointistrategioista kilpailluilla markkinoilla Tuomas Pyykkönen 29.11.2000 (esitys kirjasta: Investment under Uncertainty; Dixit, Pindyck (1994); ss. 247-260) Optimointiopin seminaari - Syksy 2000

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat

Lisätiedot

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n.

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n. Harjoitukset 2, vastauksia. Ilmoittakaa virheistä ja epäselvyyksistä! 1. b (kysyntäkäyrä siirtyy vasemmalle) 2. c (kysyntäkäyrä siirtyy oikealle) 3. ei mikään edellisistä; oikea vastaus olisi p 2

Lisätiedot

Voitonmaksimointi esimerkkejä, L9

Voitonmaksimointi esimerkkejä, L9 Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa

Lisätiedot

(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15)

(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) 12 Monopoli (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys

Lisätiedot

Mikä on valuuttariski ja mitä sille voi tehdä

Mikä on valuuttariski ja mitä sille voi tehdä Mikä on valuuttariski ja mitä sille voi tehdä 17.4.2015 Antti Toivainen Nordea Markets Mikä on valuuttariski ja mitä sille voi tehdä 1. Valuuttariski on riski joka syntyy siitä, että: yrityksellä on euroalueen

Lisätiedot

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT KYSYNTÄ, TARJONTA JA HINTA Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT Paikka, jossa ostaja ja myyjä kohtaavat, voivat hankkia tietoa vaihdettavasta tuotteesta sekä tehdä

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ Page 1 of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 201 Assignment: 201 www5 1. Tuotteen X kysyntäkäyrä on P=25 2 Q ja tarjontakäyrä vastaavasti P=Q+10. Mikä

Lisätiedot

Asymmetrinen informaatio

Asymmetrinen informaatio Asymmetrinen informaatio Luku 36 Marita Laukkanen November 24, 2016 Marita Laukkanen Asymmetrinen informaatio November 24, 2016 1 / 10 Entä jos informaatio tuotteen laadusta on kallista? Ei ole uskottavaa,

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä:

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä: 1 Luku 22 Yrityksen tarjonta Edellisissä luvuissa olemme yrityksen teoriasta tarkastelleet yrityksen tuotantopäätöstä, ts. panosten optimaalista valintaa, yrityksen voiton maksimoinnin ja kustannusten

Lisätiedot

Pääsykoe 2001/Ratkaisut Hallinto

Pääsykoe 2001/Ratkaisut Hallinto Pääsykoe 2001/Ratkaisut Hallinto 1. Osio 3/Tosi; Organisaatiokenttää ei mainita (s.35). 2. Osiot 1 ja 2/Epätosia; Puppua. Osio 3/Lähellä oikeata kuvion 2.1 mukaan (s.30). Osio 4/Tosi (sivun 30 tekstin

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

OSAKEYHTIÖN OSTOLLA KILPAILUETUA OSUUSKUNNALLE

OSAKEYHTIÖN OSTOLLA KILPAILUETUA OSUUSKUNNALLE OSAKEYHTIÖN OSTOLLA KILPAILUETUA OSUUSKUNNALLE Saila Rosas KTT Pankinjohtaja, Länsi-Kymen Osuuspankki Poimintoja 15.12.2015 tarkastetusta väitöskirjasta Co-operative acquisitions the contextual factors

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi & Emmi Martikainen emmi.martikainen@kkv.fi Luennon sisältö Hintakilpailu ja tuotedifferentiaatio Peräkkäiset pelit (12.4-12.5) Alalle tulon estäminen Taloudellinen

Lisätiedot

Rationaalisen valinnan teoria

Rationaalisen valinnan teoria Rationaalisen valinnan teoria Rationaalisuuden teoriat 1) Mihin meillä on perusteita uskoa? 2) Mitä meidän pitäisi tehdä? 3) Mitä päämääriä meillä tulisi olla? Näitä kysymyksiä vastaavat uskomusten rationaalisuus,

Lisätiedot

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi

Peliteoria Strategiapelit ja Nashin tasapaino. Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Peliteoria Strategiapelit ja Nashin tasapaino Sebastian Siikavirta sebastian.siikavirta@helsinki.fi Helsinki 11.09.2006 Peliteoria Tomi Pasanen HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö

Lisätiedot

Hintadiskriminaatio 2/2

Hintadiskriminaatio 2/2 Hintadiskriminaatio 2/2 Matti Hellvist 12.2.2003 Toisen asteen hintadiskrimiaatio eli tuotteiden kohdennus Toisen asteen hintadiskriminaatio toimii tilanteessa, jossa kuluttajat ovat keskenään erilaisia

Lisätiedot

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 18.04.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

Vaikuttaako kokonaiskysyntä tuottavuuteen?

Vaikuttaako kokonaiskysyntä tuottavuuteen? Vaikuttaako kokonaiskysyntä tuottavuuteen? Jussi Ahokas Itä-Suomen yliopisto Sayn laki 210 vuotta -juhlaseminaari Esityksen sisällys Mitä on tuottavuus? Tuottavuuden määritelmä Esimerkkejä tuottavuudesta

Lisätiedot

Pohdiskeleva ajattelu ja tasapainotarkennukset

Pohdiskeleva ajattelu ja tasapainotarkennukset Pohdiskeleva ajattelu ja tasapainotarkennukset Sanna Hanhikoski 24.3.2010 Sisältö Pohdiskeleva ajattelu Nashin tasapainotarkennukset Täydellinen tasapaino Täydellinen bayesiläinen tasapaino Vaiheittainen

Lisätiedot

ehdolla y = f(x1, X2)

ehdolla y = f(x1, X2) 3.3. Kustannusten minimointi * Voiton maksimointi: panosten määrän sopeuttaminen -----> tuotanto * Kustannusten minimointi: tiett tuotannon taso -----> etsitään optimaalisin panoskombinaatio tuottamaan

Lisätiedot

Etäisyys katoaa! Purkautuvatko kaupungit? Antti Kurvinen

Etäisyys katoaa! Purkautuvatko kaupungit? Antti Kurvinen Etäisyys katoaa! Purkautuvatko kaupungit? Antti Kurvinen 2.2.2017 Kaupungistumisen perusta taloustieteen näkökulma Jos erikoistumisesta ei ole hyötyä eikä tuotannossa ole mahdollista saavuttaa mittakaavaetuja

Lisätiedot

Projektin arvon määritys

Projektin arvon määritys Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ 06 www4 Page of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 06 Assignment: 06 www4. Mikä seuraavista alueista vastaa voittoa maksimoivan monopoliyrityksen ylisuuria

Lisätiedot

Investointimahdollisuudet ja niiden ajoitus

Investointimahdollisuudet ja niiden ajoitus Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen

Lisätiedot

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2

Peliteoria luento 2. May 26, 2014. Peliteoria luento 2 May 26, 2014 Pelien luokittelua Peliteoriassa pelit voidaan luokitella yhteistoiminnallisiin ja ei-yhteistoiminnallisiin. Edellisissä kiinnostuksen kohde on eri koalitioiden eli pelaajien liittoumien kyky

Lisätiedot

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Toistetut pelit Elmeri Lähevirta. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Toistetut pelit MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Elmeri Lähevirta The document can be stored and made available to the public on the open internet pages of Aalto University.

Lisätiedot

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto

Lisätiedot

Evolutiivisesti stabiilin strategian oppiminen

Evolutiivisesti stabiilin strategian oppiminen Evolutiivisesti stabiilin strategian oppiminen Janne Laitonen 8.10.2008 Maynard Smith: s. 54-60 Johdanto Käytös voi usein olla opittua perityn sijasta Tyypillistä käytöksen muuttuminen ja riippuvuus aikaisemmista

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Prospektiteoreettinen näkökulma

Prospektiteoreettinen näkökulma Miten paljon saneerausohjelmien onnistumiseen vaikuttaa yrittäjän kannustimet? Prospektiteoreettinen näkökulma Tapio Laakso 29.1.2010 Onnistumisen hyöty yrittäjälle vs. keskeytymisriski (Selvittäjän rooli?

Lisätiedot

Investointipäätöksenteko

Investointipäätöksenteko Investointipäätöksenteko Ekstralaskuesimerkkejä Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Neppi Oy valmistaa neppejä ja nappeja. Käsityöpiireissä se on tunnettu laadukkaista

Lisätiedot

TENTTIKYSYMYKSET 8.12.2006

TENTTIKYSYMYKSET 8.12.2006 MIKROTALOUSTEORIA (PKTY1) TuKKK Porin yksikkö/avoin yliopisto Ari Karppinen TENTTIKYSYMYKSET 8.12.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään

Lisätiedot