KERTAUSHARJOITUKSIA KULMA a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.

Koko: px
Aloita esitys sivulta:

Download "KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o."

Transkriptio

1 KERTAUSHARJOITUKSIA KULMA 45 l 6. a) Samankohtaisista kulmista 80( 80456) 08 b) Kolmion kulmien summa on ( 80) 80 6 l 5 80 :( 5) 6 Kysytty kulma Vastaus: a) 08 o b) 7 o 7. Kulmien summa on ( ) ( 40) ( 5) : 5 8, 6 Kulmat 8, 6; 89, ; 40 0, 4 ; 508, Suurin kulma on 0,8 o. Vastaus: Suurin kulma on 0,8 o. 8. Kolmas kulma Suurin kulma on 67 o Suurimman kulman komplementtikulma on 9067 Suurimman kulman suplementtikulma Vastaus: Komplementtikulma on o ja suplementtikulma o. 9. Kulma : 809 ( 8054 ) 60 6 Kulma y: 54( 806) 70 y 60 y 8 Vastaus: 6 ja y Suurin kulma on, jolloin kulmien, y ja z summa on yz 80. Yksi kulma on yhtä suuri kuin kaksi muuta yhteensä, joten y z. Tällöin Vastaus: Suurin kulma on 90 o y 70 08

2 YHDENMUOTOISUUS. a) Yhdenmuotoisista kolmioista saadaan , b) Yhdenmuotoisista kolmioista saadaan , 7 Vastaus: a) 6, b) 67, Mittakaava Etäisyys (cm) : : Etäisyys luonnossa on suoraan verrannollinen mittakaavaan ,7 Vastaus: Matka on 66,7 cm.. Puun pituus m. Yhdenmuotoisista kolmioista cm 0 cm 5 m Vastaus: Puun korkeus oli m. 09

3 4. Poikien välinen etäisyys (cm) Yhdenmuotoisista kolmioista saadaan Vastaus: Poikien välinen etäisyys oli 4 m. 70 cm 5 cm 70 m A5 -arkin lyhyempi sivu on A4 -arkin pidemmän sivun puolikas mm 49 mm. Arkin mitat ovat 49 mm 0 mm. A -arkin lyhyempi sivu on A4 -arkin pidempi sivu eli 97 mm. A-arkinn pidempi sivu saadaan kertomalla A4-arkin lyhyempi sivu kahdella 0 mm = 40 mm Vastaus: A5: 49 mm 0 mm ja A: 97 mm 40 mm. KOLMIOT 8. Kolmiosta ACD saadaan h sin 5, 68, 64, 64 h, 64 sin 5, 685, Sivun AB osa : cos 5, 68,64, 64 5,68, 64 cos 5, 68, 9... A h Osa y: tan 46, 76 h 5, y 5477,... y ,... tan, ( y) h (, , 50...) 5, Kolmion ala on A 45, Vastaus: Kolmion ala on 45,.,64 D h y 46,76 C B 0

4 9. Kolmion kolmas kulma Kolmio ei ole suorakulmainen. Muistikolmioista ja kolmiosta BCD h 4 h Sivu : A 4 Kolmiosta ADC saadaan y h AB h ( ) Kolmion ala A 55, Vastaus: Ei. Ala on 5,5. C ( ) () () () h 45 () ( ) 0 y D B 0. Pythagoraan lauseella cm 4 cm Kolmion ala A 6cm Vastaus: Kolmion ala 6 cm. 5,0 cm,0 cm. C 8 cm 0 A D B 0 Huippukulman puolikas 65 Kolmiosta ADC saadaan sin sin 656,... Kolmion kanta AB 6, 5... cm cm Vastaus: Kanta on cm.

5 . Kolmion kanta on a, jolloin kylki on 0,75a 05, a Suorakulmaisesta kolmiosta cos 075, a 48 Vastaus: Kantakulma on 48 o. a. Kulmien summa 80 0 Kulmat ovat 0, 60 ja 90, joten kolmio on suorakulmainen ja voidaan käyttää trigonometrisia funktioita. Sivu a (cm) tan0 40, a 40, a 40, 0 40, 69, tan Sivu b (cm) sin0 40, b 40, b 0 40, 80, sin Vastaus: Muut sivut ovat 6,9 cm ja 8,0 cm. 60 b 4,0 cm 0 a 4. Pythagoraan lauseella m m Kolmion ala A 6 m Vastaus: Kolmas sivu on m ja ala 6 m m 4 m,68 m 4, m 7,5 m Puun korkeus (m) 68, Yhdenmuotoisista kolmioista 7, 5 4,

6 Vastaus: Puun korkeus oli 7,0 m. 4, 7568,, : 4, = 7,0 6. Kolmion piiri 90, 0, Muistikolmion avulla h 0, h 0, () ( ) h Kolmion pinta-ala 60 0, 0, dm dm A 90, dm 9, dm 4 Vastaus: Kolmion pinta-ala on,9 dm. () 7. a) Jyrkkyys 6 % Vaakasuora etäisyys a Pystysuora korkeusero on 0,06a 006a, Tällöin tan 006, a 4, b) Jyrkkyys % 0a, tan 0, a 74, Vastaus: a),4 o b) 7,4 o a D 0,06 a 8. Kolmiosta ACD : tan6 a a tan6 Kolmiosta ABC : tan65 0 a 0 a tan65 Merkitsemällä a:t yhtäsuuriksi saadaan 0 tan 6 tan 65 tan65 0 tan6 b g A 6 65 a C 0 m +0 B

7 b g b g tan 65 tan6 0tan 6 : tan 65 tan6 4, Pilven korkeus järven pinnasta 4, m 0 m 50 m Vastaus: Pilven korkeus järven pinnasta on 50 m 9. Pythagoraan lauseella ( 7) ( 0) 4 4 (ei käy) Kateettien pituudet ovat 5 cm ja cm Kolmion piiri p 5cm cm cm 0 cm 5cm cm Pinta-ala A 0 cm Vastaus: Kolmion piiri on 0 cm ja pinta-ala 0 cm Suorakulmaisesta kolmiosta tan tan Vastaus: Kraatterin syvyys on 500 m m 4. Pythagoraan lauseella 90, Vastaus: Pitempi kateetti on 40 cm. 9,0 cm 4

8 44. a) b) c) 6 sin 7 5,96547 sin, tan 67 sin 0,9 59,0 45. a) b) c) tan07, 4, 7 cos sin 79 0, 4 sin cos 0, 46. Tasasivuisen kolmion sivun pituus (dm) Suorakulmaisesta kolmiosta saadaan 4 F H G I K J, 5 5, : 4 45,, 0 5,5 dm 5 dm 5, dm Kolmion pinta-ala on A 6, dm Vastaus: Kolmion pinta-ala on,6 dm. 47. Harpin suurin aukeama on suurimman mahdollisien ympyrän säde. 5 Aukeamiskulman puolikas 67, 5 Suorakulmaisesta kolmiosta saadaan sin 67, 5 5, 5,, 5sin 67, 50, Ympyrän säde 064,... cm, cm Vastaus: Suurimman ympyrän säde on, cm Kaltevuus :,5 Suorakulmaisesta kolmiosta tan 5, 8, Vastaus: Katon kaltevuuskulma on,8 o. (,5) () 5

9 49. Neljännestunnissa kuljettu matka km s vt h km h 4 Kolmiosta ABC : tan 5 ( y) y ( y)tan5 Kolmiosta DBC : tan8 y y ytan8 Merkitsemällä :t yhtäsuuriksi saadaan ytan 8 ( y) tan5 y(tan 8 tan 5 ) tan 5 :(tan 8 tan 5 ) tan5 y ,... tan tan Lyhin etäisyys ytan 8, 5 y 444,... km Loppumatkaan kuluu t 0, h min. v km h Vastaus: Saari näkyy minuutin kuluttua 90 o kulmassa. Etäisyys on silloin,5 km. y D s C A 8 5 B 50. Pythagoraan lauseella ( 0) : Toinen osa , 0 0 Vastaus: Osat 4,55 niveltä ja 5,45 niveltä. 455, 0 5. sin 60 sin 60 : sin 60 sin 60,5 60 () () ( ),0 m Vastaus: Mittarin metrin tulee olla,5 m pitkä. 6

10 5. Pythagoraan lauseella 4 7, 0 5 Vastaus: Hypotenuusa on 5 cm pitkä. 65, 0 5. Suorakulmaisessa kolmiossa yksi kulma on 90 o Kysytty kulma Kolmas kulma 0 Kolmion kulmien summa 90 ( 0) 80 Kolmion kulmat ovat 90 o, 60 o ja 0 o. Vastaus: Kulmat ovat 0 o, 60 o ja 90 o cm 7,0 cm 54. Pythagoraan lauseella , , Matkojen suhde 0757, Ero prosentteina 0, , % Vastaus: Matka on 4% lyhyempi. B 450 m D 00 m C MONIKULMIOT 55. E D Koska säännöllinen kuusikulmio muodostuu kuudesta tasasivuisesta kolmiosta, niin 5 0 ja kuusikulmion sivu on 0,. Kuusikulmion piiri on p 6 60, m, 0 m. Vastaus: Kuusikulmion piiri on,0 m. F P C A B 56. Suorakulmaisesta kolmiosta saadaan h 5, 50,, josta 875, ja kuusikulmioon sisään piirretyn yhden kolmion korkeus on h h 7,5 dm

11 5, 0 dm 8, 75 dm h 8, 75 4, 0... Kuusikulmion ala on A 6 65 dm. Vastaus: Kuusikulmion ala on 65 dm. 57. Suunnikkaan ala on h 7, josta h 6. Suorakulmaisesta kolmiosta saadaan sin 6, josta suunnikkaan pienempi z 0 h kulma 7 ja suurempi kulma on y Suorakulmaisesta kolmiosta AED saadaan A E 0 6 cm, josta 8. Tällöin y 4. Kolmiosta BDE saadaan z 4 6, mistä z 5 7,. Vastaus: Suunnikkaan kulmat ovat 7 o ja 4 o. Lyhyempi lävistäjä on 7, cm. 58. Suorakulmaisesta kolmiosta ABC saadaan 4 h 6, josta h 0 4, Suorakulmion ala on A kh 40, cm447,... cm 8 cm. Suorakulmaisesta kolmiosta ADE saadaan sin, josta , ja 480, D β D B E C C h Vastaus: Suorakulmion ala on 8 cm ja lävistäjien välinen kulma 84 o. A D 4,0 cm B 59. Suorakulmion ala A s Suorakulmaisesta kolmiosta saadaan 6 8, josta 0. Neliön ala A n An 00 Alojen suhde on, Neliön ala on As 48 08,..., % suurempi kuin suorakulmion ala. Vastaus: Neliön ala on 08% suurempi kuin suorakulmion ala Levyjen pinta-ala A 50, 5 m 0, m0, m. Levyjen hinta on h 0, euroa 0, 46 euroa. Vastaus: Levyjen hinta on 0,46 euroa. D 6. Pythagoraan lauseella 4, josta, 5. Suorakulmaisesta kolmiosta ABD saadaan sin, josta 0, 4 A β 4 y y C B 8

12 jolloin Kolmiossa BCD kantakulmat ovat yhtä suuret, joten cos45 y, josta y 4cos ,. 4 Nelikulmion ala on A 4 75,. Vastaus: Sivut ovat,,,8 ja 5,. Ala on 4 75,. 6. 5m m Päätyseinän ala on A Ak As 5m mm. Vastaus: Päätyseinän ala on m. 6 m m m 6. Yhden setelin ala on A 0, m 0, 06 m 0, m. 9 0, Peittyvä pinta-ala on A kok 0, m m 4, km. 5 Vastaus: Setelit peittäisivät,4 km. 5 m 800 kg kg 64. Olympialippu painoi 0, m 05 m m 805 0, 0... kg 00kg. Vastaus: Suurin lippu painoi 00 kg.. Suurimman lipun massa oli YMPYRÄ 65. Kaaren pituus on r 0, josta 0 r 5, Kentän pinta-ala on A 90 m 5, m 5, m m, 0 ha. Vastaus: Kentän pinta-ala on,0 ha. 90 m r r 0 m 66. Ensimmäisen radan säde r metriä. Toisen radan säde r, metriä. Koska suorat s ovat molemmilla radoilla yhtä pitkät, niin ratojen pituuksien välinen ero on s( r, ) ( sr) sr, sr, 77,. Vastaus: Lähtöpaikkojen välinen etäisyys tulee olla 7,7 metriä. 9

13 D F 4 7 C Tutkitaan kolmiota ABD. Sivu AB DF FC 4 7. Hypotenuusa BD BE DE ABDE 4 5. Pythagoraan lauseella 5, josta 784 ja 8. Tällöin BC 8. Vastaus: BC 8 X E A B 68. Käytetään pituusyksikkönä neliön sivua s. Pystysakaran ala ilman kaarevia osia on 8 neliön ala eli 8s. Vaakasakaran ala ilman kaarevia osia on neliön ala eli s. Kaarevan osan ala saadaan vähentämällä neliön alasta neljäsosaympyrän alan s s. 4 Kaarevien yhteisala on F I HG 4 K J F I s s s s s 4 HG 4 K J, s Kirjaimen kokonaisala 8s + s +,s =,s Vastaus: Ala on, 69. Ala on A Aisopy Apienipy Apienipy Aisopy ( 60, cm ) 57cm. Vastaus: Ala on 57 cm. 6,0 cm 70. Oven ala A ovi 0, m 0, m ( 05, m ) 84,... m. Lasin ala A lasi 6( 040, m ) (, 05 m), m. Alojen suhde A lasi 69,... m 0, % Aovi 84,... m Vastaus: Ovesta on % lasia..,05 m,0 m 40 cm 40 cm,0 m 0

14 7. Ikkunoiden pinta-ala on A A A suorakulmio segmentti. Suorakulmaisesta kolmiosta saadaan 060, ( r05, ) r, josta 0, 6 r 0, 6r0, 0995 r ja r 078,..., Tällöin sin 06 0, josta 55, ja 0, , Segmentin ala on 0,5 m 0,60 m r= 0,5 m A A A segmentti sektori kolmio 0, , 0 m (0, m 0, 5 m) 60 (0, m) 0, m r,0 m,0 m Koko ala on A, 0 m, 0 m 0, m 8, m. Vastaus: Ikkunoiden ala on,8 m. 7. Lasimaalauksen pinta-ala A 9056, m 0, m ( 084, m ) 7, m. Vastaus: Ala on 7, m. 84 cm 7. Pienen ympyrän ala on r 60,, josta r 60,. Suuren 60, ympyrän säde on R 5 r 5. Ison ympyrän ala on F HG I 60, A R 5 5 KJ 60, cm cm 50 cm Vastaus: Ison ympyrän ala on 50 cm.. 56 cm,0 m 74. Suorakulmaisesta kolmiosta saadaan 0 ( r5) r, josta 400 r 0r 5 r ja r 4. Vastaus: Alkuperäisen ruukun säde on 4 cm. r r 5 0 cm 5,0 cm

15 75. Leikkausalue koostuu kahdesta segmentistä. Segmentin ala on Asegmentti Asektori Akolmio. r Suorakulmaisesta kolmiosta saadaan r cos, josta 60 ja sektorin r r keskuskulma 0. Pythagoraan lauseella r r H G I K J, josta r ja r. Tällöin segmentin ala on 4 r r 0 A r F I segmentti r ja kysytyn alueen ala on 60 4 F HG A A segm entti r, r. I KJ Vastaus: Leikkausalueen ala on F HG HG KJ I r KJ, r. 76. Kolmion ala A k. Pythagoraan lauseella, josta kolmion hypotenuusan pituus on. Kuun sirpin ala saadaan vähentämällä puoliympyrän alasta segmentin ala. Puoliympyrän ala A py F HG I KJ. Segmentin ala on 4 90 Asegmentti Asektori Akolmio Kuun sirpin ala F I on Asirppi Apy Asegmentti HG K J 4 4. Vastaus: Kuun sirpin ala on ja kolmion ala on. PALLO d 77. Puolipallon säde r 70, m. Puolipallon pinta-ala on A r (, m ) 98m 08 m. Koska grammasta kultaa voidaan takoa neliömetrin suuruinen levy, niin kultaa tarvitaan 08 g. Vastaus: Kultaa tarvitaan 08 g.

16 b g, 78. Veden määrä V Ah r h km km km Vastaus: km 79. Suorakulmaisesta kolmiosta saadaan 74, 0 ja 5, 7. Vastaus: Saaren etäisyys on 5,7 km ,, josta R R 00 m 80. Suorakulmaisesta kolmiosta 670 cos 09...,, josta 76, Säteen pituus R r 60 76, km km. Vastaus. Alueen säde maan pinnalla on km. 670 km R 0 00 km 670 km 8. a) Lennetään nopeammin kuin maapallo pyörii. b) Koska paikkakuntien aikaero on 5 h ja saapumisaika on tuntia ennen lähtöaikaa, on lentoaika 5 h h = 4 h. s 5900km km c) Keskinopeus on v 500 t 4 h h. Vastaus: Keskinopeus on 500 km/h km 8. Pythagoraan lauseella , josta 8097, Etäisyys maan pinnasta on h R 8097, km 6 70 km 700 km. Vastaus: Etäisyys maan pinnasta on 700 km. R h

17 8. r r 4, 4, cm 7,5 cm Suorakulmaisesta kolmiosta saadaan 75, ( r4, ) r, josta 7, 89 56, 5r 8, 4r7, 64 r ja r 88,. 84, Vastaus: Pallon säde oli 8,8 cm. 84. Hillan massa 096 m 0, 0065 kg 6, 5 g. Koska dm hilloja kg painaa kg = 000 g, niin hillan tilavuus on 0, 0065 dm 6, 5 cm. Hillan säde on 4 65, 65, r 65,, josta r ja r. 4, 4 Vastaus: Hillan massa on 6,5 g, tilavuus 6,5 cm ja säde, cm. 85. Koska tiheys m m kg, niin tilavuus V 090,... dm. Rakeen säde V kg 097, dm 4, on r 090,... ja r 064, (dm). 4 Vastaus: Rakeen tilavuus oli, dm ja säde 6,4 cm. 4

18 LIERIÖ 86. R0: V = 55, 4700 (mm ) R6: V = 70, (mm ) R4: V =, (mm ) R0: V = 6, (mm ) 6LR6: V = (mm ) 87. Yksikkömuunnos 00 l = 0,00 m r = pohjaympyrän säde r 0, 000, 000, r 0, , Pohjaympyrän halkaisija on r 0,46 (m). Vastaus: 0,46 m 88. Yksikkömuunnos 5 cm =,5 dm A A A 0, 0, 5, 99, (dm ) P V V A P h 0, 5, 785, 7,9 (dm ) Vastaus: 7,9 dm, 00 cm 89. Yksikkömuunnokset 0,00 mm = 0,00000 m ja km = m V Ah m 0,00000 m,0 m = 000 l Vastaus: 000 l 90. a) kehän pituus p 6, 0 7, 699 7, 7 b) Levyn ala- ja yläpuoli saadaan kahden ympyrän alojen erotuksena. Lisäksi lasketaan levyn ulko- ja sisäreunan ala, jotka ovat lieriöiden vaippoja. Lieriön korkeus on levyn paksuus mm = 0, cm A ( 60, 075, ) 60, 0, 075, 0, 0 c) tilavuus V 6,0 0,0 0,75 0,0,... 5, 0 g tiheys, g/cm,...cm Vastaus: a) 7,7 cm b) 0 cm c), g/cm 5

19 6 m V 5,6400 ( dm ) 0,700 V r h :( r ) V 0,0 m h V r r 6 5, m h 8000 m = 8 km (0, 0 m) Vastaus: 8 km ,640 0 dm 5,640 0 m, 0,0 m m 0 kg V, dm =, m 0,700 kg/dm V r h :( r ) 9 V, m h m = 900 km r (0, 0 m) Vastaus: 9 00 km 9. Kiven tilavuus on yhtä suuri kuin lieriön, jolla on sama pohja kuin vesiastialla ja korkeutena,0 cm. V Ap h 50, 0, 60 (cm ) Vastaus: 60 cm 94. Yksikkömuunnos 0,5 l = 500 cm V r h V 500 cm, h5 mm =,5 cm 500 r,5 :,5 500 r, r, 5 r 0,00... cm r cm Vastaus: cm 95.,4 kg:n nestemäärän tilavuus on dm,0 kg:n nestemäärän tilavuus on,0, 4 dm = 0,8 dm = 8, cm Lasketaan lieriön korkeus h 6

20 V Ah V 8, cm, A90 cm 8, h :90 8,... h 90 Vastaus: 9, cm 9, 96. Poistettavan maan tilavuus V 0000 m 0, 5 m = 5000 m V löyhtynyt, m 8000 m Kuormia Vastaus: 50 kuormaa 97. Kokonaisala on seinien ala vähennettynä ovien ja ikkunoiden alalla. A 4, 5, 8, 8, 8 5, 0 4, 48 Maalataan kahteen kertaan A = 8,96 8, 96 Maalia 0 litraa 80, Vastaus: 0 l 98. Kuution särmä a 4 Maapallon tilavuus (680 km) 4 a a km Vastaus: 0 00 km,8,8 4,5 99. V 7 km 95 km 0, 040 km 46, 6 km näkyvä Näkyvä osuus on kymmenesosa koko vuoresta, joten V kok 046, ( km ) V vesi V 09, 46609, 4067, 4000 (km ) kok Vvesi 406, 7 km 406, 7 km 4, Vkulutus 4, 0 m 40 km,4 vuotta v kk Vastaus: Tilavuus km, veden tilavuus km ja se vastaa v kk:n kulutusta. 7

21 400. h 000, mm = 0 mm V 0, 0 m 0, 07 m 0, 000 m = 6, 7 m 6,m A 0, 0 m 0, 97 m m m A80 g / m g 5000 kg Vastaus: cm, 6, m, kg 40. 9, 0 kg:n kultamäärän tilavuus on m 5 5 kg:n kultamäärän tilavuus on m 0, m = 95,0 cm 9,0 Kultaharkon pituus eli lieriön korkeus h 5, 0 9, 0 V Ah V 95,0..., A 5,4 5,0 9,0 95,0... 5,4h 95,0... 7,8 h : 7,8 95,0 h 4 7,8 Vastaus: 4 cm a) V suklaa 50, 5, 5... b) Palloja on rasiassa 8 kpl ja jokaisella sivulla on palloa rinnakkain jolloin niiden säde on 0,0 cm,5 cm 4 V suklaa , 5, 5... c) Palloja on rasiassa 7 kpl ja jokaisella sivulla on palloa rinnakkain jolloin niiden säde 0,0 cm on 6 4 0,0 500 V suklaa 7 5, Vastaus: a) 54 cm b) 54 cm c) 54 cm cm palloja mahtuu rinnakkain, joten niitä mahtuu yhteensä 7 V tyhjä = V kuutio V pallot = , 868,... cm,9 dm 5,0 cm palloja mahtuu 6 rinnakkain, joten niitä mahtuu yhteensä V tyhjä = V kuutio V pallot = , 868,... cm,9 dm Vastaus: Molemmissa,9 dm 8

22 404. Lieriön tilavuus V r h 5, Lasketaan lieriöiden pohjien säteet. V r h : h V r h V r h r r r r Peräkkäisten lieriöiden säteiden suhteet r 50, r r 0, r r4 00, r r5 0, r Vastaus: Peräkkäisten lieriöiden säteiden suhde on vakio, Koska korkeuden ja pohjan halkaisijan suhde on :, ovat korkeus ja pohjan säde yhtä suuret. V Ah h h h h 68, h 68, F Apohja h H G I 68, K J 4985,... h h 9

23 A h h 68, F vaippa H G I K J A kok 4, , , 0 (m ) Vastaus: 5,0 m 9970, = särmiön pituus A 08, 08, 09, 09, 484, 484, = 0 V 08, 09, 80, (cm ) Vastaus: 70 cm 407. mv 4 m pallo 05,, 0 kg = 5,9... kg m 0 jalusta 065, 5, 5,, = 89,... kg Jalustan sisällä olevan pallosegmentin massa m segm F I HG 0,,,, K J, 0 m kok 89,... 5, , kg Vastaus: 700 kg b g =9,5... kg 408. a) r ulko 65, 9, b) r sisä 5, 50,... 4 Kerroksen paperimäärän keskiarvo = 9, 6..., , 5, 5 Kerroksia yhteensä 7,... 05, Paperia yhteensä 7,...6,8 cm 7 00 cm = 7 m Vastaus: a) 9 cm b) 4 cm c) 7 m 4 V r pallo ,... Vkuutio bg r joten ulkopuolelle jää 00 % 5,5 % 47,6 % Vastaus: 47,6 % 6, ,8 0,9 0

24 KARTIO 40. Yksikkömuunnos,5 m = 5 cm Kartion korkeus h h 5 80 h 80 5 h = 9,5... V r h (5 cm) 9, 5... cm cm, m A A A pohja vaippa Vastaus:, m,,0 m (5 cm) 5 cm 80 cm cm, 0 m 4. Yksikkömuunnos, dm = cm Kartion sivujana s s = 6 + s 80 s = 8,6... Avaippa rs8, (cm ) tan 6 65 Vastaus: 00 cm, V r h V 5,0 dm, h5,0 dm 5,0 r 5,0 75,0 r 5,0 : (5,0 ) 75,0 r 5,0 75,0 r 5,0 r,65... Pohjan halkaisija r 5, dm Vastaus:,5 dm

25 4. Kyseessä on neliöpohjainen pyramidi, jonka sivutahot ovat tasasivuisia kolmioita. Tasasivuisen kolmion korkeusjana a a + 5 =0 a 75 a = 8,66... A ,... 0 Pyramidin korkeus h h + 5 = a e j 5 h 75 h 50 7, V Ah ,... 0 Vastaus: Ala 70, tilavuus 40 a Kyseessä on ympyräkartio, jonka sivujana on,4 m. 7 A vaippa 4, 69, Kartion pohjaympyrän kehän pituus 7 r 60, 4 r = 0,48 A pohja = r 0, 48 0, A kok =,69 + 0,78 4, (m ) Kartion korkeus h h + 0,48 =,4 h 5, 596,5... V 0, 48, ,57 (m ) Vastaus: 4, m,0,57 m,4 m Kartion sivujana 5,0 Pohjaympyrän kehän pituus 0, 0 5, 0 Pohjaympyrän säde r r 50, r =,5 Kartion korkeus h h +,5 = 5,0 h 8, 75 4, 0...

26 V 5, 40,... 8 (cm ) Vastaus: 8 cm 46. Pyramidin korkeus h h + 40,0 = 0,0 h 800 h =,... V 80, 0, (cm ) = 4 (dm ) A = A pohja + A vaippa = , 00, (cm ) Vastaus: 4 dm, cm 47. Sivutahkokolmion korkeus a a +,5 = a 96, 75 a = 9,9... Pyramidin korkeus h h +,5 = a h h 96, 75, 5 64, 5 6, 6... V 6, (cm ) A 4 9, (cm ) Vastaus: 900 cm, 400 cm 48. Hiekkaa tunnissa 600, cm = 60 cm Kartion korkeus h h h 60, 0 h 80 9, (cm) Vastaus: 60 cm ja,9 cm 5, cm 49. Yksikkömuunnos, dm = cm Suppilon kartio-osaan mahtuvan öljyn tilavuus V 76, cm = 00,69... cm = 0,69... ml Suppilo täyttyy nopeudella 50 ml/s 50 ml/s = 00 ml/s, dm

27 Täyttyminen kestää Vastaus: s 0, s s Yhdenmuotoisista kolmioista h h 6, 7 6, 6,,6 h =,6h + 4,7 h = 4,7 Alaosan katkaistun kartion tilavuus V, 6 b4, 7 6, 7g ,,, Yläosan kartion tilavuus V ,,, 9... V kok = 9,97 +, =,46... mv, 46..., 7 0 kg 0000 kg = 0 t Vastaus: 0 t h 6,7,6 4. Katkaistut pyramidit Koska katkaistut pyramidit ovat kuution sisällä symmetrisesti vastakkain, on katkaistun pyramidin korkeus on ison kuution särmä pienen kuution särmä = 8,0 m,4 m =, m. Kokonaisen pyramidin korkeus: h h,,44 h 8, 0, 4,8,4 h = 8,0 h 8,4 h = 4 Vkatkpyr 8, 0 4, 4 4, 0, 78, (m ) 8,0 Katkaistun pyramidin sivutahkot ovat puolisuunnikkaita, joiden kannat ovat 8,0 m ja,4 m. Koska puolisuunnikkaat ovat kuution pohjalävistäjän suuntaisesti, puolisuunnikkaan korkeus saadaan kuutioiden pohjalävistäjien avulla: Ison kuution pohjan lävistäjä on 8,0 m (neliön lävistäjä on s, jossa s on neliön sivu) Pienen kuution pohjan lävistäjä,4 m,6 4

28 Kun ison kuution pohjalävistäjästä vähennetään pikkukuution pohjanlävistäjä saadaan kahden puolisuunnikkaan korkeus ja yhden puolisuunnikkaan korkeus on 8,0,4, 5... Puolisuunnikkaan muotoisia ja 0 cm paksuisia sivutahkoja on 8 kpl. 8, 0, 4 Vkok Valin pyramidi 8,5... 0,0 0 (m ) mv 0, 00 kg 0000 kg = 0 t Vastaus: 0 t 4. Oktaedrit koostuvat kahdesta neliöpohjaisesta pyramidista. Pyramidien pohjaneliöiden lävistäjät ovat 5, 0 ja 0 Pyramidien korkeudet: h F HG 5 h 5 I KJ h =,55... h F HG I KJ h h = 7,07... h F HG 0 I KJ h h = 4, V kok , , , (cm ) Vastaus: cm 5

29 YHDENMUOTOISTEN KUVIOIDEN JA KAPPALEIDEN PINTA-ALOJEN JA TILAVUUKSIEN SUHDE 4. Maalin kulutus m on suoraan verrannollinen pinta-alaan A: 0,5 m 6 m 0,56 8,4 8 (cl) =,8 dl Vastaus:,8 dl V l 500 l V 0, 076 l = 76 ml Vastaus: 76 ml 0, l 45. V 4 0, l 4 V 0, 47 l Vastaus: 0,47 l 46. k 5, , k , Vastaus: : k 4, k 5000 Vastaus: : Massa on suoraan verrannollinen tilavuuteen: F I HG K J 60 m 0 m = 60 0 g = g = 80 kg Vastaus: 80 kg 6

30 GEOMETRIAA KOORDINAATISTOSSA F HG I K J b g 49. a) P 6 8 8, 8, b g b g 8 d 6 ( ) 8 8 b) P F HG I K J b g 04 68, 77, b g b g, d F I HG K J b c) P 7, 45, ; 05, g b g b g 8 d 7( ) ( ) 4 5, Vastaus: a) (,8), 8 b) (7,7), 00 4, c) ( 4,5 ; 0,5), 4 58, 40. a) P g 075, ; 6 d 4) 5 7 9, b) P F 45, ( ) 5( ) I HG, K J b b g b g F 0( ) 4, 5I HG, K J b685 ;, g b g b g F 0 4 I, HG K J b6; 5, 5g b g c b gh d 0) 4, 5 00, 5 4, c) P d 0) 4 4 0, 8 Vastaus: a) (0,75; 6), 9, b) ( 6; 8,5), 4, c) (6, 5,5), 0,8 4. A 45, tan 8,4 tan,7 A C B y 7

31 B 908, 47,6 C 90, 756, A 80 (7,656, ) 5, Vastaus: Ala 4,5 ja kulmat 5,,56, ja 7,6 HARJOITUSKOE. a) 55 ja 5 b) 80 (055 ) 95, 90 0 = 60, 9060= 0 ja 80 (095 ) 55 b g b g 45 P F HG I K J b g c) d 5 7, 5, ; a) A0 (,0 cm),6 cm A (0,0 cm) (8,0 cm) 40 cm 50 b) b 0, m 7,6 m , m A (0, m) 78 m 60 Vastaus: a),6 cm, 40 cm b) 7,6 m, 78 m l l 5. a) sin0 5 5sin0 =,5 40, b) cos40 c 5,0 0 40, c 5, cos40, c) tan 80 50, 58, 0 Vastaus: a),5 b) 5, c) 58 5,0 c 40 4,0 8,0 8

32 h 4. a) tan4 8, h, 8tan49, 6 Vastaus: 9,6 m 5. V = Ah A V h 000 cm cm 000 m = 0 a, cm Vastaus: 0 a h, Kartion sivujana s 50, 0 40, s s 56 50, Avaippa rs4, 050, , V 40, 500, ,... Maalia tarvitaan 6 (l). 5 Maalin kulutus m on suoraan verrannollinen pinta-alaan, pinta-alojen suhde on mittakaavan neliö. m 0, ,0 6 l m 0,0045 l =4,5 ml 5000 Vastaus: A = 60 m, V = 840 m. Maalia kuluu pylvääseen 6 l ja pienoismalliin 4,5 ml. 7. a) Kuutio, jonka särmä on pallon halkaisijan 9,5 cm = 9 cm suuruinen. 4 b) V 95, pallo 0, ,...%. Tyhjää tilaa jää 00 % 5,... % 48 %. V kuutio 9 c) d = 9 9 9, 9 Vastaus: a) Kuutio, jonka särmä on 9 cm. b) 48 % c),9 cm 60, 40, 8 8. a) Pituuspiirin kaaren pituus b b) Paino on suoraan verrannollinen tilavuuteen, tilavuuksien suhde on mittakaavan kuutio 9

33 m 5977, 0 t F HG 08, , 0 t0,8 m Vastaus: a) 60 km I KJ 04, t=4kg b) 4 kg l l HARJOITUSKOE 6. a) 6, 8 b) = 80 56= 4 (tangenttikulmaa vastaava keskuskulma) = 90 (tangentin ja säteen välisenä kulmana) 6 (kehäkulma on puolet vastaavasta keskuskulmasta) 90(tangentin ja säteen välisenä kulmana) δ γ β 56. Keskuskulman ja kehäkulman suhde on :, joten keskuskulma on Sektorin ala A V astaus: a) Massa on suoraan verrannollinen tilavuuteen ja tilavuuksien suhde on mittakaavan kuutio. 05, m F I HG 8 K J m 05, (g) =,9 (kg) b) Pinta-alojen suhde on mittakaavan neliö Akol Astr Astr Akol 8 4 A kol V astaus: a),9 kg b) Alaltaan 4-kertainen F H G I K J 8 40

34 4. tan 50, h 0 h 0tan 5, 0, 7 Vastaus:,7 km 5. a) Ap r 0,, b) h +,0 =, h 044, 06, 6... V r h 0, 066,... 06, 9 c) Avaippa rs0,, 8, Vastaus: a), m b) 0,69 m c),8 m 6. Lasketaan kahden pallon tilavuuksien erotuksena F 4 4 I V HG b670 0, 0000g 670 K J 400 Vastaus: 400 km 7. Kanta 5, 5 b g = = 4 Kolmion korkeusjana h puolittaa kannan 4,0. h + = 5,5 h 6, 5 5,... A 45,... 0 Vastaus: 0 cm 8. a) Pituuspiirin kaaren pituus b b) 66' 609' 7' 7 60 cos h +,5 +,5 h 670 h 670 4

35 b670 hgcos cos 7 h 60 cos 7 60 Vastaus: a) 54 km 5, b) 5, km HARJOITUSKOE. a) =80 ( ) = 7 b) Yhdenmuotoisista kolmioista saadaan verranto = 4 Vastaus: a) 7 b) Ala A muodostuu neliöstä,josta on leikattu,5 säteinen neljännesympyrä A 5, 5, 4 A varj = 5,0 8A 4 5,0 Vastaus: 4. a) Alojen suhde on mittakaavan neliö 0 F A 6 I 6 K J HG 07 A 7, (m ) 6 b) Paino on suoraan verrannollinen tilavuuteen ja tilavuuksien suhde on mittakaavan kuutio. m F 85 6 I 6 K J HG 856 m 0, 049 kg = 49 g 7 Vastaus: a),7 m b) 49 g 5,0 A,5,5 4

36 0, 4. sin 8, 0, 69, (m) sin 8, Vastaus: 6,9 m 5. V 08,, 0, 05, 76(m ) mv 0, 576, kg < t eli voidaan nostaa Vastaus: Kyllä. 6. Oletetaan, että silmät ovat,6 m korkeudella. 0, cos 670, 006 0, , b km 60 Vastaus: noin 5 km Sivutahkokolmion korkeus a a + 0 = 5 a = 55 Pyramidin korkeus h h + 0 = a h 45 h = 0,65... V 0 0, (m ) 0,... tan Vastaus: 700 m, 64 4

37 8. (,4) (9,4) d d P h (,) b g b g, b7 g b 4g 5 F I, 4 K J = (5 ;,5) d d b) P HG 9 c) Suunnikkaan kanta a = 7 = 6 Suunnikkaan korkeus h = 4 = A ah 6 8 (7,) Vastaus: a) 7 ja 5 b) (5 ;,5) c) 8 a) 44

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.

Lisätiedot

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli Kertausosa 1. Kulma α on 7 suurempi kuin kulma eli 7. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli 180 7 180 14 : 71,5 Siis 7 71,5 7 108, 5 Vastaus: 108,5, 71, 5. Kuvaan merkityt kulmat

Lisätiedot

Tekijä Pitkä matematiikka a) p = 2πr r = 4,5 = 2π 4,5 = 28, piiri on 28 cm. A = πr 2 r = 4,5

Tekijä Pitkä matematiikka a) p = 2πr r = 4,5 = 2π 4,5 = 28, piiri on 28 cm. A = πr 2 r = 4,5 Tekijä Pitkä matematiikka 3 1.10.016 176 a) p = πr r = 4,5 = π 4,5 = 8,7... 8 piiri on 8 cm A = πr r = 4,5 b) = π 4,5 = 63,617... 64 Ala on 64 cm p = πd d = 5,0 = π 5,0 = 15,7... 16 piiri on 16 cm r =

Lisätiedot

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 )

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 ) Avaruusgeometria Lieriö 4. a) 0 0 1 7 00 (cm ) 7 00 cm 7, dm 7, l b) A p h 0 15 450 (cm ) 5. Kuution särmän pituus on a 1, cm. a) a 1, 1,78 1,7 (cm ) b) A 6a 6 1, 8,64 8,6 (cm ) 16 6. r d 8 (cm) A p h

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.

Lisätiedot

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille! 5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit

Lisätiedot

4 Avaruusgeometria. Ennakkotehtävät. 1. a) Pisin mahdollinen jana on jana AC. Pisin mahdollinen jana on jana AG. c) Kulma on 90.

4 Avaruusgeometria. Ennakkotehtävät. 1. a) Pisin mahdollinen jana on jana AC. Pisin mahdollinen jana on jana AG. c) Kulma on 90. Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.10.016 4 Avaruusgeometria Ennakkotehtävät 1. a) b) Pisin mahdollinen jana on jana AC. Pisin mahdollinen jana on jana AG. c) Kulma on 90.

Lisätiedot

α + β = 90º β = 62,5º α + β = 180º β 35º+β = 180º +35º β = 107,5º Tekijä MAA3 Geometria Kulma α = β 35º.

α + β = 90º β = 62,5º α + β = 180º β 35º+β = 180º +35º β = 107,5º Tekijä MAA3 Geometria Kulma α = β 35º. K1 Kulma α = β 35º. Tekijä MAA3 Geometria.8.016 a) Komplementtikulmien summa on 90º. α + β = 90º β 35º+β = 90º +35º β = 15º : β = 6,5º Tällöin α = 6,5º 35º= 7,5º. b) Suplementtikulmien summa on 180º. α

Lisätiedot

Avaruusgeometrian perusteita

Avaruusgeometrian perusteita Avaruusgeometrian perusteita Määritelmä: Kolmiulotteisen avaruuden taso on sellainen pinta, joka sisältää kokonaan jokaisen sellaisen suoran, jonka kanssa sillä on kaksi yhteistä pistettä. Ts. taso on

Lisätiedot

Pyramidi 3 Geometria tehtävien ratkaisut sivu a)

Pyramidi 3 Geometria tehtävien ratkaisut sivu a) Pyramidi 3 Geometria tehtävien ratkaisut sivu 8 501 a) Kolmiossa C kaksi yhtä pitkää sivua kuin kolmiossa DEF ja näiden sivujen väliset kulmat ovat yhtä suuret, joten kolmiot ovat yhtenevät yhtenevyyslauseen

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi

Lisätiedot

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset

M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset Yhdenmuotoisuus ja mittakaava Tasokuvioiden yhdenmuotoisuus tarkoittaa havainnollisesti sitä, että kuviot ovat samanmuotoiset mutta eivät välttämättä samankokoiset. Kahdella yhdenmuotoisella kuviolla täytyy

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1 Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

3 Ympyrä ja kolmion merkilliset pisteet

3 Ympyrä ja kolmion merkilliset pisteet 3 Ympyrä ja kolmion merkilliset pisteet Ennakkotehtävät. a) Matkapuhelimen etäisyys tukiasemasta A on 5 km. Piirretään ympyrä, jonka keskipiste on tukiasema A ja säde 5 km (5 ruudun sivua). Matkapuhelin

Lisätiedot

MAA3 TEHTÄVIEN RATKAISUJA

MAA3 TEHTÄVIEN RATKAISUJA MAA3 TEHTÄVIEN RATKAISUJA 1. Piirretään kulman kärki keskipisteenä R-säteinen ympyränkaari, joka leikkaa kulman kyljet pisteissä A ja B. Nämä keskipisteenä piirretään samansäteiset ympyräviivat säde niin

Lisätiedot

[MATEMATIIKKA, KURSSI 9]

[MATEMATIIKKA, KURSSI 9] 2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Trigonometria Ennakkotehtävät. a) Mäessä korkeus kasvaa metriä jokaista vaakasuunnassa edettyä 0 metriä kohden eli jyrkkyys prosentteina on : 0 = 0, = 0 %. b) Hahmotellaan tilannetta kuvan avulla. Kun

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29. 1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2. Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =

Lisätiedot

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Mitkä kuutiot on taiteltu kuvassa

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

( ) ( ) 1.1 Kulmia ja suoria. 1 Peruskäsitteitä. 1. a) epätosi b) tosi c) tosi d) epätosi e) tosi. 2. a) Kulmat ovat vieruskulmia, joten

( ) ( ) 1.1 Kulmia ja suoria. 1 Peruskäsitteitä. 1. a) epätosi b) tosi c) tosi d) epätosi e) tosi. 2. a) Kulmat ovat vieruskulmia, joten 1 Peruskäsitteitä 1.1 Kulmia ja suoria 1. a) epätosi b) tosi c) tosi d) epätosi e) tosi. a) Kulmat ovat vieruskulmia, joten α 180 5 155 b) Kulmat ovat ristikulmia, joten α 8. a) Kuvan kulmat ovat ristikulmia,

Lisätiedot

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92 MAB Kertaustehtävien ratkaisut 10. a) α = 15 16 1 16 1 15 60 β = 95 58 45 600 15,669 95 58 45 95,979 60 600 b) α = 11,987 0,987 = 0,987 60 = 59, 0, = 0, 60 = 1,9 α = 11 59 1,9 = 11 59 14 β = 95,4998 0,

Lisätiedot

302 Nelikulmion kulmien summa on ( 4 2) 301 a) Ainakin yksi kulma yli 180. , joten nelikulmio on olemassa. a) = 280 < 360

302 Nelikulmion kulmien summa on ( 4 2) 301 a) Ainakin yksi kulma yli 180. , joten nelikulmio on olemassa. a) = 280 < 360 Pyramidi Geometria tetävien ratkaisut sivu 01 a) Ainakin yksi kulma yli 180. 0 Nelikulmion kulmien summa on ( 4 ) 180 = 60. a) 90 + 190 = 80 < 60, joten nelikulmio on olemassa. Hamotellaan kuvaaja, joon

Lisätiedot

Pituus on positiivinen, joten kateetin pituus on 12.

Pituus on positiivinen, joten kateetin pituus on 12. Tekijä Pitkä matematiikka 3 10.10.2016 94 Pythagoraan lauseella saadaan yhtälö 15 2 = 9 2 + a 2 a 2 = 15 2 9 2 = 225 81 = 144 a = ± 144 a = 12 tai a = 12 Pituus on positiivinen, joten kateetin pituus on

Lisätiedot

4.3 Kehäkulma. Keskuskulma

4.3 Kehäkulma. Keskuskulma 4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet

Lisätiedot

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m MB: Yhdenmuotoisuus luksi Tämän luvun aiheina ovat yhdenmuotoisuus sekä yhdenmuotoisuussuhde. Kaikkein tavallisimmat yhdenmuotoisuuden sovellukset ovat varmasti kartta ja pohjapiirros. loitamme tutuista

Lisätiedot

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset 4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste

Lisätiedot

a b c d

a b c d .. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 202 È ÖÙ Ö Ò ÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d. + + 2.. 4. 5. 6. + + + + + + + + + + P. Koska massojen suhteet (alkuperäinen timantti mukaan lukien) ovat : 4 : 7, niin

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Muodostetaan vastinpituuksien välinen verrantoyhtälö ja ratkaistaan x. = = : 600

Muodostetaan vastinpituuksien välinen verrantoyhtälö ja ratkaistaan x. = = : 600 Tekijä 3 Geometria 7.10.016 47 Kartta on yhdenmuotoinen kuva maastosta, jolloin kartan pituudet ja maaston pituudet ovat suoraan verrannollisia keskenään. Merkitään reitin pituutta kartalla kirjaimella

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Tekijä MAA3 Geometria

Tekijä MAA3 Geometria Tekijä MAA3 Geometria 29.9.2016 240 Kuva voidaan piirtää esimerkiksi GeoGebran 3D-piirtoalueessa. Piirtäminen voidaan esimerkiksi aloittaa piirtämällä suorakulmio pohjaksi ja syöttämällä sen jälkeen kartion

Lisätiedot

YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ

YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ INTERNETIX Ylioppilaskirjoitusten tehtävät Page YLIOPPILSTUTINTO MTEMTIIN OE PITÄ OPPIMÄÄRÄ okeessa saa vastata enintään kymmeneen tehtävään Eräät tehtävät sisältävät useita osia [merkittynä a), b) jne],

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015

LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015 PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske

Lisätiedot

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka 1. Selitä mitä tarkoittavat a) M2 b) vaihtoehtoiskustannus. Anna lisäksi esimerkki vaihtoehtoiskustannuksesta. (7 p) Vastaus: a) Lavea raha. (1 p) M1 (Yleisön hallussa olevat lailliset maksuvälineet ja

Lisätiedot

PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA

PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA 4..005 OSA 1 Laskuaika 30 min Pistemäärä 0 pistettä 1. Mikä on lukujonon seuraava jäsen? Minkä säännön mukaan lukujono muodostuu? 1 4 5 1 1 1

Lisätiedot

AMMATIKKA top

AMMATIKKA top AMMATIKKA top 6..006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA. Tekniikka ja liikenne: O. Matkailu-,

Lisätiedot

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita

Aluksi. Avaruuskappaleista. Lieriö. MAB2: Avaruuskappaleita MAB: Avaruuskappaleita Aluksi Tässä luvussa emme tyydy enää pelkkään tasoon. Aiheena ovat nyt avaruuskappaleet eli kolmiulotteiset kappaleet. Tarkastelemme lieriötä eli sylinteriä, kartiota, särmiötä,

Lisätiedot

Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta ole mainittu.

Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta ole mainittu. Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 6..009 OSA Ratkaisuaika 30 min Pistemäärä 0 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja tai perusteluja näkyviin, ellei muuta

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Harjoitustehtävät, syys lokakuu 2010. Helpommat

Harjoitustehtävät, syys lokakuu 2010. Helpommat Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.

Lisätiedot

Tasogeometriaa GeoGebran piirtoalue ja työvälineet

Tasogeometriaa GeoGebran piirtoalue ja työvälineet Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ (ja MITTAA) a) jana toinen jana, jonka pituus on 3 b) kulma toinen kulma, jonka

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Kenguru Student (lukion 2. ja 3.), ratkaisut sivu 1 / 13

Kenguru Student (lukion 2. ja 3.), ratkaisut sivu 1 / 13 Kenguru Student (lukion ja ), ratkaisut sivu / pistettä Kuvasta huomataan, että + + 5 + 7 = 44 Kuinka paljon tämän mukaan on + + 5 + 7 + 9 + + + 5 + 7? A) 44 B) 99 C) 444 D) 66 E) 49 Ratkaisu: Kuvan havainnollistuksen

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

2 = 31415,92... 2 31 000 m

2 = 31415,92... 2 31 000 m Pyamidi Geometia tehtävien atkaisut sivu 6 40 Ympyän halkaisija d 00 m ja säde 00 m. a) kehän pituus p π d d 00 m π 68,... 60 ( m) b) pinta-ala π 00 m π 00 45,9... 40 a) ( ) 000 m a) kehän pituus 60 m

Lisätiedot

Kenguru 2016 Student lukiosarjan ratkaisut

Kenguru 2016 Student lukiosarjan ratkaisut sivu 1 / 22 Ratkaisut TEHTÄVÄ 1 2 3 4 5 6 7 8 9 10 VASTAUS A C E C A A B A D A TEHTÄVÄ 11 12 13 14 15 16 17 18 19 20 VASTAUS A C B C B C D B E B TEHTÄVÄ 21 22 23 24 25 26 27 28 29 30 VASTAUS D C C E E

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta) MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 3.3.06. ( piste/kohta) Sivu / 8 Kohta Vaihtoehdon numero A B C D E F 3. a) Ainakin yhdet sulut kerrottu oikein auki 6x 4x x( 3x) Ratkaistu nollakohdat sieventämisen lisäksi

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin.

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. 1 MITTAAMINEN II Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. Aihepiirejä: Suomen maantieto, nopeus, matka ja aika, erilaisten

Lisätiedot

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ a) jana, jonka pituus on 3 b) kulma, jonka suuruus on 45 astetta c)

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Henkilötunnus Sukunimi Etunimet

Henkilötunnus Sukunimi Etunimet Valintakokeessa on kaksi osaa: Osa 1 sisältää viisi esseetehtävää kansantaloustieteestä. Osasta 1 voi saada 0 30 pistettä. Osa sisältää kuusi matematiikan laskutehtävää. Osasta voi saada 0 30 pistettä.

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi) Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Toukokuun 2012 helpommat valmennustehtävät ratkaisuja 1 Määritä sellaisen kolmion ala, jonka kaksi kulmaa ovat 60 ja 45 ja jonka pisimmän sivun pituus on 1 Ratkaisu Olkoon

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

Pyramidi 3 Geometria tehtävien ratkaisut sivu 168. h = 16,5 cm = 1,65 dm 1 = = :100. 2,5dm 1, dm. Vastaus 30 cm. = 2,

Pyramidi 3 Geometria tehtävien ratkaisut sivu 168. h = 16,5 cm = 1,65 dm 1 = = :100. 2,5dm 1, dm. Vastaus 30 cm. = 2, Pyramidi Geomeria eävien rakaisu sivu 68 00,5 l,5 dm 6,5 cm,65 dm Apoja π r π r r π,5dm,08... dm r ( ± ) π π, 65 dm 00 l dm 000 cm Ap 000 0 000 00 :00 000 0 ( cm) 00 asaus 0 cm d r,057... dm cm asaus cm

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1) Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori

Lisätiedot

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi 1 MITTAAMINEN I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I IV. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä: oma

Lisätiedot

3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan.

3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan. KOKEIT KURSSI 2 Matematiikan koe Kurssi 2 () 1. Nimeä kulmat ja mittaa niiden suuruudet. a) c) 2. Mitkä kuvion kulmista ovat a) suoria teräviä c) kuperia? 3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa.

11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11. Geometria Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11.1 Valikot ja näppäintoiminnot Kun valitset päävalikosta Geometry, näyttö tyhjenee ja näkyviin ilmestyy uusi painikevalikko

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1) . Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.

Lisätiedot

LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE

LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE 9.2.2016 A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon. Apuvälineenä

Lisätiedot

a b c d + + + + + + +

a b c d + + + + + + + 11. 11. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÖ Ø ÙØ 014 È ÖÙ Ö ÒÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d 1. +. 3. 4. 5. 6. + + + + + + + + P1. Junan nopeus (liikkeellä) on aluksi v 0 ja matka-aika T 0. Matkan pituus s on

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot